(module hide mzscheme (require (lib "plt-match.ss") (lib "list.ss") "deriv.ss" "deriv-util.ss" "synth-engine.ss" "synth-derivs.ss" "stx-util.ss" "context.ss") (provide hide/policy macro-policy force-letrec-transformation current-hiding-warning-handler (struct nonlinearity (message paths)) (struct localactions ())) ;; hide/policy : Derivation (identifier -> boolean) -> (values Derivation syntax) (define (hide/policy deriv show-macro?) (parameterize ((macro-policy show-macro?)) (hide deriv))) ;; current-hiding-warning-handler : (parameter-of (symbol string -> void)) (define current-hiding-warning-handler (make-parameter (lambda (tag message) (printf "~a: ~a~n" tag message)))) (define (warn tag message) ((current-hiding-warning-handler) tag message)) ;; current-unvisited-lifts : (paramter-of Derivation) ;; The derivs for the lifts yet to be seen in the processing ;; of the first part of the current lift-deriv. (define current-unvisited-lifts (make-parameter null)) ;; current-unhidden-lifts : (parameter-of Derivation) ;; The derivs for those lifts that occur within unhidden macros. ;; Derivs are moved from the current-unvisited-lifts to this list. (define current-unhidden-lifts (make-parameter null)) ;; add-unhidden-lift : Derivation -> void (define (add-unhidden-lift d) (current-unhidden-lifts (cons d (current-unhidden-lifts)))) ;; extract/remove-unvisted-lift : identifier -> Derivation (define (extract/remove-unvisited-lift id) (define (get-defined-id d) (match d [(AnyQ deriv (e1 e2)) (with-syntax ([(?define-values (?id) ?expr) e1]) #'?id)])) ;; The Wrong Way (let ([unvisited (current-unvisited-lifts)]) (unless (pair? unvisited) (error 'hide:extract/remove-unvisited-lift "out of lifts!")) (let ([lift (car unvisited)]) (current-unvisited-lifts (cdr unvisited)) lift)) ;; The Right Way ;; FIXME: Doesn't work inside of modules. Why not? #; (let loop ([lifts (current-unvisited-lifts)] [prefix null]) (cond [(null? lifts) #;(fprintf (current-error-port) "hide:extract/remove-unvisited-lift: couldn't find lift for ~s~n" id) (raise (make-localactions))] [(bound-identifier=? id (get-defined-id (car lifts))) (let ([lift (car lifts)]) (current-unvisited-lifts (let loop ([prefix prefix] [lifts (cdr lifts)]) (if (null? prefix) lifts (loop (cdr prefix) (cons (car prefix) lifts))))) lift)] [else (loop (cdr lifts) (cons (car lifts) prefix))]))) ; ; ; ; ; ; ; ;; ;;; ;;; ;;;;;; ;;;; ;;;;; ; ;; ; ; ; ; ; ; ;; ; ; ; ; ;; ;; ; ;; ;; ;; ; ; ; ;; ;; ; ;;;;;;; ;;; ; ; ; ;; ;; ; ; ;;;; ; ; ; ;; ;; ; ;; ; ;; ; ; ; ; ; ;; ;; ; ;; ; ;;; ;;; ;;; ;;; ;;;; ;;;;;; ; ; ;; The real goal is to implement a macro-hiding facility that preserves ;; as much of the real module-body and block pass separation as possible. ;; After attempts to do that, I've decided to scale back to a one-pass ;; simplification that should be much easier, get that out for people ;; to use, and then finish the two-pass solution. ;; 2-Pass method of handling blocks ;; 1 Normalize block derivation ;; 2 For each element in the normalized block derivation: ;; a Recur on the pass1 derivation ;; b Synth on the pass2 derivation using the pass1 result syntax ;; 3 Recombine into block derivation ;; ? (Optionally) un-normalize block derivation again ;; Unimplemented ;; Question: which way to match subterms with subderivations ;; 1 Gather subterms into table and recur on subderivations ;; 2 Gather subderivations into table and recur on subterms ;; Benefits of 1: ;; Preserves order of expansion, even if macro reorders (so effects happen right) ;; May