#lang scribble/doc @(require "mz.ss" scribble/bnf "reader-example.ss") @(begin (define (ilitchar s) (litchar s)) (define (nunterm s) (nonterm s (subscript "n"))) (define (sub n) (subscript n)) (define (nonalpha) @elem{; the next character must not be @schemelink[char-alphabetic?]{alphabetic}.}) (define (graph-tag) @kleenerange[1 8]{@nonterm{digit@sub{10}}}) (define (graph-defn) @elem{@litchar{#}@graph-tag[]@litchar{=}}) (define (graph-ref) @elem{@litchar{#}@graph-tag[]@litchar{#}})) @title[#:tag "reader" #:style 'quiet]{The Reader} Scheme's reader is a recursive-descent parser that can be configured through a @seclink["readtables"]{readtable} and various other @tech{parameters}. This section describes the reader's parsing when using the default readtable. Reading from a stream produces one @deftech{datum}. If the result datum is a compound value, then reading the datum typically requires the reader to call itself recursively to read the component data. The reader can be invoked in either of two modes: @scheme[read] mode, or @scheme[read-syntax] mode. In @scheme[read-syntax] mode, the result is always a @techlink{syntax object} that includes source-location and (initially empty) lexical information wrapped around the sort of datum that @scheme[read] mode would produce. In the case of pairs, vectors, and boxes, the content is also wrapped recursively as a syntax object. Unless specified otherwise, this section describes the reader's behavior in @scheme[read] mode, and @scheme[read-syntax] mode does the same modulo wrapping the final result. Reading is defined in terms of Unicode characters; see @secref["ports"] for information on how a byte stream is converted to a character stream. @;------------------------------------------------------------------------ @section[#:tag "default-readtable-dispatch"]{Delimiters and Dispatch} Along with @schemelink[char-whitespace?]{whitespace}, the following characters are @defterm{delimiters}: @t{ @hspace[2] @ilitchar{(} @ilitchar{)} @ilitchar{[} @ilitchar{]} @ilitchar["["] @ilitchar["]"] @ilitchar{"} @ilitchar{,} @ilitchar{'} @ilitchar{`} @ilitchar{;} } A delimited sequence that starts with any other character is typically parsed as either a symbol or number, but a few non-delimiter characters play special roles: @itemize[ @item{@litchar{#} has a special meaning as an initial character in a delimited sequence; its meaning depends on the characters that follow; see below.} @item{@as-index{@litchar{|}} starts a subsequence of characters to be included verbatim in the delimited sequence (i.e,. they are never treated as delimiters, and they are not case-folded when case-insensitivity is enabled); the subsequence is terminated by another @litchar{|}, and neither the initial nor terminating @litchar{|} is part of the subsequence.} @item{@as-index{@litchar{\}} outside of a @litchar{|} pair causes the folowing character to be included verbatim in a delimited sequence.} ] More precisely, after skipping whitespace, the reader dispatches based on the next character or characters in the input stream as follows: @dispatch-table[ @dispatch[@litchar{(}]{starts a pair or list; see @secref["parse-pair"]} @dispatch[@litchar{[}]{starts a pair or list; see @secref["parse-pair"]} @dispatch[@litchar["{"]]{starts a pair or list; see @secref["parse-pair"]} @dispatch[@litchar{)}]{matches @litchar{(} or raises @Exn[exn:fail:read]} @dispatch[@litchar{]}]{matches @litchar{[} or raises @Exn[exn:fail:read]} @dispatch[@litchar["}"]]{matches @litchar["{"] or raises @Exn[exn:fail:read]} @dispatch[@litchar{"}]{starts a string; see @secref["parse-string"]} @dispatch[@litchar{,}]{starts a quote; see @secref["parse-quote"]} @dispatch[@litchar{`}]{starts a quasiquote; see @secref["parse-quote"]} @dispatch[@litchar{,}]{starts an [splicing] unquote; see @secref["parse-quote"]} @dispatch[@litchar{;}]{starts a line comment; see @secref["parse-comment"]} @dispatch[@cilitchar{#t}]{true; see @secref["parse-boolean"]} @dispatch[@cilitchar{#f}]{false; see @secref["parse-boolean"]} @dispatch[@litchar{#(}]{starts a vector; see @secref["parse-vector"]} @dispatch[@litchar{#[}]{starts a vector; see @secref["parse-vector"]} @dispatch[@litchar["#{"]]{starts a vector; see @secref["parse-vector"]} @dispatch[@litchar{#s(}]{starts a structure literal; see @secref["parse-structure"]} @dispatch[@litchar{#s[}]{starts a structure literal; see @secref["parse-structure"]} @dispatch[@litchar["#s{"]]{starts a structure literal; see @secref["parse-structure"]} @dispatch[@litchar{#\}]{starts a character; see @secref["parse-character"]} @dispatch[@litchar{#"}]{starts a byte string; see @secref["parse-string"]} @dispatch[@litchar{#%}]{starts a symbol; see @secref["parse-symbol"]} @dispatch[@litchar{#:}]{starts a keyword; see @secref["parse-keyword"]} @dispatch[@litchar{#&}]{starts a box; see @secref["parse-box"]} @dispatch[@litchar{#|}]{starts a block comment; see @secref["parse-comment"]} @dispatch[@litchar{#;}]{starts an S-expression comment; see @secref["parse-comment"]} @dispatch[@litchar{#'}]{starts a syntax quote; see @secref["parse-quote"]} @dispatch[@litchar{#! }]{starts a line comment; see @secref["parse-comment"]} @dispatch[@litchar{#!/}]{starts a line comment; see @secref["parse-comment"]} @dispatch[@litchar{#!}]{may start a reader extension; see @secref["parse-reader"]} @dispatch[@litchar{#`}]{starts a syntax quasiquote; see @secref["parse-quote"]} @dispatch[@litchar{#,}]{starts an syntax [splicing] unquote; see @secref["parse-quote"]} @dispatch[@litchar{#~}]{starts compiled code; see @scheme[current-compile]} @dispatch[@cilitchar{#i}]{starts a number; see @secref["parse-number"]} @dispatch[@cilitchar{#e}]{starts a number; see @secref["parse-number"]} @dispatch[@cilitchar{#x}]{starts a number; see @secref["parse-number"]} @dispatch[@cilitchar{#o}]{starts a number; see @secref["parse-number"]} @dispatch[@cilitchar{#d}]{starts a number; see @secref["parse-number"]} @dispatch[@cilitchar{#b}]{starts a number; see @secref["parse-number"]} @dispatch[@cilitchar["#<<"]]{starts a string; see @secref["parse-string"]} @dispatch[@litchar{#rx}]{starts a regular expression; see @secref["parse-regexp"]} @dispatch[@litchar{#px}]{starts a regular expression; see @secref["parse-regexp"]} @dispatch[@cilitchar{#ci}]{switches case sensitivity; see @secref["parse-symbol"]} @dispatch[@cilitchar{#cs}]{switches case sensitivity; see @secref["parse-symbol"]} @dispatch[@cilitchar["#sx"]]{starts a Scheme expression; see @secref["parse-honu"]} @dispatch[@litchar{#hx}]{starts a Honu expression; see @secref["parse-honu"]} @dispatch[@litchar{#hash}]{starts a hash table; see @secref["parse-hashtable"]} @dispatch[@litchar{#reader}]{starts a reader extension use; see @secref["parse-reader"]} @dispatch[@litchar{#lang}]{starts a reader extension use; see @secref["parse-reader"]} @dispatch[@elem{@litchar{#}@kleeneplus{@nonterm{digit@sub{10}}}@litchar{(}}]{starts a vector; see @secref["parse-vector"]} @dispatch[@elem{@litchar{#}@kleeneplus{@nonterm{digit@sub{10}}}@litchar{[}}]{starts a vector; see @secref["parse-vector"]} @dispatch[@elem{@litchar{#}@kleeneplus{@nonterm{digit@sub{10}}}@litchar["{"]}]{starts a vector; see @secref["parse-vector"]} @dispatch[@graph-defn[]]{binds a graph tag; see @secref["parse-graph"]} @dispatch[@graph-ref[]]{uses a graph tag; see @secref["parse-graph"]} @dispatch[@italic{otherwise}]{starts a symbol; see @secref["parse-symbol"]} ] @section[#:tag "parse-symbol"]{Reading Symbols} @guideintro["symbols"]{the syntax of symbols} A sequence that does not start with a delimiter or @litchar{#} is parsed as either a symbol or a number (see @secref["parse-number"]), except that @litchar{.