#lang scribble/doc @(require "mz.rkt") @title[#:tag "bytestrings"]{Byte Strings} @guideintro["bytestrings"]{byte strings} A @deftech{byte string} is a fixed-length array of bytes. A @pidefterm{byte} is an exact integer between @racket[0] and @racket[255] inclusive. @index['("byte strings" "immutable")]{A} byte string can be @defterm{mutable} or @defterm{immutable}. When an immutable byte string is provided to a procedure like @racket[bytes-set!], the @exnraise[exn:fail:contract]. Byte-string constants generated by the default reader (see @secref["parse-string"]) are immutable, and they are @tech{interned} in @racket[read-syntax] mode. Two byte strings are @racket[equal?] when they have the same length and contain the same sequence of bytes. A byte string can be used as a single-valued sequence (see @secref["sequences"]). The bytes of the string serve as elements of the sequence. See also @racket[in-bytes]. @see-read-print["string"]{byte strings} See also: @racket[immutable?]. @; ---------------------------------------- @section{Byte String Constructors, Selectors, and Mutators} @defproc[(bytes? [v any/c]) boolean?]{ Returns @racket[#t] if @racket[v] is a byte string, @racket[#f] otherwise. @mz-examples[(bytes? #"Apple") (bytes? "Apple")]} @defproc[(make-bytes [k exact-nonnegative-integer?] [b byte? 0]) bytes?]{ Returns a new mutable byte string of length @racket[k] where each position in the byte string is initialized with the byte @racket[b]. @mz-examples[(make-bytes 5 65)]} @defproc[(bytes [b byte?] ...) bytes?]{ Returns a new mutable byte string whose length is the number of provided @racket[b]s, and whose positions are initialized with the given @racket[b]s. @mz-examples[(bytes 65 112 112 108 101)]} @defproc[(bytes->immutable-bytes [bstr bytes?]) (and/c bytes? immutable?)]{ Returns an immutable byte string with the same content as @racket[bstr], returning @racket[bstr] itself if @racket[bstr] is immutable. @examples[ (bytes->immutable-bytes (bytes 65 65 65)) (define b (bytes->immutable-bytes (make-bytes 5 65))) (bytes->immutable-bytes b) (eq? (bytes->immutable-bytes b) b) ]} @defproc[(byte? [v any/c]) boolean?]{ Returns @racket[#t] if @racket[v] is a byte (i.e., an exact integer between @racket[0] and @racket[255] inclusive), @racket[#f] otherwise. @mz-examples[(byte? 65) (byte? 0) (byte? 256) (byte? -1)]} @defproc[(bytes-length [bstr bytes?]) exact-nonnegative-integer?]{ Returns the length of @racket[bstr]. @mz-examples[(bytes-length #"Apple")]} @defproc[(bytes-ref [bstr bytes?] [k exact-nonnegative-integer?]) byte?]{ Returns the character at position @racket[k] in @racket[bstr]. The first position in the bytes cooresponds to @racket[0], so the position @racket[k] must be less than the length of the bytes, otherwise the @exnraise[exn:fail:contract]. @mz-examples[(bytes-ref #"Apple" 0)]} @defproc[(bytes-set! [bstr (and/c bytes? (not/c immutable?))] [k exact-nonnegative-integer?] [b byte?]) void?]{ Changes the character position @racket[k] in @racket[bstr] to @racket[b]. The first position in the byte string cooresponds to @racket[0], so the position @racket[k] must be less than the length of the bytes, otherwise the @exnraise[exn:fail:contract]. @mz-examples[(define s (bytes 65 112 112 108 101)) (bytes-set! s 4 121) s]} @defproc[(subbytes [bstr bytes?] [start exact-nonnegative-integer?] [end exact-nonnegative-integer? (bytes-length str)]) bytes?]{ Returns a new mutable byte string that is @racket[(- end start)] bytes long, and that contains the same bytes as @racket[bstr] from @racket[start] inclusive to @racket[end] exclusive. The @racket[start] and @racket[end] arguments must be less than or equal to the length of @racket[bstr], and @racket[end] must be greater than or equal to @racket[start], otherwise the @exnraise[exn:fail:contract]. @mz-examples[(subbytes #"Apple" 1 3) (subbytes #"Apple" 1)]} @defproc[(bytes-copy [bstr bytes?]) bytes?]