be easier to deal with marking/renaming ;; Easier to deal with lifting (lifts get seen in correct order) ;; Gives finer control over handling of blocks (joining pass1 and pass2 expansions) ;; Drawbacks of 1: ;; Need to process results more to find final syntax & nonlinear subterms ;; Benefits of 2: ;; (Already written that way once...) ;; Nonlinear subterms fairly obvious ;; Computing final syntax fits naturally into recursion ;; I will try 1. ; ; ; ;;; ; ;; ;; ; ; ; ; ; ; ; ; ; ;;; ;;;; ;;;; ;;;; ; ;; ; ; ; ; ; ; ; ; ; ; ;; ; ;; ;; ; ; ; ; ;; ; ;;;;;;; ; ; ; ; ;; ; ; ; ; ; ; ;; ; ;; ; ; ; ; ;; ;;; ;; ; ;;; ;;; ;;;;;;; ;;; ;; ;;;; ; ; ;; Macro hiding: ;; The derivation is "visible" or "active" by default, ;; but pieces of it may need to be hidden. ;; hide : Derivation -> (values Derivation syntax) (define (hide deriv) ;; for-deriv : Derivation -> (values Derivation syntax) (define (for-deriv d) (match d ;; Primitives [(AnyQ p:variable (e1 e2 rs)) (values d e2)] [(AnyQ p:module (e1 e2 rs single-body-form? body)) ;; FIXME: Find the appropriate module-begin identifier to test ;; otherwise, hide module, seek for body elements... (let ([show-k (lambda () (>>Prim d e1 #t (make-p:module single-body-form? body) (module name lang . _BODY) (module name lang BODY) ([for-deriv BODY body])))]) (if (or single-body-form? (show-macro? #'#%plain-module-begin)) (show-k) (with-handlers ([nonlinearity? (lambda (nl) (warn 'nonlinearity (format "~a: ~s" (nonlinearity-message nl) (nonlinearity-paths nl))) (show-k))] [localactions? (lambda (nl) (warn 'localactions "opaque macro called local-expand or lifted expression") (show-k))]) (seek/deriv d))))] [(struct p:#%module-begin (e1 e2 rs pass1 pass2)) ;; FIXME: hide tagging (let ([lderiv (module-begin->lderiv d)]) (recv [(lderiv es2) (for-lderiv lderiv)] [(d) (lderiv->module-begin lderiv e1)] (values d (deriv-e2 d))))] [(AnyQ p:define-syntaxes (e1 e2 rs rhs)) (>>P d (make-p:define-syntaxes rhs) (define-syntaxes variables RHS) ([for-deriv/phase-up RHS rhs]))] [(AnyQ p:define-values (e1 e2 rs rhs)) (>>P d (make-p:define-values rhs) (define-values variables RHS) ([for-deriv RHS rhs]))] [(AnyQ p:expression (e1 e2 rs inner)) (>>P d (make-p:expression inner) (#%expression INNER) ([for-deriv INNER inner]))] [(AnyQ p:if (e1 e2 rs full? test then else)) (if full? (>>P d (make-p:if full? test then else) (if TEST THEN ELSE) ([for-deriv TEST test] [for-deriv THEN then] [for-deriv ELSE else])) (>>P d (make-p:if full? test then else) (if TEST THEN) ([for-deriv TEST test] [for-deriv THEN then])))] [(AnyQ p:wcm (e1 e2 rs key mark body)) (>>P d (make-p:wcm key mark body) (wcm KEY MARK BODY) ([for-deriv KEY key] [for-deriv MARK mark] [for-deriv BODY body]))] [(AnyQ p:set! (e1 e2 rs id-resolves rhs)) (>>P d (make-p:set! id-resolves rhs) (set! id RHS) ([for-deriv RHS rhs]))] ;; FIXME: Correct? [(AnyQ p:set!-macro (e1 e2 rs deriv)) (>>Pn d (make-p:set!-macro deriv) INNER ([for-deriv INNER deriv]))] [(AnyQ p:begin (e1 e2 rs lderiv)) (>>P d (make-p:begin lderiv) (begin . LDERIV) ([for-lderiv LDERIV lderiv]))] [(AnyQ p:begin0 (e1 e2 rs first lderiv)) (>>P d (make-p:begin0 first lderiv) (begin0 FIRST . LDERIV) ([for-deriv FIRST first] [for-lderiv LDERIV lderiv]))] [(AnyQ p:#%app (e1 e2 rs tagged-stx ld)) (if (or (eq? e1 tagged-stx) (show-macro? #'#%app)) ;; If explicitly tagged, simple (>>Prim d tagged-stx #t (make-p:#%app tagged-stx ld) (#%app . LDERIV) (#%app . LDERIV) ([for-lderiv LDERIV ld])) ;; If implicitly tagged: (let-values ([(ld* es2*) (for-lderiv