} by itself is never parsed as a symbol or character (unless the @scheme[read-accept-dot] parameter is set to @scheme[#f]). A @as-index{@litchar{#%}} also starts a symbol. A successful number parse takes precedence over a symbol parse. @index["case-sensitivity"]{@index["case-insensitive"]{When}} the @scheme[read-case-sensitive] @tech{parameter} is set to @scheme[#f], characters in the sequence that are not quoted by @litchar{|} or @litchar{\} are first case-normalized. If the reader encounters @as-index{@litchar{#ci}}, @litchar{#CI}, @litchar{#Ci}, or @litchar{#cI}, then it recursively reads the following datum in case-insensitive mode. If the reader encounters @as-index{@litchar{#cs}}, @litchar{#CS}, @litchar{#Cs}, or @litchar{#cS}, then recursively reads the following datum in case-sensitive mode. @reader-examples[#:symbols? #f "Apple" "Ap#ple" "Ap ple" "Ap| |ple" "Ap\\ ple" "#ci Apple" "#ci |A|pple" "#ci \\Apple" "#ci#cs Apple" "#%Apple" ] @section[#:tag "parse-number"]{Reading Numbers} @guideintro["numbers"]{the syntax of numbers} @section-index["numbers" "parsing"] A sequence that does not start with a delimiter is parsed as a number when it matches the following grammar case-insenstively for @nonterm{number@sub{10}} (decimal), where @metavar{n} is a meta-meta-variable in the grammar. A number is optionally prefixed by an exactness specifier, @as-index{@litchar{#e}} (exact) or @as-index{@litchar{#i}} (inexact), which specifies its parsing as an exact or inexact number; see @secref["numbers"] for information on number exactness. As the non-terminal names suggest, a number that has no exactness specifier and matches only @nunterm{inexact-number} is normally parsed as an inexact number, otherwise it is parsed as an exact number. If the @scheme[read-decimal-as-inexact] @tech{parameter} is set to @scheme[#f], then all numbers without an exactness specifier are instead parsed as exact. If the reader encounters @as-index{@litchar{#b}} (binary), @as-index{@litchar{#o}} (octal), @as-index{@litchar{#d}} (decimal), or @as-index{@litchar{#x}} (hexadecimal), it must be followed by a sequence that is terminated by a delimiter or end-of-file, and that matches the @nonterm{general-number@sub{2}}, @nonterm{general-number@sub{8}}, @nonterm{general-number@sub{10}}, or @nonterm{general-number@sub{16}} grammar, respectively. An @nunterm{exponent-mark} in an inexact number serves both to specify an exponent and specify a numerical precision. If single-precision IEEE floating point is supported (see @secref["numbers"]), the marks @litchar{f} and @litchar{s} specifies single-precision. Otherwise, or with any other mark, double-precision IEEE floating point is used. @BNF[(list @nunterm{number} @BNF-alt[@nunterm{exact} @nunterm{inexact}]) (list @nunterm{exact} @BNF-alt[@nunterm{exact-integer} @nunterm{exact-rational}] @nunterm{exact-complex}) (list @nunterm{exact-integer} @BNF-seq[@optional{@nonterm{sign}} @nunterm{digits}]) (list @nunterm{digits} @kleeneplus{@nunterm{digit}}) (list @nunterm{exact-rational} @BNF-seq[@nunterm{exact-integer} @litchar{/} @nunterm{unsigned-integer}]) (list @nunterm{exact-complex} @BNF-seq[@nunterm{exact-rational} @nonterm{sign} @nunterm{exact-rational} @litchar{i}]) (list @nunterm{inexact} @BNF-alt[@nunterm{inexact-real} @nunterm{inexact-complex}]) (list @nunterm{inexact-real} @BNF-seq[@optional{@nonterm{sign}} @nunterm{inexact-normal}] @BNF-seq[@nonterm{sign} @nunterm{inexact-special}]) (list @nunterm{inexact-unsigned} @BNF-alt[@nunterm{inexact-normal} @nunterm{inexact-special}]) (list @nunterm{inexact-normal} @BNF-seq[@nunterm{inexact-simple} @optional{@nunterm{exp-mark} @optional[@nonterm{sign}] @nunterm{digits#}}]) (list @nunterm{inexact-simple} @BNF-seq[@nunterm{digits#} @optional{@litchar{.}} @kleenestar{@litchar{#}}] @BNF-seq[@optional{@nunterm{exact-integer}} @litchar{.