When a module is currently installed as bytecode, but without
corresponding source and without a "info.rkt" specification that
bytecode should be preserved without source, then `raco pkg` should
not count that module bytecode as a conflict (since `raco setup`
will remove it).
In case a collection "a" is composed from two places, and in
case the first place has a bytecode file for "x.rkt" while
only the second place has the source of "x.rkt" (probably it
was recently moved), then `raco setup` should delete the
sourceless bytecode so that any dependency on "x.rkt" will
reference the right version.
Nested splicing forms would lead to an "ambigious binding" error
when the nested forms bind the same name, such as in
(splicing-let ([a 1])
(splicing-let ([a 2])
(define x a)))
The problem is that splicing is implemented by adding a scope to
everything in the form's body, but removing it back off the
identifiers of a definition (so the `x` above ends up with no new
scopes). Meanwhile, a splicing form expands to a set of definitions,
where the locally bound identifier keeps the extra scope (unlike
definitions from the body). A local identifier for a nested splicing
form would then keep the inner scope but lose the outer scope, while
a local identifier from the outer splicing form would keep the outer
scope but no have the inner one --- leading to ambiguity.
The solution in this commit is to annotate a local identifier for a
splicing form with a property that says "intended to be local", so the
nested definition will keep the scope for the outer splicing form as
well as the inner one. It's not clear that this is the right approach,
but it's the best idea I have for now.
Although `eval-syntax` is not supposed to add the current namespace's
"outer edge" scope, it must add the "inner edge" scope to be consistent
with adding the inner edge to every intermediate expansion (as in
other definition contexts).
In addition, `eval`, `eval-syntax`, `expand`, and `expand-syntax`
did not cooperate properly with `local-expand` on the inner edge.
1st is a small grammatical mistake
2nd is in a section about ->* yet mistakenly -> is referred to
3rd is about recontract-out yet contract-out is mentioned instead
4th clarifies return value for value-contract
5th replaces free-identifier? with free-identifier=?
Some failure paths were missing an update before calling failure
code, and the new failure paths need to unconditionally update the
runstack pointer (because the common stub doesn't know whether the
calling context needs an update).
Genereating a use-site scope, instead of a macro-introduction scope,
prevents the scope's presense from triggering a #f result from
`syntax-original?`.
This change mostly reverts 1465ff25fc, which turned out to be a hassle
because it created more cyclic structure.
A simpler strategy is to allow a phase-specific scope to be detached
(perhaps temporarily, due to on-demand loading of bytecode) from its
group; when that's possible, the scope is not reachable from a place
where it can be moved to other syntax objects, so it's ok to be
detached. Debugging output needs to handle that gracefully, though.
Also, in case of broken bytecode, fix up a detached scope if it
does end up in an unexpected place.
Formerly, compiling a definition in one namespace and evaluating it in
another would cause the definition to take place in the original
namespace --- unless the compiled code is marshaled to a byte string
and back. Adjust the "linking" process to redirect the variable
definition and any references to the new namespace. (This is a change
relative to the compiler with the old macro expander.)
Also, repair a compiled `require` form along similar lines. (This is
*not* a change relative to the compiler with the old macro expander;
the mismatch is part of the motivation for changing `define`
handling.)