{ Returns @racket[(subbytes str 0)].} @defproc[(bytes-copy! [dest (and/c bytes? (not/c immutable?))] [dest-start exact-nonnegative-integer?] [src bytes?] [src-start exact-nonnegative-integer? 0] [src-end exact-nonnegative-integer? (bytes-length src)]) void?]{ Changes the bytes of @racket[dest] starting at position @racket[dest-start] to match the bytes in @racket[src] from @racket[src-start] (inclusive) to @racket[src-end] (exclusive). The bytes strings @racket[dest] and @racket[src] can be the same byte string, and in that case the destination region can overlap with the source region; the destination bytes after the copy match the source bytes from before the copy. If any of @racket[dest-start], @racket[src-start], or @racket[src-end] are out of range (taking into account the sizes of the bytes strings and the source and destination regions), the @exnraise[exn:fail:contract]. @mz-examples[(define s (bytes 65 112 112 108 101)) (bytes-copy! s 4 #"y") (bytes-copy! s 0 s 3 4) s]} @defproc[(bytes-fill! [dest (and/c bytes? (not/c immutable?))] [b byte?]) void?]{ Changes @racket[dest] so that every position in the bytes is filled with @racket[b]. @mz-examples[(define s (bytes 65 112 112 108 101)) (bytes-fill! s 113) s]} @defproc[(bytes-append [bstr bytes?] ...) bytes?]{ @index['("byte strings" "concatenate")]{Returns} a new mutable byte string that is as long as the sum of the given @racket[bstr]s' lengths, and that contains the concatenated bytes of the given @racket[bstr]s. If no @racket[bstr]s are provided, the result is a zero-length byte string. @mz-examples[(bytes-append #"Apple" #"Banana")]} @defproc[(bytes->list [bstr bytes?]) (listof byte?)]{ Returns a new list of bytes corresponding to the content of @racket[bstr]. That is, the length of the list is @racket[(bytes-length bstr)], and the sequence of bytes in @racket[bstr] is the same sequence in the result list. @mz-examples[(bytes->list #"Apple")]} @defproc[(list->bytes [lst (listof byte?)]) bytes?]{ Returns a new mutable byte string whose content is the list of bytes in @racket[lst]. That is, the length of the byte string is @racket[(length lst)], and the sequence of bytes in @racket[lst] is the same sequence in the result byte string. @mz-examples[(list->bytes (list 65 112 112 108 101))]} @defproc[(make-shared-bytes [k exact-nonnegative-integer?] [b byte? 0]) bytes?]{ Returns a new mutable byte string of length @racket[k] where each position in the byte string is initialized with the byte @racket[b]. For communication among @tech{places}, the new byte string is allocated in the @tech{shared memory space}. @mz-examples[(make-shared-bytes 5 65)]} @defproc[(shared-bytes [b byte?] ...) bytes?]{ Returns a new mutable byte string whose length is the number of provided @racket[b]s, and whose positions are initialized with the given @racket[b]s. For communication among @tech{places}, the new byte string is allocated in the @tech{shared memory space}. @mz-examples[(shared-bytes 65 112 112 108 101)]} @; ---------------------------------------- @section{Byte String Comparisons} @defproc[(bytes=? [bstr1 bytes?] [bstr2 bytes?] ...+) boolean?]{ Returns @racket[#t] if all of the arguments are @racket[eqv?].} @mz-examples[(bytes=? #"Apple" #"apple") (bytes=? #"a" #"as" #"a")] @(define (bytes-sort direction) @elem{Like @racket[bytes? [bstr1 bytes?] [bstr2 bytes?] ...+) boolean?]