ld)]) (match ld* [(IntQ lderiv (es1 es2 derivs*)) (let ([stx* (and e2 es2 (datum->syntax-object e2 es2 e2 e2))]) (values (rewrap d (make-p:synth e1 stx* rs (map (lambda (n d) (make-s:subterm (list (make-ref n)) d)) (iota (length derivs*)) derivs*))) stx*))] [(struct error-wrap (exn _ _)) (values (make-error-wrap exn #f (make-p:synth e1 #f rs null)) #f)])))] [(AnyQ p:lambda (e1 e2 rs renames body)) (>>P d (make-p:lambda renames body) (lambda FORMALS . BODY) ([for-rename (FORMALS . _B) renames] [for-bderiv BODY body]))] [(AnyQ p:case-lambda (e1 e2 rs renames+bodies)) (let ([var-renames (map caar renames+bodies)]) (>>P d (make-p:case-lambda renames+bodies) (case-lambda [FORMALS . BODY] ...) ([for-renames (FORMALS ...) var-renames] [for-cdr-bderivs (BODY ...) renames+bodies])))] [(AnyQ p:let-values (e1 e2 rs renames rhss body)) (let ([var-renames (map stx-car (stx->list (stx-car renames)))]) (>>P d (make-p:let-values renames rhss body) (let-values ([VARS RHS] ...) . BODY) ([for-renames (VARS ...) var-renames] [for-derivs (RHS ...) rhss] [for-bderiv BODY body])))] [(AnyQ p:letrec-values (e1 e2 rs renames rhss body)) (let ([var-renames (if renames (map stx-car (stx->list (stx-car renames))) null)]) (>>P d (make-p:letrec-values renames rhss body) (letrec-values ([VARS RHS] ...) . BODY) ([for-renames (VARS ...) var-renames] [for-derivs (RHS ...) rhss] [for-bderiv BODY body])))] [(AnyQ p:letrec-syntaxes+values (e1 e2 rs srenames srhss vrenames vrhss body)) (let ([svar-renames (if srenames (map stx-car (stx->list (stx-car srenames))) null)] [vvar-renames (if vrenames (map stx-car (stx->list (stx-car vrenames))) null)]) (>>Pn d (make-p:letrec-syntaxes+values srenames srhss vrenames vrhss body) (letrec-syntaxes+values ([SVARS SRHS] ...) ([VVARS VRHS] ...) . BODY) ([for-renames (SVARS ...) svar-renames] [for-renames (VVARS ...) vvar-renames] [for-derivs/phase-up (SRHS ...) srhss] [for-derivs (VRHS ...) vrhss] [for-bderiv BODY body])))] [(AnyQ p:#%datum (e1 e2 rs tagged-stx)) (cond [(or (eq? tagged-stx e1) (show-macro? #'#%datum)) (values d e2)] [else ;; hide the #%datum tagging ;; Is this the right way? (values (make-p:synth e1 e1 rs null) e1)])] [(AnyQ p:#%top (e1 e2 rs tagged-stx)) (cond [(or (eq? tagged-stx e1) (show-macro? #'#%top)) (values d e2)] [else ;; hide the #%top tagging (values (rewrap d (make-p:synth e1 e1 rs null)) e1)])] [(AnyQ p::STOP (e1 e2 rs)) (values d e2)] [(AnyQ p:rename (e1 e2 rs rename inner)) (>>P d (make-p:rename rename inner) INNER ([for-deriv INNER inner]))] ;; Macros [(AnyQ mrule (e1 e2 tx next)) (let ([show-k (lambda () (recv [(tx) (for-transformation tx)] [(next e2) (for-deriv next)] (values (rewrap d (make-mrule e1 e2 tx next)) e2)))]) (if (show-transformation? tx) (show-k) (with-handlers ([nonlinearity? (lambda (nl) (warn 'nonlinearity (format "~a: ~s" (nonlinearity-message nl) (nonlinearity-paths nl))) (show-k))] [localactions? (lambda (nl) (warn 'localactions "opaque macro called local-expand or lifted expression") (show-k))]) (seek/deriv d))))] ;; Lift ;; Shaky invariant: ;; Only lift-exprs occur in first... no lift-end-module-decls ;; They occur in reverse order. ;; PROBLEM: Hiding process may disturb order lifts are seen. [(IntQ lift-deriv (e1 e2 first lifted-stx second) tag) ;; Option 2: Hide first, show *all* lifted expressions, ;; and hide second (lifted defs only; replace last expr with first-e2) (let* ([second-derivs (match second [(IntQ p:begin (_ _ _ (IntQ lderiv (_ _ inners)))) (reverse inners)])] [lift-derivs/0 ;; If interrupted, then main-expr