} @nunterm{digits#}] @BNF-seq[@nunterm{digits#} @litchar{/} @nunterm{digits#}]) (list @nunterm{inexact-special} @BNF-alt[@litchar{inf.0} @litchar{nan.0}]) (list @nunterm{digits#} @BNF-seq[@kleeneplus{@nunterm{digit}} @kleenestar{@litchar{#}}]) (list @nunterm{inexact-complex} @BNF-seq[@optional{@nunterm{inexact-real}} @nonterm{sign} @nunterm{inexact-unsigned} @litchar{i}] @BNF-seq[@nunterm{inexact-real} @litchar["@"] @nunterm{inexact-real}]) (list @nonterm{sign} @BNF-alt[@litchar{+} @litchar{-}]) (list @nonterm{digit@sub{16}} @BNF-alt[@nonterm{digit@sub{10}} @litchar{a} @litchar{b} @litchar{c} @litchar{d} @litchar{e} @litchar{f}]) (list @nonterm{digit@sub{10}} @BNF-alt[@nonterm{digit@sub{8}} @litchar{8} @litchar{9}]) (list @nonterm{digit@sub{8}} @BNF-alt[@nonterm{digit@sub{2}} @litchar{2} @litchar{3} @litchar{4} @litchar{5} @litchar{6} @litchar{7}]) (list @nonterm{digit@sub{2}} @BNF-alt[@litchar{0} @litchar{1}]) (list @nonterm{exp-mark@sub{16}} @BNF-alt[@litchar{s} @litchar{d} @litchar{l}]) (list @nonterm{exp-mark@sub{10}} @BNF-alt[@nonterm{exp-mark@sub{16}} @litchar{e} @litchar{f}]) (list @nonterm{exp-mark@sub{8}} @nonterm{exp-mark@sub{10}}) (list @nonterm{exp-mark@sub{2}} @nonterm{exp-mark@sub{10}}) (list @nunterm{general-number} @BNF-seq[@optional{@nonterm{exactness}} @nunterm{number}]) (list @nonterm{exactness} @BNF-alt[@litchar{#e} @litchar{#i}]) ] @reader-examples[ "-1" "1/2" "1.0" "1+2i" "1/2+3/4i" "1.0+3.0e7i" "2e5" "#i5" "#e2e5" "#x2e5" "#b101" ] @section[#:tag "parse-boolean"]{Reading Booleans} A @as-index{@litchar{#t}} or @as-index{@litchar{#T}} is the complete input syntax for the boolean constant true, and @as-index{@litchar{#f}} or @as-index{@litchar{#F}} is the complete input syntax for the boolean constant false. @section[#:tag "parse-pair"]{Reading Pairs and Lists} When the reader encounters a @as-index{@litchar{(}}, @as-index{@litchar{[}}, or @as-index{@litchar["{"]}, it starts parsing a pair or list; see @secref["pairs"] for information on pairs and lists. To parse the pair or list, the reader recursively reads data until a matching @as-index{@litchar{)}}, @as-index{@litchar{]}}, or @as-index{@litchar["}"]} (respectively) is found, and it specially handles a delimited @litchar{.}. Pairs @litchar{()}, @litchar{[]}, and @litchar{{}} are treated the same way, so the remainder of this section simply uses ``parentheses'' to mean any of these pair. If the reader finds no delimited @as-index{@litchar{.}} among the elements between parentheses, then it produces a list containing the results of the recursive reads. If the reader finds two data between the matching parentheses that are separated by a delimited @litchar{.}, then it creates a pair. More generally, if it finds two or more data where the last is preceeded by a delimited @litchar{.}, then it constructs nested pairs: the next-to-last element is paired with the last, then the third-to-last is paired with that pair, and so on. If the reader finds three or more data between the matching parentheses, and if a pair of delimited @litchar{.}s surrounds any other than the first and last elements, the result is a list containing the element surrounded by @litchar{.}s as the first element, followed by the others in the read order. This convention supports a kind of @as-index{infix} notation at the reader level. In @scheme[read-syntax] mode, the recursive reads for the pair/list elements are themselves in @scheme[read-syntax] mode, so that the result is list or pair of syntax objects that it itself wrapped as a syntax object. If the reader constructs nested pairs because the input included a single delimited @litchar{.}, then only the innermost pair and outtermost pair are wrapped as syntax objects. Whether wrapping a pair or list, if the pair or list was formed with @litchar{[} and @litchar{]}, then a @indexed-scheme['paren-shape] property is attached to the result with the value @scheme[#\[]; if the list or pair was formed with @litchar["{"] and @litchar["}"], then a @scheme['paren-shape] property is attached to the result with the value @scheme[#\{]. If a delimited @litchar{.