#lang scheme/base (require scheme/match scheme/list "deriv.ss" "deriv-util.ss" "synth-engine.ss" "synth-derivs.ss" "stx-util.ss" "context.ss" "seek.ss") (provide hide/policy hide*/policy macro-policy force-letrec-transformation current-hiding-warning-handler (struct-out hiding-failure) (struct-out nonlinearity) (struct-out localactions) (struct-out hidden-lift-site)) ;; hide/policy : WDeriv (identifier -> boolean) -> WDeriv (define (hide/policy deriv show-macro?) (let-values ([(d s) (hide*/policy deriv show-macro?)]) d)) ;; hide*/policy : WDeriv (identifier -> boolean) -> (values WDeriv syntax) (define (hide*/policy deriv show-macro?) (parameterize ((macro-policy show-macro?) (current-seek-processor hide/deriv)) (hide deriv))) ; ; ; ; ; ; ; ;; ;;; ;;; ;;;;;; ;;;; ;;;;; ; ;; ; ; ; ; ; ; ;; ; ; ; ; ;; ;; ; ;; ;; ;; ; ; ; ;; ;; ; ;;;;;;; ;;; ; ; ; ;; ;; ; ; ;;;; ; ; ; ;; ;; ; ;; ; ;; ; ; ; ; ; ;; ;; ; ;; ; ;;; ;;; ;;; ;;; ;;;; ;;;;;; ; ; ;; The real goal is to implement a macro-hiding facility that preserves ;; as much of the real module-body and block pass separation as possible. ;; After attempts to do that, I've decided to scale back to a one-pass ;; simplification that should be much easier, get that out for people ;; to use, and then finish the two-pass solution. ;; 2-Pass method of handling blocks ;; 1 Normalize block derivation ;; 2 For each element in the normalized block derivation: ;; a Recur on the pass1 derivation ;; b Synth on the pass2 derivation using the pass1 result syntax ;; 3 Recombine into block derivation ;; ? (Optionally) un-normalize block derivation again ;; Unimplemented ;; Question: which way to match subterms with subderivations ;; 1 Gather subterms into table and recur on subderivations ;; 2 Gather subderivations into table and recur on subterms ;; Benefits of 1: ;; Preserves order of expansion, even if macro reorders (so effects happen right) ;; May be easier to deal with marking/renaming ;; Easier to deal with lifting (lifts get seen in correct order) ;; Gives finer control over handling of blocks (joining pass1 and pass2 expansions) ;; Drawbacks of 1: ;; Need to process results more to find final syntax & nonlinear subterms ;; Benefits of 2: ;; (Already written that way once...) ;; Nonlinear subterms fairly obvious ;; Computing final syntax fits naturally into recursion ;; I will try 1. ; ; ; ;;; ; ;; ;; ; ; ; ; ; ; ; ; ; ;;; ;;;; ;;;; ;;;; ; ;; ; ; ; ; ; ; ; ; ; ; ;; ; ;; ;; ; ; ; ; ;; ; ;;;;;;; ; ; ; ; ;; ; ; ; ; ; ; ;; ; ;; ; ; ; ; ;; ;;; ;; ; ;;; ;;; ;;;;;;; ;;; ;; ;;;; ; ; ;; Macro hiding: ;; The derivation is "visible" or "active" by default, ;; but pieces of it may need to be hidden. ;; hide/deriv : WDeriv -> WDeriv (define (hide/deriv d) (let-values ([(d s) (hide d)]) d)) ;; hide : WDeriv -> (values WDeriv syntax) (define (hide deriv) (for-deriv deriv)) ;; for-deriv : WDeriv -> (values WDeriv syntax) (define (for-deriv d) (match d ;; Primitives [(Wrap p:variable (e1 e2 rs ?1)) (values d e2)] [(Wrap p:module (e1 e2 rs ?1 ?2 tag rename check tag2 ?3 body shift)) (let ([show-k (lambda () (>>Prim d e1 #t (p:module ?2 tag