{ @bytes-sort["decreasing"] @mz-examples[(bytes>? #"Apple" #"apple") (bytes>? #"apple" #"Apple") (bytes>? #"c" #"b" #"a")]} @; ---------------------------------------- @section{Bytes to/from Characters, Decoding and Encoding} @defproc[(bytes->string/utf-8 [bstr bytes?] [err-char (or/c #f char?) #f] [start exact-nonnegative-integer? 0] [end exact-nonnegative-integer? (bytes-length bstr)]) string?]{ Produces a string by decoding the @racket[start] to @racket[end] substring of @racket[bstr] as a UTF-8 encoding of Unicode code points. If @racket[err-char] is not @racket[#f], then it is used for bytes that fall in the range @racket[#o200] to @racket[#o377] but are not part of a valid encoding sequence. (This rule is consistent with reading characters from a port; see @secref["encodings"] for more details.) If @racket[err-char] is @racket[#f], and if the @racket[start] to @racket[end] substring of @racket[bstr] is not a valid UTF-8 encoding overall, then the @exnraise[exn:fail:contract]. @examples[ (bytes->string/utf-8 (bytes #xc3 #xa7 #xc3 #xb0 #xc3 #xb6 #xc2 #xa3)) ]} @defproc[(bytes->string/locale [bstr bytes?] [err-char (or/c #f char?) #f] [start exact-nonnegative-integer? 0] [end exact-nonnegative-integer? (bytes-length bstr)]) string?]{ Produces a string by decoding the @racket[start] to @racket[end] substring of @racket[bstr] using the current locale's encoding (see also @secref["encodings"]). If @racket[err-char] is not @racket[#f], it is used for each byte in @racket[bstr] that is not part of a valid encoding; if @racket[err-char] is @racket[#f], and if the @racket[start] to @racket[end] substring of @racket[bstr] is not a valid encoding overall, then the @exnraise[exn:fail:contract].} @defproc[(bytes->string/latin-1 [bstr bytes?] [err-char (or/c #f char?) #f] [start exact-nonnegative-integer? 0] [end exact-nonnegative-integer? (bytes-length bstr)]) string?]{ Produces a string by decoding the @racket[start] to @racket[end] substring of @racket[bstr] as a Latin-1 encoding of Unicode code points; i.e., each byte is translated directly to a character using @racket[integer->char], so the decoding always succeeds. The @racket[err-char] argument is ignored, but present for consistency with the other operations. @examples[ (bytes->string/latin-1 (bytes #xfe #xd3 #xd1 #xa5)) ]} @defproc[(string->bytes/utf-8 [str string?] [err-byte (or/c #f byte?) #f] [start exact-nonnegative-integer? 0] [end exact-nonnegative-integer? (string-length str)]) bytes?]{ Produces a byte string by encoding the @racket[start] to @racket[end] substring of @racket[str] via UTF-8 (always succeeding). The @racket[err-byte] argument is ignored, but included for consistency with the other operations. @examples[ (define b (bytes->string/utf-8 (bytes #xc3 #xa7 #xc3 #xb0 #xc3 #xb6 #xc2 #xa3))) (string->bytes/utf-8 b) (bytes->string/utf-8 (string->bytes/utf-8 b)) ]} @defproc[(string->bytes/locale [str string?] [err-byte (or/c #f byte?) #f] [start exact-nonnegative-integer? 0] [end exact-nonnegative-integer? (string-length str)]) bytes?]{ Produces a string by encoding the @racket[start] to @racket[end] substring of @racket[str] using the current locale's encoding (see also @secref["encodings"]). If @racket[err-byte] is not @racket[#f], it is used for each character in @racket[str] that cannot be encoded for the current locale; if @racket[err-byte] is @racket[#f], and if the @racket[start] to @racket[end] substring of @racket[str] cannot be encoded, then the @exnraise[exn:fail:contract].} @defproc[(string->bytes/latin-1 [str string?] [err-byte (or/c #f byte?) #f] [start exact-nonnegative-integer? 0] [end exact-nonnegative-integer? (string-length str)]) bytes?]