The JIT was pessimistically using 64-bit jumps for long branches
or any jump between code that is allocated at different times.
Normally, though, code allocation stays within the same 32-bit
range of the heap, so stick to 32-bit jumps until forced by
allocation addresses to use 64-bit jump targets.
In `(if (pair? x) E1 E2)', convert `(car x)' in E1 to
`(unsafe-car x)', and similarly for `(cdr x)'. Also,
`(begin (car x) (cdr x))' converts to `(begin (car x)
(unsafe-cdr x))' since `(car x)' implies a `pair?' test
on `x'.
More consistent clearing avoids a kind of space unsafety. There's just
one buffer per thread, so it's difficult to turn non-clearing into
a detectable leak (I wasn't abel to construct an example), but it
might be possible. More practically, failing to clear the buffer
can make it difficult to debug memory use.
The scheme_is_multiprocessor() function wasn't the right guard
for whether to use a locking compare-and-swap instruction; any
use of pthread-based futures needs the compare-and-swap.
Merge to v5.3.1
This change doesn't speed up anything, so far. GC performance
of pairs (or anything) is determined almost completely by
its size in bytes, and this change doesn't affect the size of
pairs. At the same time, the change mostly replaces the obsolete
"xtagged" support, and I might have a better idea that builds on
this change, so I'm keeping it for now.
Shape information allows the linker to check the importing
module's compile-time expectation against the run-time
value of its imports. The JIT, in turn, can rely on that
checking to better inline structure-type predicates, etc.,
and to more directy call JIT-generated code across
module boundaries.
In addition to checking the "shape" of an import, the import's
JITted vs. non-JITted state must be consistent. To prevent shifts
in JIT state, the `eval-jit-enabled' parameter is now restricted
in its effect to top-level bindings.
This tracking allows the compiler to treat structure sub-type
declarations as generating constant results, and it also allows
the compiler to recognize an applications of a constructor or
predicate as functional.
The JIT takes advantage of known-constant bindings to avoid the
check that a variable is still bound to a structure predicate,
selector, or mutator; that makes the code short enough to really
inline. The inlined version takes about half the time of the
indirect version.
The compiler does not yet track bindings precisely enough to
recognize constants for sub-type declarations.
Turn use of a finalized ffi callout into a reported error,
instead of a crash. Clarify the existence of the finalizer
in the docs. Fix error logging of the finalizer thread.
Merge to v5.3.1
Bytecode changes in two small ways to help the validator:
* a cross-module variable reference preserves the compiler's
annotation on whether the reference is constant, fixed, or other
* lifted procedures now appear in the module body just before the
definitions that use them, instead of at the beginning of the
module body