This commit furthers the test matrix by testing
* with and without jit
* if jit is enabled it tests with and without
- places
- futures
- extflonum
This commit completes the functionality present in current TravisCI.
The pretty printer and built-in printer for traditional Racket did not
consistently provide the current quoting mode while checking for
unquoting and cycles. All printers, including the Racket CS printer,
are improved for a structure type that has
`prop:custom-print-quotable` as 'always, in which case we know that
unquoting- and cycle-checking time that the components will be in
quoted mode.
The pretty printer also made three passes through a value to check for
cycles, compute cycles, and compute unquotes, and those are now fused
into a single pass like the Racket CS printer. The built-in printer
for traditional Racket still makes up to two passes, but it now
behaves more like other printers by recurring immediately on nested
calls via `prop:custom-write` instead of accumulating them for after
the `prop:custom-write` callback returns.
The documentation clarifies that synthesizing new values during
printing can interefere with cycle checking and unquoting, but the
printers now react to that behavior more consistently.
With recent improvements, the run-time performance of vector-stencil
HAMTs for immutable hash tables seems close enough (on
microbenchmarks) to the Patricia-trie implementation to be worthwhile,
since they use less memory. Performance remains better in most cases
than the traditional Racket implementation.
The table at the end of this message summarizes relative performance
on microbenchmarks. Overall, though, immutable hash-table operations
are already so fast that these difference very rarely translate to
measurable differences in overall run times --- not even for the macro
expander, which relies heavily on immutable hash tables to represent
scope sets.
Stencil-vector HAMTs tend to take about 1/3 the space of Patricia
tries, and those space savings can turn into run-time improvements in
applications by reducing GC time. I've observed a 10% reduction in
compile time for some programs. When building a full Racket
distribution, run time shrinks by about 2 minutes out of 80 minutes,
probbaly because just average memory use goes down by 10%. DrRacket's
initial memory footprint goes down by about 37M out of 657M (a 5%
savings).
Mincrobenchmark relative performance, normalized to previous Racket CS
implementation (measured on 2018 MacBook Pro, 2.7 GHz Core i7; Chez
Scheme can substitute POPCNT instructions at link time):
patricia = previous Racket CS implementation as a Patricia Trie
stencil = new Racket CS implementation as a stencil-vector HAMT
racket = traditional Racket implementation
patricia stencil racket
set-in-empty:eq#t: ==| ==| ==|=
set-many:eq#t: ==| ==|== ==|========
set-many-in-order:eq#t: ==| ==| ==|====
set-same:eq#t: ==| == ==|=
set-in-empty:eq: ==| == ==|=
set-many:eq: ==| ==|== ==|========
set-many-in-order:eq: ==| ==|= ==|=====
set-same:eq: ==| == ==|=
set-in-empty:eqv: ==| ==| ==|==
set-many:eqv: ==| ==|== ==|=========
set-many-in-order:eqv: ==| ==|= ==|=====
set-same:eqv: ==| ==| ==|=
set-in-empty:equal: ==| ==|== ==|===
set-many:equal: ==| ==|== ==|=====
set-many-in-order:equal: ==| ==|= ==|===
set-same:equal: ==| ==|= ==|===
ref:eq#t: ==| ==| ==|=
ref-fail:eq#t: ==| ==| ==
ref:eq: ==| ==| ==|=
ref-fail:eq: ==| ==| ==
ref:eqv: ==| ==| ==|====
ref-fail:eqv: ==| ==| ==|
ref:equal: ==| ==| ==|===
ref-large:equal: ==| ==| ==
ref-fail:equal: ==| ==| ==|===
ref-large-fail:equal: ==| ==| ==
removes:eq#t: ==| ==|=== ==|===========
add+remove:eq#t: ==| ==|= ==|=======
removes:eq: ==| ==|==== ==|============
add+remove:eq: ==| ==|= ==|=======
removes:eqv: ==| ==|=== ==|=============
add+remove:eqv: ==| ==| ==|========
removes:equal: ==| ==|== ==|=======
add+remove:equal: ==| ==|= ==|======
iterate-keys:eq: ==| ==| ==|=
iterate-vals:eq#t: ==| ==|= ==|=
iterate-vals:eq: ==| ==|= ==|=
iterate-unsafe-keys:eq: ==| ==| ==|=======
iterate-unsafe-vals:eq#t: ==| ==| ==|
iterate-unsafe-vals:eq: ==| ==|= ==|
for-each:eq: ==| ==| ==|==========
subset-lil-shared:eq: ==| ==| ==|=
subset-lil-unshared:eq: ==| ==| ==|==
subset-lil-not:eq: ==| == ==
subset-med+lil-shared:eq: ==| ==|==== ==|=
subset-med+med-shared:eq: ==| ==|= ==|=
subset-big-same:eq: ==| ==| ==|===============
subset-big+lil-shared:eq: ==| ==|=== ==|====
subset-big+med-shared:eq: ==| ==|== ==|===
subset-big-unshared:eq: ==| ==| ==|==
On x86_64, a POPCNT instruction is usually available, and it can speed
up `fxpopcount` operations by a factor of 2-3.