{ Produces a string by encoding the @racket[start] to @racket[end] substring of @racket[str] using Latin-1; i.e., each character is translated directly to a byte using @racket[char->integer]. If @racket[err-byte] is not @racket[#f], it is used for each character in @racket[str] whose value is greater than @racket[255]. If @racket[err-byte] is @racket[#f], and if the @racket[start] to @racket[end] substring of @racket[str] has a character with a value greater than @racket[255], then the @exnraise[exn:fail:contract]. @examples[ (define b (bytes->string/latin-1 (bytes #xfe #xd3 #xd1 #xa5))) (string->bytes/latin-1 b) (bytes->string/latin-1 (string->bytes/latin-1 b)) ]} @defproc[(string-utf-8-length [str string?] [start exact-nonnegative-integer? 0] [end exact-nonnegative-integer? (string-length str)]) exact-nonnegative-integer?]{ Returns the length in bytes of the UTF-8 encoding of @racket[str]'s substring from @racket[start] to @racket[end], but without actually generating the encoded bytes. @examples[ (string-utf-8-length (bytes->string/utf-8 (bytes #xc3 #xa7 #xc3 #xb0 #xc3 #xb6 #xc2 #xa3))) (string-utf-8-length "hello") ]} @defproc[(bytes-utf-8-length [bstr bytes?] [err-char (or/c #f char?) #f] [start exact-nonnegative-integer? 0] [end exact-nonnegative-integer? (bytes-length bstr)]) exact-nonnegative-integer?]{ Returns the length in characters of the UTF-8 decoding of @racket[bstr]'s substring from @racket[start] to @racket[end], but without actually generating the decoded characters. If @racket[err-char] is @racket[#f] and the substring is not a UTF-8 encoding overall, the result is @racket[#f]. Otherwise, @racket[err-char] is used to resolve decoding errors as in @racket[bytes->string/utf-8]. @examples[ (bytes-utf-8-length (bytes #xc3 #xa7 #xc3 #xb0 #xc3 #xb6 #xc2 #xa3)) (bytes-utf-8-length (make-bytes 5 65)) ]} @defproc[(bytes-utf-8-ref [bstr bytes?] [skip exact-nonnegative-integer? 0] [err-char (or/c #f char?) #f] [start exact-nonnegative-integer? 0] [end exact-nonnegative-integer? (bytes-length bstr)]) char?]{ Returns the @racket[skip]th character in the UTF-8 decoding of @racket[bstr]'s substring from @racket[start] to @racket[end], but without actually generating the other decoded characters. If the substring is not a UTF-8 encoding up to the @racket[skip]th character (when @racket[err-char] is @racket[#f]), or if the substring decoding produces fewer than @racket[skip] characters, the result is @racket[#f]. If @racket[err-char] is not @racket[#f], it is used to resolve decoding errors as in @racket[bytes->string/utf-8]. @examples[ (bytes-utf-8-ref (bytes #xc3 #xa7 #xc3 #xb0 #xc3 #xb6 #xc2 #xa3) 0) (bytes-utf-8-ref (bytes #xc3 #xa7 #xc3 #xb0 #xc3 #xb6 #xc2 #xa3) 1) (bytes-utf-8-ref (bytes #xc3 #xa7 #xc3 #xb0 #xc3 #xb6 #xc2 #xa3) 2) (bytes-utf-8-ref (bytes 65 66 67 68) 0) (bytes-utf-8-ref (bytes 65 66 67 68) 1) (bytes-utf-8-ref (bytes 65 66 67 68) 2) ]} @defproc[(bytes-utf-8-index [bstr bytes?] [skip exact-nonnegative-integer? 0] [err-char (or/c #f char?) #f] [start exact-nonnegative-integer? 0] [end exact-nonnegative-integer? (bytes-length bstr)]) exact-nonnegative-integer?]{ Returns the offset in bytes into @racket[bstr] at which the @racket[skip]th character's encoding starts in the UTF-8 decoding of @racket[bstr]'s substring from @racket[start] to @racket[end] (but without actually generating the other decoded characters). The result is relative to the start of @racket[bstr], not to @racket[start]. If the substring is not a UTF-8 encoding up to the @racket[skip]th character (when @racket[err-char] is @racket[#f]), or if the substring decoding produces fewer than @racket[skip] characters, the result is @racket[#f]. If @racket[err-char] is not @racket[#f], it is used to resolve decoding errors as in @racket[bytes->string/utf-8]. @examples[ (bytes-utf-8-index (bytes #xc3 #xa7 #xc3 #xb0 #xc3 #xb6 #xc2 #xa3) 0) (bytes-utf-8-index (bytes #xc3 #xa7 #xc3 #xb0 #xc3 #xb6 #xc2 #xa3) 1) (bytes-utf-8-index (bytes #xc3 #xa7 #xc3 #xb0 #xc3 #xb6 #xc2 #xa3) 2) (bytes-utf-8-index (bytes 65 66 67 68) 0) (bytes-utf-8-index (bytes 65 66 67 68) 1) (bytes-utf-8-index (bytes 65 66 67 68) 2) ]} @; ---------------------------------------- @section{Bytes to Bytes Encoding Conversion} @defproc[(bytes-open-converter [from-name string?] [to-name string?]) bytes-converter?]