Some style things.
This commit is contained in:
parent
2d902e8bf1
commit
fac76a56f8
|
@ -17,111 +17,110 @@
|
|||
exact-round exact-floor exact-ceiling exact-truncate
|
||||
order-of-magnitude)
|
||||
|
||||
(define pi (atan 0 -1))
|
||||
(define pi (atan 0 -1))
|
||||
(define pi.f (atan 0.0f0 -1.0f0))
|
||||
|
||||
(begin-encourage-inline
|
||||
|
||||
|
||||
;; real predicates
|
||||
(define (nan? x)
|
||||
(unless (real? x) (raise-argument-error 'nan? "real?" x))
|
||||
(or (eqv? x +nan.0) (eqv? x +nan.f)))
|
||||
|
||||
|
||||
(define (infinite? x)
|
||||
(unless (real? x) (raise-argument-error 'infinite? "real?" x))
|
||||
(or (= x +inf.0) (= x -inf.0)))
|
||||
|
||||
|
||||
;; z^2
|
||||
(define (sqr z)
|
||||
(unless (number? z) (raise-argument-error 'sqr "number?" z))
|
||||
(* z z))
|
||||
|
||||
|
||||
;; sgn function
|
||||
(define (sgn x)
|
||||
(unless (real? x) (raise-argument-error 'sgn "real?" x))
|
||||
(cond [(= 0 x) x] ; preserve 0, 0.0 and 0.0f0
|
||||
[(double-flonum? x) (cond [(unsafe-fl> x 0.0) 1.0]
|
||||
[(unsafe-fl< x 0.0) -1.0]
|
||||
[else +nan.0])]
|
||||
[(single-flonum? x) (cond [(> x 0.0f0) 1.0f0]
|
||||
[(< x 0.0f0) -1.0f0]
|
||||
[else +nan.f])]
|
||||
[else (if (> x 0) 1 -1)]))
|
||||
|
||||
(cond [(= 0 x) x] ; preserve 0, 0.0 and 0.0f0
|
||||
[(double-flonum? x) (cond [(unsafe-fl> x 0.0) 1.0]
|
||||
[(unsafe-fl< x 0.0) -1.0]
|
||||
[else +nan.0])]
|
||||
[(single-flonum? x) (cond [(> x 0.0f0) 1.0f0]
|
||||
[(< x 0.0f0) -1.0f0]
|
||||
[else +nan.f])]
|
||||
[else (if (> x 0) 1 -1)]))
|
||||
|
||||
;; complex conjugate
|
||||
(define (conjugate z)
|
||||
(unless (number? z) (raise-argument-error 'conjugate "number?" z))
|
||||
(make-rectangular (real-part z) (- (imag-part z))))
|
||||
|
||||
|
||||
;; complex hyperbolic functions
|
||||
(define (sinh z)
|
||||
(unless (number? z) (raise-argument-error 'sinh "number?" z))
|
||||
(cond [(= z 0) z] ; preserve 0, 0.0, -0.0, 0.0f0, 0.0+0.0i, etc.
|
||||
(cond [(= z 0) z] ; preserve 0, 0.0, -0.0, 0.0f0, 0.0+0.0i, etc.
|
||||
[(real? z)
|
||||
(let loop ([z z])
|
||||
(cond [(z . < . 0) (- (loop (- z)))]
|
||||
[else (/ (- (exp z) (exp (- z))) 2)]))]
|
||||
[else (/ (- (exp z) (exp (- z))) 2)]))
|
||||
|
||||
(cond [(z . < . 0) (- (loop (- z)))]
|
||||
[else (/ (- (exp z) (exp (- z))) 2)]))]
|
||||
[else (/ (- (exp z) (exp (- z))) 2)]))
|
||||
|
||||
(define (cosh z)
|
||||
(unless (number? z) (raise-argument-error 'cosh "number?" z))
|
||||
(cond [(and (real? z) (= z 0)) (if (single-flonum? z) 1.0f0 1.0)]
|
||||
[else (/ (+ (exp z) (exp (- z))) 2)]))
|
||||
|
||||
(cond [(and (real? z) (= z 0)) (if (single-flonum? z) 1.0f0 1.0)]
|
||||
[else (/ (+ (exp z) (exp (- z))) 2)]))
|
||||
|
||||
(define (tanh z)
|
||||
(unless (number? z) (raise-argument-error 'tanh "number?" z))
|
||||
(cond [(= z 0) z] ; preserve 0, 0.0, -0.0, 0.0f0, 0.0+0.0i, etc.
|
||||
(cond [(= z 0) z] ; preserve 0, 0.0, -0.0, 0.0f0, 0.0+0.0i, etc.