Since POPCNT isn't always available, code using `fxpopcount` is
compiled to a call to a generic implementation. The linker substitutes
a POPCNT instruction when it determines at runtime that POPCNT is
available.
Some measurements on a 2018 MacBook Pro (2.7 GHz Core i7) using the
program below:
popcnt = this implementation, POPCNT discovered
nocnt = this implementation, POPCNT considered unavailable
optcnt = compile to use POPCNT directly (no linker work)
cpcnt = compile to inlined generic (no linker work, no POPCNT)
Since the generic implementation is always a 64-bit popcount, it's not
as good as an inlined version for `fxpopcount32`, but otherwise the
link-edit approach to POPCNT works well:
fxpopcount fxpopcount32
popcnt: 0.098s
nocnt: 0.284s
optcnt 0.109s [slower means noise?]
cpcnt: 0.279s 0.188s
(optimize-level 3)
(time
(let loop ([v #f] [i 100000000])
(if (fx= i 0)
v
(loop (fxpopcount i) (fx- i 1)))))
original commit: 5f090e509f8fe5edc777ed9f0463b20c2e571336
This commit adds an (unused) implementation of immutable hash tables
for Racket CS that trades some run-time performance for an especially
compact representation --- similar to the traditional Racket
implementation of immutable hash tables. It uses a new "stencil
vector" datatype at the Chez Scheme level, which overlays the bitmap
needed for a HAMT node with the Chez-object type tag (and also
provides an update operation that avoids unnecessary memory work).
Compared to the current Racket CS implementation, the stencil-vector
HAMT implementation of an immutable hash table takes only about 1/3
the space on avergae, which translates to a overall 5% savings in
DrRacket's initial heap. It also makes a full Racket build slightly
faster by reducing avergage memory use by 5-10%.
But the run-time performance difference is significant, especially for
the `hash-keys-subset?` operation (at least in microbenchmarks), and
also for addition and iteration. Maybe there's an overall better point
that reduces memory use of the current Patricia trie implementation
without sacrificing as much performance.
Besides the benchmarks and stencil-vector HAMT implementaiton, there
are small changes to the way hash tables cooperate with `equal?`,
which makes it a little easier to plug in different implementations.
Instead of using `%` to compute the index into an oblist, use a power
of 2 for the oblist length and bit masking to compute an index. (Maybe
the old hashing function was bad; the current hashing function should
produce good hash-code variation at the level of bits.) Also, make the
oblist array a little sparser to reduce bucket chaining.
original commit: fb87fcb8e47902b80654789d059a25bd4a7a8def
Building with shared libraries is not currently supported, because the
Chez Scheme build is not set up to work in that mode, and because
"stand alone" executable handling at the Racket level does not support
Racket CS shared libraries.
Also, there's no benefit to shared libraries. Racket executables get
the benefit of sharing because they all run through the same
executable. Meanwhile, there's not (yet?) a supported C API to make
something like "libracketcs.so" useful.
Related to #2993
After a bignum computation using temporary thread registers W, U, or V
is complete, clear ther register. (The X and Y registers hold only
small bignums, so clearing them doesn't matter in the same way.)
original commit: a9e11fcf9e86aee5d149764476e1fabfeee12f84
Adjust part of the internal scheduling protocol to make a retry
callback generated by another callback that sets up the retry. This
helps clarify the protocol and avoids allocating a closure that is
rarely used.
Make Racket CS consistent with traditional Racket in the way
`chaperone-evt` on a thread hides threadness, etc.
Hiding properties like threadness is not ideal and does not seem
entirely consistent with `chaperone-of`, but allowing things like
threads and semaphores to be chaperoned creates non-trivial expense
internally. It would have been better to have event constructors for
threads and such to (and then the consyructed events could be
chaperoned without imposing a cost on the original data structure).
Force inlining of value and key accessors. Keeping the `define` with a
loop body --- that is, not making the individual function a macro ---
allows the Rumble `define` to avoid a closure allocation for the loop.