{ Produces a @deftech{byte converter} to go from the encoding named by @racket[from-name] to the encoding named by @racket[to-name]. If the requested conversion pair is not available, @racket[#f] is returned instead of a converter. Certain encoding combinations are always available: @itemize[ @item{@racket[(bytes-open-converter "UTF-8" "UTF-8")] --- the identity conversion, except that encoding errors in the input lead to a decoding failure.} @item{@racket[(bytes-open-converter "UTF-8-permissive" "UTF-8")] --- @index['("UTF-8-permissive")]{the} identity conversion, except that any input byte that is not part of a valid encoding sequence is effectively replaced by the UTF-8 encoding sequence for @racketvalfont{#\uFFFD}. (This handling of invalid sequences is consistent with the interpretation of port bytes streams into characters; see @secref["ports"].)} @item{@racket[(bytes-open-converter "" "UTF-8")] --- converts from the current locale's default encoding (see @secref["encodings"]) to UTF-8.} @item{@racket[(bytes-open-converter "UTF-8" "")] --- converts from UTF-8 to the current locale's default encoding (see @secref["encodings"]).} @item{@racket[(bytes-open-converter "platform-UTF-8" "platform-UTF-16")] --- converts UTF-8 to UTF-16 on @|AllUnix|, where each UTF-16 code unit is a sequence of two bytes ordered by the current platform's endianness. On Windows, the input can include encodings that are not valid UTF-8, but which naturally extend the UTF-8 encoding to support unpaired surrogate code units, and the output is a sequence of UTF-16 code units (as little-endian byte pairs), potentially including unpaired surrogates.} @item{@racket[(bytes-open-converter "platform-UTF-8-permissive" "platform-UTF-16")] --- like @racket[(bytes-open-converter "platform-UTF-8" "platform-UTF-16")], but an input byte that is not part of a valid UTF-8 encoding sequence (or valid for the unpaired-surrogate extension on Windows) is effectively replaced with @racket[(char->integer #\?)].} @item{@racket[(bytes-open-converter "platform-UTF-16" "platform-UTF-8")] --- converts UTF-16 (bytes ordered by the current platform's endianness) to UTF-8 on @|AllUnix|. On Windows, the input can include UTF-16 code units that are unpaired surrogates, and the corresponding output includes an encoding of each surrogate in a natural extension of UTF-8. On @|AllUnix|, surrogates are assumed to be paired: a pair of bytes with the bits @racket[#xD800] starts a surrogate pair, and the @racket[#x03FF] bits are used from the pair and following pair (independent of the value of the @racket[#xDC00] bits). On all platforms, performance may be poor when decoding from an odd offset within an input byte string.} ] A newly opened byte converter is registered with the current custodian (see @secref["custodians"]), so that the converter is closed when the custodian is shut down. A converter is not registered with a custodian (and does not need to be closed) if it is one of the guaranteed combinations not involving @racket[""] on Unix, or if it is any of the guaranteed combinations (including @racket[""]) on Windows and Mac OS X. @margin-note{In the Racket software distributions for Windows, a suitable @filepath{iconv.dll} is included with @filepath{libmzsch@italic{VERS}.dll}.