Some style things.

This commit is contained in:
Eli Barzilay 2012-06-14 17:27:32 -04:00
parent 2d902e8bf1
commit fac76a56f8

View File

@ -17,111 +17,110 @@
exact-round exact-floor exact-ceiling exact-truncate
order-of-magnitude)
(define pi (atan 0 -1))
(define pi (atan 0 -1))
(define pi.f (atan 0.0f0 -1.0f0))
(begin-encourage-inline
;; real predicates
(define (nan? x)
(unless (real? x) (raise-argument-error 'nan? "real?" x))
(or (eqv? x +nan.0) (eqv? x +nan.f)))
(define (infinite? x)
(unless (real? x) (raise-argument-error 'infinite? "real?" x))
(or (= x +inf.0) (= x -inf.0)))
;; z^2
(define (sqr z)
(unless (number? z) (raise-argument-error 'sqr "number?" z))
(* z z))
;; sgn function
(define (sgn x)
(unless (real? x) (raise-argument-error 'sgn "real?" x))
(cond [(= 0 x) x] ; preserve 0, 0.0 and 0.0f0
[(double-flonum? x) (cond [(unsafe-fl> x 0.0) 1.0]
[(unsafe-fl< x 0.0) -1.0]
[else +nan.0])]
[(single-flonum? x) (cond [(> x 0.0f0) 1.0f0]
[(< x 0.0f0) -1.0f0]
[else +nan.f])]
[else (if (> x 0) 1 -1)]))
(cond [(= 0 x) x] ; preserve 0, 0.0 and 0.0f0
[(double-flonum? x) (cond [(unsafe-fl> x 0.0) 1.0]
[(unsafe-fl< x 0.0) -1.0]
[else +nan.0])]
[(single-flonum? x) (cond [(> x 0.0f0) 1.0f0]
[(< x 0.0f0) -1.0f0]
[else +nan.f])]
[else (if (> x 0) 1 -1)]))
;; complex conjugate
(define (conjugate z)
(unless (number? z) (raise-argument-error 'conjugate "number?" z))
(make-rectangular (real-part z) (- (imag-part z))))
;; complex hyperbolic functions
(define (sinh z)
(unless (number? z) (raise-argument-error 'sinh "number?" z))
(cond [(= z 0) z] ; preserve 0, 0.0, -0.0, 0.0f0, 0.0+0.0i, etc.
(cond [(= z 0) z] ; preserve 0, 0.0, -0.0, 0.0f0, 0.0+0.0i, etc.
[(real? z)
(let loop ([z z])
(cond [(z . < . 0) (- (loop (- z)))]
[else (/ (- (exp z) (exp (- z))) 2)]))]
[else (/ (- (exp z) (exp (- z))) 2)]))
(cond [(z . < . 0) (- (loop (- z)))]
[else (/ (- (exp z) (exp (- z))) 2)]))]
[else (/ (- (exp z) (exp (- z))) 2)]))
(define (cosh z)
(unless (number? z) (raise-argument-error 'cosh "number?" z))
(cond [(and (real? z) (= z 0)) (if (single-flonum? z) 1.0f0 1.0)]
[else (/ (+ (exp z) (exp (- z))) 2)]))
(cond [(and (real? z) (= z 0)) (if (single-flonum? z) 1.0f0 1.0)]
[else (/ (+ (exp z) (exp (- z))) 2)]))
(define (tanh z)
(unless (number? z) (raise-argument-error 'tanh "number?" z))
(cond [(= z 0) z] ; preserve 0, 0.0, -0.0, 0.0f0, 0.0+0.0i, etc.
(cond [(= z 0) z] ; preserve 0, 0.0, -0.0, 0.0f0, 0.0+0.0i, etc.
[(real? z)
(let loop ([z z])
(cond [(z . < . 0) (- (loop (- z)))]
(cond [(z . < . 0) (- (loop (- z)))]
[(z . < . 20) (define exp2z (exp (* 2 z)))
(/ (- exp2z 1) (+ exp2z 1))]
[(z . >= . 20) (if (single-flonum? z) 1.0f0 1.0)]
[else z]))] ; +nan.0 or +nan.f
[(z . >= . 20) (if (single-flonum? z) 1.0f0 1.0)]
[else z]))] ; +nan.0 or +nan.f
[else
(define exp2z (exp (* 2 z)))
(/ (- exp2z 1) (+ exp2z 1))]))
;; angle conversion
(define (degrees->radians x)
(unless (real? x) (raise-argument-error 'degrees->radians "real?" x))
(cond [(single-flonum? x) (* x (/ pi.f 180f0))]
[else (* x (/ pi 180.0))]))
(cond [(single-flonum? x) (* x (/ pi.f 180f0))]
[else (* x (/ pi 180.0))]))
(define (radians->degrees x)
(unless (real? x) (raise-argument-error 'radians->degrees "real?" x))
(cond [(single-flonum? x) (* x (/ 180f0 pi.f))]
[else (* x (/ 180.0 pi))]))
(cond [(single-flonum? x) (* x (/ 180f0 pi.f))]
[else (* x (/ 180.0 pi))]))
;; inexact->exact composed with round, floor, ceiling, truncate
(define-syntax-rule (define-integer-conversion name convert)
(define (name x)
(unless (rational? x) (raise-argument-error 'name "rational?" x))
(inexact->exact (convert x))))
(define-integer-conversion exact-round round)
(define-integer-conversion exact-floor floor)
(define-integer-conversion exact-ceiling ceiling)
(define-integer-conversion exact-truncate truncate)