|
||||
[(real? z)
|
||||
(let loop ([z z])
|
||||
(cond [(z . < . 0) (- (loop (- z)))]
|
||||
(cond [(z . < . 0) (- (loop (- z)))]
|
||||
[(z . < . 20) (define exp2z (exp (* 2 z)))
|
||||
(/ (- exp2z 1) (+ exp2z 1))]
|
||||
[(z . >= . 20) (if (single-flonum? z) 1.0f0 1.0)]
|
||||
[else z]))] ; +nan.0 or +nan.f
|
||||
[(z . >= . 20) (if (single-flonum? z) 1.0f0 1.0)]
|
||||
[else z]))] ; +nan.0 or +nan.f
|
||||
[else
|
||||
(define exp2z (exp (* 2 z)))
|
||||
(/ (- exp2z 1) (+ exp2z 1))]))
|
||||
|
||||
|
||||
;; angle conversion
|
||||
(define (degrees->radians x)
|
||||
(unless (real? x) (raise-argument-error 'degrees->radians "real?" x))
|
||||
(cond [(single-flonum? x) (* x (/ pi.f 180f0))]
|
||||
[else (* x (/ pi 180.0))]))
|
||||
|
||||
(cond [(single-flonum? x) (* x (/ pi.f 180f0))]
|
||||
[else (* x (/ pi 180.0))]))
|
||||
|
||||
(define (radians->degrees x)
|
||||
(unless (real? x) (raise-argument-error 'radians->degrees "real?" x))
|
||||
(cond [(single-flonum? x) (* x (/ 180f0 pi.f))]
|
||||
[else (* x (/ 180.0 pi))]))
|
||||
|
||||
(cond [(single-flonum? x) (* x (/ 180f0 pi.f))]
|
||||
[else (* x (/ 180.0 pi))]))
|
||||
|
||||
;; inexact->exact composed with round, floor, ceiling, truncate
|
||||
(define-syntax-rule (define-integer-conversion name convert)
|
||||
(define (name x)
|
||||
(unless (rational? x) (raise-argument-error 'name "rational?" x))
|
||||
(inexact->exact (convert x))))
|
||||
|
||||
|
||||
(define-integer-conversion exact-round round)
|
||||
(define-integer-conversion exact-floor floor)
|
||||
(define-integer-conversion exact-ceiling ceiling)
|
||||
(define-integer-conversion exact-truncate truncate)
|
||||
|
||||
) ; begin-encourage-inline
|
||||
|
||||
)
|
||||
|
||||
(define order-of-magnitude
|
||||
(let* ([exact-log (λ (x) (inexact->exact (log x)))]
|
||||
[inverse-exact-log10 (/ (exact-log 10))])
|
||||
(λ (r)
|
||||
(unless (and (real? r) (positive? r)
|
||||
(not (= r +inf.0)))
|
||||
(unless (and (real? r) (positive? r) (not (= r +inf.0)))
|
||||
(raise-argument-error 'order-of-magnitude "(and/c (>/c 0.0) (not/c +inf.0))" r))
|
||||
(let* ([q (inexact->exact r)]
|
||||
[m
|
||||
(floor
|
||||
(* (- (exact-log (numerator q)) (exact-log (denominator q)))
|
||||
inverse-exact-log10))])
|
||||
(let loop ((m m) (p (expt 10 m)))
|
||||
(if (< q p) (loop (sub1 m) (* p 1/10))
|
||||
(let ((u (* p 10)))
|
||||
(if (>= q u) (loop (add1 m) u) m))))))))
|
||||
(define q (inexact->exact r))
|
||||
(define m
|
||||
(floor (* (- (exact-log (numerator q)) (exact-log (denominator q)))
|
||||
inverse-exact-log10)))
|
||||
(let loop ([m m] [p (expt 10 m)])
|
||||
(if (< q p)
|
||||
(loop (sub1 m) (* p 1/10))
|
||||
(let ([u (* p 10)])
|
||||
(if (>= q u) (loop (add1 m) u) m)))))))
|
||||
|
||||
#|
|
||||
;; Timing tests below provided by Jos Koot for the order-of-magnitude function
|
||||
|
@ -134,54 +133,49 @@
|
|||
(require (planet joskoot/planet-fmt:1:1/fmt))
|
||||
|
||||
(define-syntax timer
|
||||
(syntax-rules ()
|
||||
((_ type iter k expr)
|
||||
(let*
|
||||
((output-string (open-output-string))
|
||||
(result expr)
|
||||
(dummy
|
||||
(parameterize ((current-output-port output-string))
|
||||
(time (for ((k (in-range iter))) expr))))