} The set of available encodings and combinations varies by platform, depending on the @exec{iconv} library that is installed; the @racket[from-name] and @racket[to-name] arguments are passed on to @tt{iconv_open}. On Windows, @filepath{iconv.dll} or @filepath{libiconv.dll} must be in the same directory as @filepath{libmzsch@italic{VERS}.dll} (where @italic{VERS} is a version number), in the user's path, in the system directory, or in the current executable's directory at run time, and the DLL must either supply @tt{_errno} or link to @filepath{msvcrt.dll} for @tt{_errno}; otherwise, only the guaranteed combinations are available. Use @racket[bytes-convert] with the result to convert byte strings.} @defproc[(bytes-close-converter [converter bytes-converter?]) void]{ Closes the given converter, so that it can no longer be used with @racket[bytes-convert] or @racket[bytes-convert-end].} @defproc[(bytes-convert [converter bytes-converter?] [src-bstr bytes?] [src-start-pos exact-nonnegative-integer? 0] [src-end-pos exact-nonnegative-integer? (bytes-length src-bstr)] [dest-bstr (or/c bytes? #f) #f] [dest-start-pos exact-nonnegative-integer? 0] [dest-end-pos (or/c exact-nonnegative-integer? #f) (and dest-bstr (bytes-length dest-bstr))]) (values (or/c bytes? exact-nonnegative-integer?) exact-nonnegative-integer? (or/c 'complete 'continues 'aborts 'error))]{ Converts the bytes from @racket[src-start-pos] to @racket[src-end-pos] in @racket[src-bstr]. If @racket[dest-bstr] is not @racket[#f], the converted bytes are written into @racket[dest-bstr] from @racket[dest-start-pos] to @racket[dest-end-pos]. If @racket[dest-bstr] is @racket[#f], then a newly allocated byte string holds the conversion results, and if @racket[dest-end-pos] is not @racket[#f], the size of the result byte string is no more than @racket[(- dest-end-pos dest-start-pos)]. The result of @racket[bytes-convert] is three values: @itemize[ @item{@racket[_result-bstr] or @racket[_dest-wrote-amt] --- a byte string if @racket[dest-bstr] is @racket[#f] or not provided, or the number of bytes written into @racket[dest-bstr] otherwise.} @item{@racket[_src-read-amt] --- the number of bytes successfully converted from @racket[src-bstr].} @item{@indexed-racket['complete], @indexed-racket['continues], @indexed-racket['aborts], or @indexed-racket['error] --- indicates how conversion terminated: @itemize[ @item{@racket['complete]: The entire input was processed, and @racket[_src-read-amt] will be equal to @racket[(- src-end-pos src-start-pos)].} @item{@racket['continues]: Conversion stopped due to the limit on the result size or the space in @racket[dest-bstr]; in this case, fewer than @racket[(- dest-end-pos dest-start-pos)] bytes may be returned if more space is needed to process the next complete encoding sequence in @racket[src-bstr].} @item{@racket['aborts]: The input stopped part-way through an encoding sequence, and more input bytes are necessary to continue. For example, if the last byte of input is @racket[#o303] for a @racket["UTF-8-permissive"] decoding, the result is @racket['aborts], because another byte is needed to determine how to use the @racket[#o303] byte.} @item{@racket['error]: The bytes starting at @racket[(+ src-start-pos _src-read-amt)] bytes in @racket[src-bstr] do not form a legal encoding sequence. This result is never produced for some encodings, where all byte sequences are valid encodings. For example, since @racket["UTF-8-permissive"] handles an invalid UTF-8 sequence by dropping characters or generating ``?,'' every byte sequence is effectively valid.