deriv will not be in list ;; second-derivs are already reversed (if tag second-derivs (cdr second-derivs))] [begin-stx (stx-car lifted-stx)]) (define-values (first-d first-e2 lift-derivs) ;; Note: lift-derivs are back in reverse order from current-unvisited-lifts (parameterize ((current-unvisited-lifts lift-derivs/0) (current-unhidden-lifts null)) #;(printf "setting current-unvisited-lifts: ~s~n" (length lift-derivs/0)) (let-values ([(d e2) (for-deriv first)]) (when (pair? (current-unvisited-lifts)) (error 'hide:lift-deriv "missed ~s lift-expressions: ~s" (length (current-unvisited-lifts)) (current-unvisited-lifts))) (values d e2 (current-unhidden-lifts))))) (define lift-stxs (map lift/deriv-e1 lift-derivs)) (define main-deriv (make-p:stop first-e2 first-e2 null)) ;; If no lifted syntaxes remain, then simplify: (if (null? lift-derivs) (values first-d first-e2) (let () (define lifted-stx* (datum->syntax-object lifted-stx `(,begin-stx ,@lift-stxs ,first-e2) lifted-stx lifted-stx)) (define inner-derivs ;; If interrupted, then main-expr deriv will not be in list (if tag lift-derivs (append lift-derivs (list main-deriv)))) (define lderiv* (rewrap second (make-lderiv (map lift/deriv-e1 inner-derivs) (and (not tag) (map lift/deriv-e2 inner-derivs)) inner-derivs))) (define-values (lderiv** es2**) (for-lderiv lderiv*)) (define e2* (and es2** (datum->syntax-object e2 `(,begin-stx ,@es2**) e2 e2))) (define second* (rewrap second (make-p:begin lifted-stx* e2* null lderiv**))) (values (rewrap d (make-lift-deriv e1 e2* first-d lifted-stx* second*)) e2*))))] [(AnyQ lift/let-deriv (e1 e2 first lifted-stx next)) ;; FIXME (error 'hide "lift/let unimplemented")] ;; Errors [#f (values #f #f)])) ;; for-transformation : Transformation -> Transformation??? (define (for-transformation tx) (match tx [(AnyQ transformation (e1 e2 rs me1 me2 locals _seq)) (let ([locals (map for-local-action (or locals null))]) (rewrap tx (make-transformation e1 e2 rs me1 me2 locals _seq)))])) ;; for-local-action : LocalAction -> LocalAction (define (for-local-action la) (match la [(struct local-expansion (e1 e2 me1 me2 for-stx? deriv)) (let-values ([(deriv e2) (for-deriv deriv)]) (make-local-expansion e1 e2 me1 me2 for-stx? deriv))] [(struct local-expansion/expr (e1 e2 me1 me2 for-stx? opaque deriv)) (error 'hide:for-local-action "not implemented for local-expand-expr")] [(struct local-lift (expr id)) (add-unhidden-lift (extract/remove-unvisited-lift id)) la] [(struct local-lift-end (decl)) ;;(printf "hide:for-local-action: local-lift-end unimplemented~n") la] [(struct local-bind (deriv)) (let-values ([(deriv e2) (for-deriv deriv)]) (make-local-bind deriv))])) ;; for-rename : Rename -> (values Rename syntax) (define (for-rename rename) (values rename rename)) ;; for-renames : (list-of Rename) -> (values (list-of Rename) syntaxes) (define (for-renames renames) (values renames renames)) ;; for-deriv/phase-up : Derivation -> (values Derivation syntax) (define (for-deriv/phase-up d) (parameterize ((phase (add1 (phase)))) (for-deriv d))) ;; for-derivs : (list-of Derivation) -> (values (list-of Derivation) (list-of syntax)) (define (for-derivs derivs) (let ([results (map (lambda (d) (let-values ([(a b) (for-deriv d)]) (cons a b))) derivs)]) (values (map car results) (map cdr results)))) ;; for-derivs/phase-up : (list-of Derivation) -> (values (list-of Derivation) (list-of syntax)) (define (for-derivs/phase-up derivs) (parameterize ((phase (add1 (phase)))) (for-derivs derivs))) ;; for-cdr-bderivs : (list-of (cons 