rename check tag2 ?3 body shift) (module name lang . _BODY) (module name lang BODY) ([for-deriv BODY body])))]) (if (or (show-macro? #'module)) (show-k) (with-handlers ([hiding-failure? (lambda (failure) (handle-hiding-failure d failure) (show-k))]) (seek/deriv d))))] #; ;; OLD CODE [(Wrap p:module (e1 e2 rs ?1 #f #f #f body)) (let ([show-k (lambda () (>>Prim d e1 #t (p:module #f #f #f body) (module name lang . _BODY) (module name lang BODY) ([for-deriv BODY body])))]) (if (or (show-macro? #'module)) (show-k) (with-handlers ([hiding-failure? (lambda (failure) (handle-hiding-failure d failure) (show-k))]) (seek/deriv d))))] #; ;; OLD CODE [(Wrap p:module (e1 e2 rs ?1 #t mb ?2 body)) (let ([show-k (lambda () (>>Prim d e1 #t (p:module #t mb ?2 body) (module name lang BODY) (module name lang BODY) ([for-deriv _BODY mb] [for-deriv BODY body])))]) (if (or (show-macro? #'module)) (show-k) (with-handlers ([hiding-failure? (lambda (failure) (handle-hiding-failure d failure) (show-k))]) (seek/deriv d))))] [(Wrap p:#%module-begin (e1 e2 rs ?1 me pass1 pass2 ?2)) (let ([lderiv (module-begin->lderiv d)]) (recv [(lderiv es2) (for-lderiv lderiv)] [(d) (lderiv->module-begin lderiv e1 rs)] (values d (wderiv-e2 d))))] [(Wrap p:define-syntaxes (e1 e2 rs ?1 rhs ?2)) (>>P d (p:define-syntaxes rhs ?2) (define-syntaxes variables RHS) ([for-deriv/phase-up RHS rhs]))] [(Wrap p:define-values (e1 e2 rs ?1 rhs)) (>>P d (p:define-values rhs) (define-values variables RHS) ([for-deriv RHS rhs]))] [(Wrap p:#%expression (e1 e2 rs ?1 inner)) (>>P d (p:#%expression inner) (#%expression INNER) ([for-deriv INNER inner]))] [(Wrap p:if (e1 e2 rs ?1 test then else)) (>>P d (p:if test then else) (if TEST THEN ELSE) ([for-deriv TEST test] [for-deriv THEN then] [for-deriv ELSE else]))] [(Wrap p:wcm (e1 e2 rs ?1 key mark body)) (>>P d (p:wcm key mark body) (wcm KEY MARK BODY) ([for-deriv KEY key] [for-deriv MARK mark] [for-deriv BODY body]))] [(Wrap p:set! (e1 e2 rs ?1 id-resolves rhs)) (>>P d (p:set! id-resolves rhs) (set! id RHS) ([for-deriv RHS rhs]))] [(Wrap p:set!-macro (e1 e2 rs ?1 deriv)) (>>Pn d (p:set!-macro deriv) INNER ([for-deriv INNER deriv]))] [(Wrap p:begin (e1 e2 rs ?1 lderiv)) (>>P d (p:begin lderiv) (begin . LDERIV) ([for-lderiv LDERIV lderiv]))] [(Wrap p:begin0 (e1 e2 rs ?1 first lderiv)) (>>P d (p:begin0 first lderiv) (begin0 FIRST . LDERIV) ([for-deriv FIRST first] [for-lderiv LDERIV lderiv]))] [(Wrap p:#%app (e1 e2 rs ?1 ld)) (>>P d (p:#%app ld) (#%app . LDERIV) ([for-lderiv LDERIV ld]))] [(Wrap p:lambda (e1 e2 rs ?1 renames body)) (>>P d (p:lambda renames body) (lambda FORMALS . BODY) ([for-rename (FORMALS . _B) renames] [for-bderiv BODY body]))] [(Wrap p:case-lambda (e1 e2 rs ?1 clauses)) (>>P d (p:case-lambda clauses) (case-lambda . ?clauses) ([for-case-lambda-clauses ?clauses clauses]))] [(Wrap p:let-values (e1 e2 rs ?1 renames rhss body)) (let ([var-renames (map stx-car (stx->list (stx-car renames)))]) (>>P d (p:let-values renames rhss body) (let-values ([VARS RHS] ...) . BODY) ([for-renames (VARS ...) var-renames] [for-derivs (RHS ...) rhss] [for-bderiv BODY