} appears in any other configuration, then the @exnraise[exn:fail:read]. Similarly, if the reader encounters a @litchar{)}, @litchar{]}, or @litchar["}"] that does not end a list being parsed, then the @exnraise[exn:fail:read]. @reader-examples[ "()" "(1 2 3)" "{1 2 3}" "[1 2 3]" "(1 (2) 3)" "(1 . 3)" "(1 . (3))" "(1 . 2 . 3)" ] If the @scheme[read-square-bracket-as-paren] @tech{parameter} is set to @scheme[#f], then when then reader encounters @litchar{[} and @litchar{]}, the @exnraise{exn:fail:read}. Similarly, If the @scheme[read-curly-brace-as-paren] @tech{parameter} is set to @scheme[#f], then when then reader encounters @litchar["{"] and @litchar["}"], the @exnraise{exn:fail:read}. If the @scheme[read-accept-dot] @tech{parameter} is set to @scheme[#f], then a delimited @litchar{.} triggers an @scheme[exn:fail:read] exception. If the @scheme[read-accept-infix-dot] @tech{parameter} is set to @scheme[#f], then multiple delimited @litchar{.}s trigger an @scheme[exn:fail:read] exception, instead of the infix conversion. @section[#:tag "parse-string"]{Reading Strings} @guideintro["strings"]{the syntax of strings} @section-index["strings" "parsing"] When the reader encounters @as-index{@litchar{"}}, it begins parsing characters to form a string. The string continues until it is terminated by another @litchar{"} (that is not escaped by @litchar{\}). Within a string sequence, the following escape sequences are recognized: @itemize[ @item{@as-index{@litchar{\a}}: alarm (ASCII 7)} @item{@as-index{@litchar{\b}}: backspace (ASCII 8)} @item{@as-index{@litchar{\t}}: tab (ASCII 9)} @item{@as-index{@litchar{\n}}: linefeed (ASCII 10)} @item{@as-index{@litchar{\v}}: vertical tab (ASCII 11)} @item{@as-index{@litchar{\f}}: formfeed (ASCII 12)} @item{@as-index{@litchar{\r}}: return (ASCII 13)} @item{@as-index{@litchar{\e}}: escape (ASCII 27)} @item{@as-index{@litchar{\"}}: double-quotes (without terminating the string)} @item{@as-index{@litchar{\'}}: quote (i.e., the backslash has no effect)} @item{@as-index{@litchar{\\}}: backslash (i.e., the second is not an escaping backslash)} @item{@as-index{@litchar{\}@kleenerange[1 3]{@nonterm{digit@sub{8}}}}: Unicode for the octal number specified by @kleenerange[1 3]{digit@sub{8}} (i.e., 1 to 3 @nonterm{digit@sub{8}}s) where each @nonterm{digit@sub{8}} is @litchar{0}, @litchar{1}, @litchar{2}, @litchar{3}, @litchar{4}, @litchar{5}, @litchar{6}, or @litchar{7}. A longer form takes precedence over a shorter form, and the resulting octal number must be between 0 and 255 decimal, otherwise the @exnraise[exn:fail:read].} @item{@as-index{@litchar{\x}@kleenerange[1 2]{@nonterm{digit@sub{16}}}}: Unicode for the hexadecimal number specified by @kleenerange[1 2]{@nonterm{digit@sub{16}}}, where each @nonterm{digit@sub{16}} is @litchar{0}, @litchar{1}, @litchar{2}, @litchar{3}, @litchar{4}, @litchar{5}, @litchar{6}, @litchar{7}, @litchar{8}, @litchar{9}, @litchar{a}, @litchar{b}, @litchar{c}, @litchar{d}, @litchar{e}, or @litchar{f} (case-insensitive). The longer form takes precedence over the shorter form.} @item{@as-index{@litchar{\u}@kleenerange[1 4]{@nonterm{digit@sub{16}}}}: like @litchar{\x}, but with up to four hexadecimal digits (longer sequences take precedence). The resulting hexadecimal number must be a valid argument to @scheme[integer->char], otherwise the @exnraise[exn:fail:read].} @item{@as-index{@litchar{\U}@kleenerange[1 8]{@nonterm{digit@sub{16}}}}: like @litchar{\x}, but with up to eight hexadecimal digits (longer sequences take precedence). The resulting hexadecimal number must be a valid argument to @scheme[integer->char], otherwise the @exnraise[exn:fail:read].} @item{@as-index{@litchar{\}@nonterm{newline}}: elided, where @nonterm{newline} is either a linefeed, carriage return, or carriage return--linefeed combination. This convetion allows single-line strings to span multiple lines in the source.