'a BlockDerivation)) ;; -> (values (list-of (cons 'a BlockDerivation)) (list-of syntax)) (define (for-cdr-bderivs xs+bderivs) (let ([results (map (lambda (d) (recv [(a b) (for-bderiv (cdr d))] (cons (cons (car d) a) b))) xs+bderivs)]) (values (map car results) (map cdr results)))) ;; for-lderiv : ListDerivation -> (values ListDerivation (list-of syntax)) (define (for-lderiv ld) (match ld [(AnyQ lderiv (es1 es2 derivs)) (let-values ([(derivs stxs) (for-derivs derivs)]) (let ([stxs (if (wrapped? ld) #f stxs)]) (values (rewrap ld (make-lderiv es1 stxs derivs)) stxs)))] [#f (values #f #f)])) ;; 1-pass method of handling blocks ;; 1 Combine pass1 and pass2 into super-pass2 ;; 2 Recombine into block derivation with trivial pass1 ;; for-bderiv : BlockDerivation -> (values BlockDerivation (list-of syntax)) (define (for-bderiv bd) (if (force-letrec-transformation) (match bd [(IntQ bderiv (es1 es2 pass1 trans pass2)) (recv [(pass2 es2) (for-lderiv pass2)] (values (rewrap/nt bd (make-bderiv es1 es2 pass1 trans pass2)) es2))]) (match bd [(IntQ bderiv (es1 es2 pass1 trans pass2)) (let ([pass2 (bderiv->lderiv bd)]) (recv [(pass2 es2) (for-lderiv pass2)] (values (rewrap/nt bd (make-bderiv es1 es2 null 'list pass2)) es2)))] [#f (values #f #f)]))) (for-deriv deriv)) ; ; ;; ; ;; ; ; ; ; ; ;;;;; ;;;; ;;;; ; ;;; ; ;; ; ; ; ; ; ; ; ; ;; ;; ;; ;; ;; ; ; ; ;;; ;;;;;;; ;;;;;;; ;;; ; ;;;; ; ; ;;; ; ; ;; ;; ;; ; ;; ; ; ;; ;; ;; ; ;; ; ;;;;;; ;;;; ;;;; ;;; ;;; ; ;; Seek: ;; The derivation is "inactive" or "hidden" by default, ;; but pieces of it can become visible if they correspond to subterms ;; of the hidden syntax. ;; seek/deriv : Derivation -> (values Derivation syntax) ;; Seeks for derivations of all proper subterms of the derivation's ;; initial syntax. (define (seek/deriv d) (match d [(AnyQ deriv (e1 e2)) (let ([subterms (gather-proper-subterms e1)]) (parameterize ((subterms-table subterms)) (match (seek d) [(and (struct error-wrap (exn tag inner)) ew) (values ew #f) #;(values ew (deriv-e2 inner))] [deriv (values (rewrap d deriv) (lift/deriv-e2 deriv))])))])) ;; seek : Derivation -> Derivation ;; Expects macro-policy, subterms-table to be set up already (define (seek d) (match d [(AnyQ deriv (e1 e2)) (let ([subterm-derivs (subterm-derivations d)]) (check-nonlinear-subterms subterm-derivs) ;; Now subterm substitution is safe, because they don't overlap (create-synth-deriv e1 subterm-derivs))])) ;; create-synth-deriv : syntax (list-of Subterm) -> Derivation (define (create-synth-deriv e1 subterm-derivs) (define (error? x) (and (s:subterm? x) (error-wrap? (s:subterm-deriv x)) (not (s:subterm-path x)))) (define (interrupted? x) (and (s:subterm? x) (interrupted-wrap? (s:subterm-deriv x)))) (let* ([errors (map s:subterm-deriv (filter error? subterm-derivs))] [subterms (filter (lambda (x) (not (error? x))) subterm-derivs)] [interrupted (filter interrupted? subterms)]) (let ([e2 (and (null? errors) (null? interrupted) (substitute-subterms e1 subterms))]) (let ([d (make-p:synth e1 e2 null subterms)] [wrap (cond [(pair? errors) (car errors)] [(pair? interrupted) (car interrupted)] [else #f])]) (if wrap (rewrap wrap d) d))))) ;; subterm-derivations : Derivation -> (list-of Subterm) (define (subterm-derivations d) ;; for-deriv : Derivation -> (list-of Subterm) (define (for-deriv d) (let ([path (check-visible d)]) (if path (let-values ([(d _) (hide d)]) (list (make-s:subterm path d))) (for-unlucky-deriv/record-error d)))) ;; for-deriv/phase-up : Derivation -> (list-of Subterm) (define (for-deriv/phase-up