body])))] [(Wrap p:letrec-values (e1 e2 rs ?1 renames rhss body)) (let ([var-renames (if renames (map stx-car (stx->list (stx-car renames))) null)]) (>>P d (p:letrec-values renames rhss body) (letrec-values ([VARS RHS] ...) . BODY) ([for-renames (VARS ...) var-renames] [for-derivs (RHS ...) rhss] [for-bderiv BODY body])))] [(Wrap p:letrec-syntaxes+values (e1 e2 rs ?1 srenames srhss vrenames vrhss body)) (let ([svar-renames (if srenames (map stx-car (stx->list (stx-car srenames))) null)] [vvar-renames (if vrenames (map stx-car (stx->list (stx-car vrenames))) null)]) (>>Pn d (p:letrec-syntaxes+values srenames srhss vrenames vrhss body) (letrec-syntaxes+values ([SVARS SRHS] ...) ([VVARS VRHS] ...) . BODY) ([for-renames (SVARS ...) svar-renames] [for-renames (VVARS ...) vvar-renames] [for-bind-syntaxess (SRHS ...) srhss] [for-derivs (VRHS ...) vrhss] [for-bderiv BODY body])))] [(Wrap p:#%datum (e1 e2 rs ?1)) (let ([show-k (lambda () (values d e2))]) (if (ormap show-macro? rs) (show-k) (seek/deriv/on-fail d show-k)))] [(Wrap p:#%top (e1 e2 rs ?1)) (values d e2)] [(Wrap p::STOP (e1 e2 rs ?1)) (values d e2)] [(Wrap p:rename (e1 e2 rs ?1 rename inner)) (>>P d (p:rename rename inner) INNER ([for-deriv INNER inner]))] ;; Macros [(Wrap mrule (e1 e2 tx next)) (let ([show-k (lambda () (recv [(tx) (for-transformation tx)] [(next e2) (for-deriv next)] (values (make mrule e1 e2 tx next) e2)))]) (if (show-transformation? tx) (show-k) (seek/deriv/on-fail d show-k)))] [(Wrap tagrule (e1 e2 tagged-stx next)) (let ([show-k (lambda () (recv [(next e2) (for-deriv next)] (values (make tagrule e1 e2 tagged-stx next) e2)))]) (if (show-macro? (stx-car tagged-stx)) (show-k) (seek/deriv/on-fail d show-k)))] ;; Lift ;; Shaky invariant: ;; Only lift-exprs occur in first... no lift-end-module-decls ;; They occur in reverse order. ;; PROBLEM: Hiding process may disturb order lifts are seen. [(Wrap lift-deriv (e1 e2 first lifted-stx second)) ;; Option 2: Hide first, show *all* lifted expressions, ;; and hide second (lifted defs only; replace last expr with first-e2) (DEBUG-LIFTS (printf "lift-deriv:\n~s\n\n" d)) (DEBUG-LIFTS (printf "lift-deriv: lifted-stx\n~s\n\n" (syntax->datum lifted-stx))) (let* ([begin-stx (stx-car lifted-stx)] [lifted-def-stxs ;; lifted-stx has form (begin lift-n ... lift-1 orig-expr) (cdr (reverse (stx->list (stx-cdr lifted-stx))))] [_ (DEBUG-LIFTS (printf "lifted-def-stxs:\n~s\n\n" (syntax->datum #`#,lifted-def-stxs)))] [second-derivs (match second [(Wrap p:begin (_ _ _ ?1 (Wrap lderiv (_ _ ?2 inners)))) inners])] [lift-derivs/0 (reverse (take-if-possible second-derivs (length lifted-def-stxs)))] [_ (DEBUG-LIFTS (printf "lift-derivs/0:\n~s\n\n" lift-derivs/0))] ) (define-values (first-d first-e2 lift-derivs) ;; Note: lift-derivs are back in reverse order from current-unvisited-lifts (parameterize ((current-unvisited-lifts lift-derivs/0) (current-unhidden-lifts null)) (DEBUG-LIFTS (printf "locally setting current-unvisited-lifts: ~s~n" (length lift-derivs/0))) (let-values ([(d e2) (for-deriv first)]) (when (pair? (current-unvisited-lifts)) (error 'hide:lift-deriv "missed ~s lift-expressions: ~s" (length (current-unvisited-lifts)) (current-unvisited-lifts))) (values d e2 (current-unhidden-lifts))))) (define main-deriv (make p:stop first-e2 first-e2 null #f)) (define lift-stxs (map wderiv-e1 lift-derivs)) (define lift-es2 (wderivlist-es2 lift-derivs)) ;; #f if interrupted ;; If no lifted syntaxes remain, then simplify: (if (null? lift-derivs) (values first-d first-e2) (let () (define lifted-stx* (datum->syntax lifted-stx `(,begin-stx ,@lift-stxs ,first-e2) lifted-stx lifted-stx)) (define inner-derivs ;; If interrupted, then main-expr deriv will not be in list (if lift-es2 lift-derivs (append lift-derivs (list main-deriv)))) (define lderiv* (make lderiv (map wderiv-e1 inner-derivs) (wderivlist-es2 inner-derivs) #f inner-derivs)) (define-values (lderiv** es2**) (for-lderiv lderiv*)) (define e2* (and es2** (datum->syntax e2 `(,begin-stx ,@es2**) e2 e2))) (define second* (make p:begin lifted-stx* e2* null #f lderiv**)) (values (make lift-deriv e1 e2* first-d lifted-stx* second*) e2*))))] [(Wrap lift/let-deriv (e1 e2 first lifted-stx next)) (warn 'lift/let) (recv [(first first-e2) (parameterize ((current-unvisited-lifts null) (current-unhidden-lifts null)) (for-deriv first))] [(next next-e2) (for-deriv next)] (values (make lift/let-deriv e1 next-e2 first lifted-stx next) next-e2))] ;; Errors [#f (values #f #f)])) ;; for-transformation : Transformation -> Transformation (define (for-transformation tx) (match tx [(Wrap transformation (e1 e2 rs ?1 me1 locals me2 ?2 _seq)) (let ([locals (and locals (map for-local-action locals))]) (make transformation e1 e2 rs ?1 me1 locals me2 ?2 _seq))])) ;; for-local-action : LocalAction -> LocalAction (define (for-local-action la) (match la [(struct local-expansion (e1 e2 me1 me2 deriv for-stx? lifted opaque)) (parameterize ((phase (if for-stx? (add1 (phase)) (phase)))) (when (or lifted opaque) (fprintf (current-error-port) "for-local-action: warning: losing information\n")) (let-values ([(deriv e2) (for-deriv deriv)]) (make local-expansion e1 e2 me1 me2 deriv for-stx? lifted opaque)))] [(struct local-lift (expr id)) (add-unhidden-lift (extract/remove-unvisited-lift id)) la] [(struct local-lift-end (decl)) (DEBUG-LIFTS (printf "hide:for-local-action: local-lift-end unimplemented~n")) la] [(struct local-bind (names bindrhs)) (let-values ([(bindrhs e2) (for-bind-syntaxes bindrhs)]) (make local-bind names bindrhs))])) ;; for-case-lambda-clauses : (list-of CaseLambdaClause) -> (list-of CaseLambdaClause) Stxs (define (for-case-lambda-clauses clauses) (cond [(pair? clauses) (match (car clauses) [(Wrap clc (?1 renames body)) (recv [(body* stx*) (for-bderiv body)] [(rest* stxs*) (for-case-lambda-clauses (cdr clauses))] (values (cons (make clc ?1 renames body*) rest*) (with-syntax ([(?formals . ?body) renames] [?body* stx*]) (cons (syntax/skeleton renames (?formals . ?body*)) stxs*))))])] [(null? clauses) (values null null)])) ;; for-bind-syntaxes : BindSyntaxes -> BindSyntaxes Syntax (define (for-bind-syntaxes bindrhs) (match bindrhs [(Wrap bind-syntaxes (rhs ?1)) (recv [(rhs* stx*) (parameterize ((phase (add1 (phase)))) (for-deriv rhs))] (values (make bind-syntaxes rhs* ?1) stx*))])) ;; for-bind-syntaxess : (list-of BindSyntaxes) -> (list-of BindSyntaxes) Syntax (define (for-bind-syntaxess bindrhss) (cond [(pair? bindrhss) (recv [(bindrhs* stx*) (for-bind-syntaxes (car bindrhss))] [(rest* stxs*) (for-bind-syntaxess (cdr bindrhss))] (values (cons bindrhs* rest*) (cons stx* stxs*)))] [(null? bindrhss) (values null null)])) ;; for-rename : Rename -> (values Rename syntax) (define (for-rename rename) (values rename rename)) ;; for-renames : (list-of Rename) -> (values (list-of Rename) syntaxes) (define (for-renames renames) (values renames renames)) ;; for-deriv/phase-up : Derivation -> (values Deriv syntax) (define (for-deriv/phase-up d) (parameterize ((phase (add1 (phase)))) (for-deriv d))) ;; for-derivs : (list-of Deriv) -> (values (list-of Deriv) (list-of syntax)) (define (for-derivs derivs) (let ([results (map (lambda (d) (recv [(d e2) (for-deriv d)] (cons d e2))) derivs)]) (values (map car results) (map cdr results)))) ;; for-derivs/phase-up : (list-of WDeriv) -> (values (list-of WDeriv) (list-of syntax)) (define (for-derivs/phase-up derivs) (parameterize ((phase (add1 (phase)))) (for-derivs derivs))) ;; for-cdr-bderivs : (list-of (cons 'a BlockDerivation)) ;; -> (values (list-of (cons 'a BlockDerivation)) (list-of syntax)) (define (for-cdr-bderivs xs+bderivs) (let ([results (map (lambda (d) (recv [(a b) (for-bderiv (cdr d))] (cons (cons (car d) a) b))) xs+bderivs)]) (values (map car results) (map cdr results)))) ;; for-lderiv : ListDerivation -> (values ListDerivation (list-of syntax)) (define (for-lderiv ld) (match ld [(Wrap lderiv (es1 es2 #f derivs)) (let-values ([(derivs stxs) (for-derivs derivs)]) (let ([stxs (and (andmap syntax? stxs) stxs)]) (values (make lderiv es1 stxs #f derivs) stxs)))] [(Wrap lderiv (es1 es2 (and exn? ?1) derivs)) (values ld es2)] [#f (values #f #f)])) ;; 1-pass method of handling blocks ;; 1 Combine pass1 and pass2 into super-pass2 ;; 2 Recombine into block derivation with trivial pass1 ;; for-bderiv : BlockDerivation -> (values BlockDerivation (list-of syntax)) (define (for-bderiv bd) (if (force-letrec-transformation) (match bd [(Wrap bderiv (es1 es2 pass1 trans pass2)) (recv [(pass2 es2) (for-lderiv pass2)] (values (make bderiv es1 es2 pass1 trans pass2) es2))]) (match bd [(Wrap bderiv (es1 es2 pass1 trans pass2)) (let ([pass2 (bderiv->lderiv bd)]) (recv [(pass2 es2) (for-lderiv pass2)] (values (make bderiv es1 es2 null 'list pass2) es2)))] [#f (values #f #f)]))) ; ; ;;;; ; ;; ; ; ; ; ; ; ; ; ; ;;; ;;;; ; ;; ;;; ;;;; ;;; ;;; ;;;;; ; ;; ; ; ; ; ;;; ;; ; ; ;;; ; ;; ; ; ; ; ;; ;; ; ; ;; ;; ;; ; ; ;; ; ; ; ;;;;;;; ; ; ;; ;;;;;;; ; ;;; ; ; ; ; ; ; ;; ; ; ;;;; ; ; ; ;; ; ; ;; ;; ; ; ;; ; ; ; ;; ; ; ; ;; ; ; ;; ; ;;; ;;; ;;;; ;;;;;;; ;;;; ;;;; ;;;;;; ;;;;;; ; ; ; ; ; ;;;; ; ;; show-macro? : identifier -> boolean (define (show-macro? id) ((macro-policy) id)) ;; show-mrule? : MRule -> boolean (define (show-transformation? tx) (match tx [(Wrap transformation (e1 e2 rs ?1 me1 locals me2 ?2 _seq)) (ormap show-macro? rs)]))