|
||||
(input-string (open-input-string (get-output-string output-string))))
|
||||
(parameterize ((current-input-port input-string))
|
||||
(let
|
||||
((cpu (begin (read) (read) (read)))
|
||||
(real (begin (read) (read) (read)))
|
||||
(gc (begin (read) (read) (read)))
|
||||
(micro (/ iter 1000)))
|
||||
(if (and (>= cpu 0) (>= real 0) (>= gc 0))
|
||||
((fmt
|
||||
"'test type : ' d/
|
||||
'exponent : ' i6/
|
||||
'n-obs : ' i6/
|
||||
'mean cpu : ' i6 x 'microseconds'/
|
||||
'mean real : ' i6 x 'microseconds'/
|
||||
'mean gc : ' i6 x 'microseconds'/
|
||||
'real - gc : ' i6 x 'microseconds'//" 'current)
|
||||
type
|
||||
k
|
||||
iter
|
||||
(/ cpu micro)
|
||||
(/ real micro)
|
||||
(/ gc micro)
|
||||
(/ (- cpu gc) micro))
|
||||
((fmt "'incorrect times for k='i//" 'current) k))))
|
||||
result))))
|
||||
|
||||
(syntax-rules ()
|
||||
((_ type iter k expr)
|
||||
(let* ([output-string (open-output-string)]
|
||||
[result expr]
|
||||
[dummy (parameterize ([current-output-port output-string])
|
||||
(time (for ([k (in-range iter)]) expr)))]
|
||||
[input-string (open-input-string (get-output-string output-string))])
|
||||
(parameterize ([current-input-port input-string])
|
||||
(let ([cpu (begin (read) (read) (read))]
|
||||
[real (begin (read) (read) (read))]
|
||||
[gc (begin (read) (read) (read))]
|
||||
[micro (/ iter 1000)])
|
||||
(if (and (>= cpu 0) (>= real 0) (>= gc 0))
|
||||
((fmt
|
||||
"'test type : ' d/
|
||||
'exponent : ' i6/
|
||||
'n-obs : ' i6/
|
||||
'mean cpu : ' i6 x 'microseconds'/
|
||||
'mean real : ' i6 x 'microseconds'/
|
||||
'mean gc : ' i6 x 'microseconds'/
|
||||
'real - gc : ' i6 x 'microseconds'//" 'current)
|
||||
type
|
||||
k
|
||||
iter
|
||||
(/ cpu micro)
|
||||
(/ real micro)
|
||||
(/ gc micro)
|
||||
(/ (- cpu gc) micro))
|
||||
((fmt "'incorrect times for k='i//" 'current) k))))
|
||||
result))))
|
||||
|
||||
(let* ((max-expt 10000) (small (expt 10 (- (* 2 max-expt)))) (iter 1000))
|
||||
(for ((k (in-range (- max-expt) (add1 max-expt) (/ max-expt 10))))
|
||||
(let* ((q (expt 10 k)) (qq (- q small)) (qqq (+ q small)))
|
||||
(unless
|
||||
(= k (timer "exact power of 10" iter k (order-of-magnitude q)))
|
||||
(error 'test-1 "~s" k))
|
||||
(unless
|
||||
(= (sub1 k)
|
||||
(timer "slightly less than power of 10" iter k (order-of-magnitude qq)))
|
||||
(error 'test-2 "~s" k))
|
||||
(unless
|
||||
(= k
|
||||
(timer "slightly more than power of 10" iter k (order-of-magnitude qqq)))
|
||||
(error 'test-3 "~s" k)))))
|
||||
(let* ([max-expt 10000] [small (expt 10 (- (* 2 max-expt)))] [iter 1000])
|
||||
(for ([k (in-range (- max-expt) (add1 max-expt) (/ max-expt 10))])
|
||||
(let* ([q (expt 10 k)] [qq (- q small)] [qqq (+ q small)])
|
||||
(unless (= k (timer "exact power of 10" iter k (order-of-magnitude q)))
|
||||
(error 'test-1 "~s" k))
|
||||
(unless (= (sub1 k)
|
||||
(timer "slightly less than power of 10"
|
||||
iter k (order-of-magnitude qq)))
|
||||
(error 'test-2 "~s" k))
|
||||
(unless (= k
|
||||
(timer "slightly more than power of 10"
|
||||
iter k (order-of-magnitude qqq)))
|
||||
(error 'test-3 "~s" k)))))
|
||||
|
||||
|#
|
||||
|
|
Loading…
Reference in New Issue
Block a user