d) (parameterize ((phase (add1 (phase)))) (for-deriv d))) ;; check-visible : Derivation -> Path/#f (define (check-visible d) (match d [(AnyQ deriv (e1 e2)) (let ([paths (table-get (subterms-table) e1)]) (cond [(null? paths) #f] [(null? (cdr paths)) (car paths)] [else ;; More than one path to the same(eq?) syntax object ;; Not good. ;; FIXME: Better to delay check to here, or check whole table first? ;; FIXME (raise (make-nonlinearity "nonlinearity in original term" paths))]))] [#f #f])) ;; for-unlucky-deriv/record-error -> (list-of Subterm) ;; Guarantee: (deriv-e1 deriv) is not in subterms table (define (for-unlucky-deriv/record-error d) (if (error-wrap? d) (append (for-unlucky-deriv d) (list (make-s:subterm #f d))) (for-unlucky-deriv d))) ;; for-unlucky-deriv : Derivation -> (list-of Subterm) ;; Guarantee: (deriv-e1 deriv) is not in subterms table (define (for-unlucky-deriv d) (match d ;; Primitives [(AnyQ p:module (e1 e2 rs one-body-form? body)) (cond [one-body-form? ;; FIXME: tricky... how to do renaming? (for-deriv body)] [else (with-syntax ([(?module ?name ?lang . ?body) e1] [(?module-begin . ?body*) (lift/deriv-e1 body)]) (>>Seek [#:rename (do-rename #'?body #'?body*)] (for-deriv body)))])] [(AnyQ p:#%module-begin (e1 e2 rs pass1 pass2)) (let ([lderiv (module-begin->lderiv d)]) (for-lderiv lderiv))] [(AnyQ p:variable (e1 e2 rs)) null] [(AnyQ p:define-syntaxes (e1 e2 rs rhs)) (>>Seek (for-deriv/phase-up rhs))] [(AnyQ p:define-values (e1 e2 rs rhs)) (>>Seek (for-deriv rhs))] [(AnyQ p:expression (e1 e2 rs inner)) (>>Seek (for-deriv inner))] [(AnyQ p:if (e1 e2 rs full? test then else)) (>>Seek (for-deriv test) (for-deriv then) (if full? (for-deriv else) null))] [(AnyQ p:wcm (e1 e2 rs key value body)) (>>Seek (for-deriv key) (for-deriv value) (for-deriv body))] [(AnyQ p:set! (e1 e2 rs id-resolves rhs)) (>>Seek (for-deriv rhs))] [(AnyQ p:set!-macro (e1 e2 rs deriv)) (>>Seek (for-deriv deriv))] [(AnyQ p:begin (e1 e2 rs lderiv)) (>>Seek (for-lderiv lderiv))] [(AnyQ p:begin0 (e1 e2 rs head lderiv)) (>>Seek (for-deriv head) (for-lderiv lderiv))] [(AnyQ p:#%app (e1 e2 rs tagges-stx lderiv)) (>>Seek (for-lderiv lderiv))] [(AnyQ p:lambda (e1 e2 rs renames body) exni) (>>Seek [#:rename (do-rename/lambda e1 renames)] (for-bderiv body))] [(AnyQ p:case-lambda (e1 e2 rs renames+bodies)) (with-syntax ([(?case-lambda ?clause ...) e1]) (let () (define (handle-clause clause-stx rename body) (>>Seek [#:rename (do-rename/case-lambda clause-stx rename)] (for-bderiv body))) (let loop ([clauses (syntax->list #'(?clause ...))] [renames+bodies renames+bodies]) (if (pair? renames+bodies) (append (handle-clause (car clauses) (caar renames+bodies) (cdar renames+bodies)) (loop (cdr clauses) (cdr renames+bodies))) null))))] [(AnyQ p:let-values (e1 e2 rs renames rhss body)) (>>Seek [#:rename (do-rename/let e1 renames)] [#:append (map for-deriv rhss)] (for-bderiv body))] [(AnyQ p:letrec-values (e1 e2 rs renames rhss body)) (>>Seek [#:rename (do-rename/let e1 renames)] [#:append (map for-deriv rhss)] (for-bderiv body))] [(AnyQ p:letrec-syntaxes+values (e1 e2 rs srenames srhss vrenames vrhss body)) (>>Seek [#:rename (do-rename/lsv1 e1 srenames)] [#:append (map for-deriv/phase-up srhss)] [#:rename (do-rename/lsv2 srenames vrenames)] [#:append (map for-deriv vrhss)] (for-bderiv body))] [(AnyQ p::STOP (e1 e2 rs)) null] ;; synth (should synth be idempotent?... heh, no point for now) [(AnyQ p:rename (e1 e2 rs rename inner)) (>>Seek [#:rename (do-rename (car rename) (cdr rename))] (for-deriv inner))] ;; Macros [(AnyQ mrule (e1 e2 (? error-wrap? ew) next)) (list (make-s:subterm #f ew))] [(AnyQ mrule (e1 e2 tx next)) (recv [(subterms table) (for-transformation tx)] (parameterize ((subterms-table table)) (append subterms (for-deriv next))))] [(AnyQ lift-deriv (e1 e2 first lifted-stx next)) #;(printf "encountered lift-deriv in seek mode!