) ; begin-encourage-inline
)
(define order-of-magnitude
(let* ([exact-log (λ (x) (inexact->exact (log x)))]
[inverse-exact-log10 (/ (exact-log 10))])
(λ (r)
(unless (and (real? r) (positive? r)
(not (= r +inf.0)))
(unless (and (real? r) (positive? r) (not (= r +inf.0)))
(raise-argument-error 'order-of-magnitude "(and/c (>/c 0.0) (not/c +inf.0))" r))
(let* ([q (inexact->exact r)]
[m
(floor
(* (- (exact-log (numerator q)) (exact-log (denominator q)))
inverse-exact-log10))])
(let loop ((m m) (p (expt 10 m)))
(if (< q p) (loop (sub1 m) (* p 1/10))
(let ((u (* p 10)))
(if (>= q u) (loop (add1 m) u) m))))))))
(define q (inexact->exact r))
(define m
(floor (* (- (exact-log (numerator q)) (exact-log (denominator q)))
inverse-exact-log10)))
(let loop ([m m] [p (expt 10 m)])
(if (< q p)
(loop (sub1 m) (* p 1/10))
(let ([u (* p 10)])
(if (>= q u) (loop (add1 m) u) m)))))))
#|
;; Timing tests below provided by Jos Koot for the order-of-magnitude function
@ -134,54 +133,49 @@
(require (planet joskoot/planet-fmt:1:1/fmt))
(define-syntax timer
(syntax-rules ()
((_ type iter k expr)
(let*
((output-string (open-output-string))
(result expr)
(dummy
(parameterize ((current-output-port output-string))
(time (for ((k (in-range iter))) expr))))
(input-string (open-input-string (get-output-string output-string))))
(parameterize ((current-input-port input-string))
(let
((cpu (begin (read) (read) (read)))
(real (begin (read) (read) (read)))
(gc (begin (read) (read) (read)))
(micro (/ iter 1000)))
(if (and (>= cpu 0) (>= real 0) (>= gc 0))
((fmt
"'test type : ' d/
'exponent : ' i6/
'n-obs : ' i6/
'mean cpu : ' i6 x 'microseconds'/
'mean real : ' i6 x 'microseconds'/
'mean gc : ' i6 x 'microseconds'/
'real - gc : ' i6 x 'microseconds'//" 'current)
type
k
iter
(/ cpu micro)
(/ real micro)
(/ gc micro)
(/ (- cpu gc) micro))
((fmt "'incorrect times for k='i//" 'current) k))))
result))))
(syntax-rules ()
((_ type iter k expr)
(let* ([output-string (open-output-string)]
[result expr]
[dummy (parameterize ([current-output-port output-string])
(time (for ([k (in-range iter)]) expr)))]
[input-string (open-input-string (get-output-string output-string))])
(parameterize ([current-input-port input-string])
(let ([cpu (begin (read) (read) (read))]
[real (begin (read) (read) (read))]
[gc (begin (read) (read) (read))]
[micro (/ iter 1000)])
(if (and (>= cpu 0) (>= real 0) (>= gc 0))
((fmt
"'test type : ' d/
'exponent : ' i6/
'n-obs : ' i6/
'mean cpu : ' i6 x 'microseconds'/
'mean real : ' i6 x 'microseconds'/
'mean gc : ' i6 x 'microseconds'/
'real - gc : ' i6 x 'microseconds'//" 'current)
type
k
iter
(/ cpu micro)
(/ real micro)
(/ gc micro)
(/ (- cpu gc) micro))
((fmt "'incorrect times for k='i//" 'current) k))))
result))))
(let* ((max-expt 10000) (small (expt 10 (- (* 2 max-expt)))) (iter 1000))
(for ((k (in-range (- max-expt) (add1 max-expt) (/ max-expt 10))))
(let* ((q (expt 10 k)) (qq (- q small)) (qqq (+ q small)))
(unless
(= k (timer "exact power of 10" iter k (order-of-magnitude q)))
(error 'test-1 "~s" k))
(unless
(= (sub1 k)
(timer "slightly less than power of 10" iter k (order-of-magnitude qq)))
(error 'test-2 "~s" k))
(unless
(= k
(timer "slightly more than power of 10" iter k (order-of-magnitude qqq)))
(error 'test-3 "~s" k)))))
(let* ([max-expt 10000] [small (expt 10 (- (* 2 max-expt)))] [iter 1000])
(for ([k (in-range (- max-expt) (add1 max-expt) (/ max-expt 10))])
(let* ([q (expt 10 k)] [qq (- q small)] [qqq (+ q small)])
(unless (= k (timer "exact power of 10" iter k (order-of-magnitude q)))
(error 'test-1 "~s" k))
(unless (= (sub1 k)
(timer "slightly less than power of 10"
iter k (order-of-magnitude qq)))
(error 'test-2 "~s" k))
(unless (= k
(timer "slightly more than power of 10"
iter k (order-of-magnitude qqq)))
(error 'test-3 "~s" k)))))
|#