} ]} ] Applying a converter accumulates state in the converter (even when the third result of @racket[bytes-convert] is @racket['complete]). This state can affect both further processing of input and further generation of output, but only for conversions that involve ``shift sequences'' to change modes within a stream. To terminate an input sequence and reset the converter, use @racket[bytes-convert-end]. @examples[ (define convert (bytes-open-converter "UTF-8" "UTF-16")) (bytes-convert convert (bytes 65 66 67 68)) (bytes 195 167 195 176 195 182 194 163) (bytes-convert convert (bytes 195 167 195 176 195 182 194 163)) (bytes-close-converter convert) ]} @defproc[(bytes-convert-end [converter bytes-converter?] [dest-bstr (or/c bytes? #f) #f] [dest-start-pos exact-nonnegative-integer? 0] [dest-end-pos (or/c exact-nonnegative-integer? #f) (and dest-bstr (bytes-length dest-bstr))]) (values (or/c bytes? exact-nonnegative-integer?) (or/c 'complete 'continues))]{ Like @racket[bytes-convert], but instead of converting bytes, this procedure generates an ending sequence for the conversion (sometimes called a ``shift sequence''), if any. Few encodings use shift sequences, so this function will succeed with no output for most encodings. In any case, successful output of a (possibly empty) shift sequence resets the converter to its initial state. The result of @racket[bytes-convert-end] is two values: @itemize[ @item{@racket[_result-bstr] or @racket[_dest-wrote-amt] --- a byte string if @racket[dest-bstr] is @racket[#f] or not provided, or the number of bytes written into @racket[dest-bstr] otherwise.} @item{@indexed-racket['complete] or @indexed-racket['continues] --- indicates whether conversion completed. If @racket['complete], then an entire ending sequence was produced. If @racket['continues], then the conversion could not complete due to the limit on the result size or the space in @racket[dest-bstr], and the first result is either an empty byte string or @racket[0].} ] } @defproc[(bytes-converter? [v any/c]) boolean?]{ Returns @racket[#t] if @racket[v] is a @tech{byte converter} produced by @racket[bytes-open-converter], @racket[#f] otherwise. @examples[ (bytes-converter? (bytes-open-converter "UTF-8" "UTF-16")) (bytes-converter? (bytes-open-converter "whacky" "not likely")) (define b (bytes-open-converter "UTF-8" "UTF-16")) (bytes-close-converter b) (bytes-converter? b) ]} @defproc[(locale-string-encoding) any]{ Returns a string for the current locale's encoding (i.e., the encoding normally identified by @racket[""]). See also @racket[system-language+country].} @section{Additional Byte String Functions} @note-lib[racket/bytes] @(define string-eval (make-base-eval)) @(interaction-eval #:eval string-eval (require racket/bytes racket/list)) @defproc[(bytes-append* [str bytes?] ... [strs (listof bytes?)]) bytes?]{ @; Note: this is exactly the same description as the one for append* Like @racket[bytes-append], but the last argument is used as a list of arguments for @racket[bytes-append], so @racket[(bytes-append* str ... strs)] is the same as @racket[(apply bytes-append str ... strs)]. In other words, the relationship between @racket[bytes-append] and @racket[bytes-append*] is similar to the one between @racket[list] and @racket[list*]. @mz-examples[#:eval string-eval (bytes-append* #"a" #"b" '(#"c" #"d")) (bytes-append* (cdr (append* (map (lambda (x) (list #", " x)) '(#"Alpha" #"Beta" #"Gamma"))))) ]} @defproc[(bytes-join [strs (listof bytes?)] [sep bytes?]) bytes?]{ Appends the byte strings in @racket[strs], inserting @racket[sep] between each pair of bytes in @racket[strs]. @mz-examples[#:eval string-eval (bytes-join '(#"one" #"two" #"three" #"four") #" potato ") ]} @close-eval[string-eval]