~n") (raise (make-localactions)) (>>Seek (for-deriv first) (for-deriv next))] [(AnyQ lift/let-deriv (e1 e2 first lifted-stx next)) (raise (make-localactions))] ;; Errors [#f null] )) ;; for-transformation : Transformation -> (values (list-of Subterm) Table) (define (for-transformation tx) (match tx [(IntQ transformation (e1 e2 rs me1 me2 locals _seq)) ;; FIXME: We'll need to use e1/e2/me1/me2 to synth locals, perhaps ;; FIXME: and we'll also need to account for *that* marking, too... (for-each for-local-action (or locals null)) ;(let* ([table-at-end #f] ; [subterms ; (>>Seek [#:rename (do-rename e1 me1)] ; [#:append (map for-local locals)] ; [#:rename (do-rename me2 e2)] ; (begin (set! table-at-end (subterms-table)) ; null))]) ; (values subterms table-at-end)) (let-values ([(rename-subterms1 table1) (do-rename e1 me1)]) (parameterize ((subterms-table table1)) (let () ;; [sss (map for-local locals)] (let-values ([(rename-subterms2 table2) (do-rename me2 e2)]) ;; FIXME: Including these seems to produce evil results ;; ie, parts of the hidden macro use appear as marked ;; when they shouldn't (values null ;; (append rename-subterms1 (apply append sss) rename-subterms2) table2)))))] [(ErrW transformation (e1 e2 rs me1 me2 locals _seq)) (for-each for-local-action (or locals null)) (values null #f)])) ;; for-local-action : LocalAction -> (list-of Subterm) (define (for-local-action local) (match local [(struct local-expansion (e1 e2 me1 me2 for-stx? deriv)) (let-values ([(rename-subtersm2 table2) (do-rename me1 e1)]) (let ([subterms (for-deriv deriv)]) (when (pair? (filter s:subterm? subterms)) (raise (make-localactions)))))] [(struct local-expansion/expr (e1 e2 me1 me2 for-stx? opaque deriv)) (let-values ([(rename-subtersm2 table2) (do-rename me1 e1)]) (let ([subterms (for-deriv deriv)]) (when (pair? (filter s:subterm? subterms)) (raise (make-localactions)))))] [(struct local-lift (expr id)) ;; FIXME: seek in the lifted deriv, transplant subterm expansions *here* (extract/remove-unvisited-lift id)] [(struct local-lift-end (decl)) ;; FIXME!!! (void)] [(struct local-bind (deriv)) (raise (make-localactions))])) ;; for-lderiv : ListDerivation -> (list-of Subterm) (define (for-lderiv ld) (match ld [(IntQ lderiv (es1 es2 derivs)) (apply append (map for-deriv derivs))] [(struct error-wrap (exn tag inner)) (append (for-lderiv inner) (list (make-s:subterm #f ld)))] [#f null])) ;; for-bderiv : BlockDerivation -> (list-of Subterm) (define (for-bderiv bd) (for-lderiv (bderiv->lderiv bd))) (for-deriv d)) ; ; ;;;; ; ;; ; ; ; ; ; ; ; ; ; ;;; ;;;; ; ;; ;;; ;;;; ;;; ;;; ;;;;; ; ;; ; ; ; ; ;;; ;; ; ; ;;; ; ;; ; ; ; ; ;; ;; ; ; ;; ;; ;; ; ; ;; ; ; ; ;;;;;;; ; ; ;; ;;;;;;; ; ;;; ; ; ; ; ; ; ;; ; ; ;;;; ; ; ; ;; ; ; ;; ;; ; ; ;; ; ; ; ;; ; ; ; ;; ; ; ;; ; ;;; ;;; ;;;; ;;;;;;; ;;;; ;;;; ;;;;;; ;;;;;; ; ; ; ; ; ;;;; ; ;; show-macro? : identifier -> boolean (define (show-macro? id) ((macro-policy) id)) ;; show-mrule? : MRule -> boolean (define (show-transformation? tx) (match tx [(AnyQ transformation (e1 e2 rs me1 me2 locals _seq)) (ormap show-macro? rs)])) ;; gather-one-subterm : syntax syntax -> SubtermTable (define (gather-one-subterm whole part) (let ([table (make-hash-table)]) (let ([paths (find-subterm-paths part whole)]) (for-each (lambda (p) (table-add! table part p)) paths)) table)) ;; gather-proper-subterms : Syntax -> SubtermTable ;; FIXME: Eventually, need to descend into vectors, boxes, etc. (define (gather-proper-subterms stx0) (let ([table (make-hash-table)]) ;; loop : Syntax Path -> void (define (loop stx rpath) (unless (eq? stx0 stx) (table-add! table stx (reverse rpath))) (let ([p (syntax-e stx)]) (when (pair? p) (loop-cons p rpath 0)))) ;; loop-cons : (cons Syntax ?) Path number -> void (define (loop-cons p rpath pos) (loop (car p) (cons (make-ref pos) rpath)) (let ([t (cdr p)]) (cond [(syntax? t) (let ([te (syntax-e t)]) (if (pair? te) (begin (table-add! table t (reverse (cons (make-tail pos) rpath))) (loop-cons te rpath (add1 pos))) (loop t (cons (make-tail pos) rpath))))] [(pair? t) (loop-cons t rpath (add1 pos))] [(null? t) (void)]))) (loop stx0 null) table)) (define (map/2values f items) (if (null? items) (values null null) (let*-values ([(a0 b0) (f (car items))] [(as bs) (map/2values f (cdr items))]) (values (cons a0 as) (cons b0 bs))))) ; ; ;;;; ; ;; ; ; ; ; ; ; ; ; ; ; ;;;;;; ;;;;; ; ;;; ; ;;;; ; ; ; ; ;; ;; ; ; ; ; ; ; ; ;; ; ;; ;; ; ; ;;;; ; ;; ; ;;;;;;; ; ; ;; ; ; ;; ; ; ; ; ;; ; ; ;; ; ;; ; ;; ;; ;; ; ; ; ;; ; ;;; ;;; ;; ;;;; ;;;;;;; ;;;; ; ; ; ;; A Table is a hashtable[syntax => (list-of Path) (define (table-add! table stx v) (hash-table-put! table stx (cons v (table-get table stx)))) (define (table-add-if-absent! table stx v) (unless (memq v (table-get table stx)) (table-add! table stx v))) (define (table-get table stx) (hash-table-get table stx (lambda () null))) ;; do-rename : syntax syntax -> (values (list-of Subterm) Table) (define (do-rename stx rename) (let ([t (make-hash-table)] [old (subterms-table)]) ;; loop : syntax syntax -> (list-of Subterm) ;; Puts things into the new table, too ;; If active? is #f, always returns null (define (loop stx rename active?) (cond [(and (syntax? stx) (syntax? rename)) (let ([paths (table-get old stx)]) (if (pair? paths) (begin (hash-table-put! t rename paths) (loop (syntax-e stx) (syntax-e rename) #f) (if active? (map (lambda (p) (make-s:rename p stx rename)) paths) null)) (loop (syntax-e stx) (syntax-e rename) active?)))] [(syntax? rename) (loop stx (syntax-e rename) active?)] [(syntax? stx) (loop (syntax-e stx) rename active?)] [(and (pair? stx) (pair? rename)) (append (loop (car stx) (car rename) active?) (loop (cdr stx) (cdr rename) active?))] [else null])) (let ([subterms (loop stx rename #t)]) #;(printf "~nNew Table: ~s~n" t) (values subterms t)))) (define (do-rename/lambda stx rename) (if rename (with-syntax ([(?lambda ?formals . ?body) stx]) (do-rename (cons #'?formals #'?body) rename)) (values null (subterms-table)))) (define (do-rename/let stx rename) (if rename (with-syntax ([(?let ?bindings . ?body) stx]) (do-rename (cons #'?bindings #'?body) rename)) (values null (subterms-table)))) (define (do-rename/case-lambda stx rename) (if rename (with-syntax ([(?formals . ?body) stx]) (do-rename (cons #'?formals #'?body) rename)) (values null (subterms-table)))) (define (do-rename/lsv1 stx rename) (if rename (with-syntax ([(?lsv ?sbindings ?vbindings . ?body) stx]) (do-rename (cons #'?sbindings (cons #'?vbindings #'?body)) rename)) (values null (subterms-table)))) (define (do-rename/lsv2 old-rename rename) (if rename (with-syntax ([(?sbindings ?vbindings . ?body) old-rename]) (do-rename (cons #'?vbindings #'?body) rename)) (values null (subterms-table)))) )