} ] If the reader encounteres any other use of a backslash in a string constant, the @exnraise[exn:fail:read]. @guideintro["bytestrings"]{the syntax of byte strings} @section-index["byte strings" "parsing"] A string constant preceded by @litchar{#} is parsed as a byte-string. (That is, @as-index{@litchar{#"}} starts a byte-string literal.) See @secref["bytestrings"] for information on byte strings. Byte string constants support the same escape sequences as character strings, except @litchar{\u} and @litchar{\U}. When the reader encounters @as-index{@litchar{#<<}}, it starts parsing a @pidefterm{here string}. The characters following @litchar{#<<} until a newline character define a terminator for the string. The content of the string includes all characters between the @litchar{#<<} line and a line whose only content is the specified terminator. More precisely, the content of the string starts after a newline following @litchar{#<<}, and it ends before a newline that is followed by the terminator, where the terminator is itself followed by either a newline or end-of-file. No escape sequences are recognized between the starting and terminating lines; all characters are included in the string (and terminator) literally. A return character is not treated as a line separator in this context. If no characters appear between @litchar{#<<} and a newline or end-of-file, or if an end-of-file is encountered before a terminating line, the @exnraise[exn:fail:read]. @reader-examples[ "\"Apple\"" "\"\\x41pple\"" "\"\\\"Apple\\\"\"" "\"\\\\\"" "#\"Apple\"" ] @section[#:tag "parse-quote"]{Reading Quotes} When the reader enounters @as-index{@litchar{'}}, it recursively reads one datum, and forms a new list containing the symbol @scheme['quote] and the following datum. This convention is mainly useful for reading Scheme code, where @scheme['s] can be used as a shorthand for @scheme[(code:quote s)]. Several other sequences are recognized and transformed in a similar way. Longer prefixes take precedence over short ones: @read-quote-table[(list @litchar{'} @scheme[quote]) (list @as-index{@litchar{`}} @scheme[quasiquote]) (list @as-index{@litchar{,}} @scheme[unquote]) (list @as-index{@litchar[",@"]} @scheme[unquote-splicing]) (list @as-index{@litchar{#'}} @scheme[syntax]) (list @as-index{@litchar{#`}} @scheme[quasisyntax]) (list @as-index{@litchar{#,}} @scheme[unsyntax]) (list @as-index{@litchar["#,@"]} @scheme[unsyntax-splicing])] @reader-examples[ "'apple" "`(1 ,2)" ] The @litchar{`}, @litchar{,}, and @litchar[",@"] forms are disabled when the @scheme[read-accept-quasiquote] @tech{parameter} is set to @scheme[#f], in which case the @exnraise[exn:fail:read], instead. @section[#:tag "parse-comment"]{Reading Comments} A @as-index{@litchar{;}} starts a line comment. When the reader encounters @litchar{;}, it skips past all characters until the next linefeed (ASCII 10), carriage return (ASCII 13), next-line (Unicode @scheme[#x0085]), line-separator (Unicode @scheme[#x2028]), or line-separator (Unicode @scheme[#x2028]) character. A @as-index{@litchar{#|}} starts a nestable block comment. When the reader encounters @litchar{#|}, it skips past all characters until a closing @litchar{|#}. Pairs of matching @litchar{#|} and @litchar{|#} can be nested. A @as-index{@litchar{#;}} starts an S-expression comment. When the reader encounters @litchar{#;}, it recursively reads one datum, and then discards it (continuing on to the next datum for the read result). A @as-index{@litchar{#! }} (which is @litchar{#!} followed by a space) or @as-index{@litchar{#!/}} starts a line comment that can be continued to the next line by ending a line with @litchar{\}. This form of comment normally appears at the beginning of a Unix script file. @reader-examples[ "; comment" "#| a |# 1" "#| #| a |# 1 |# 2" "#;1 2" "#!/bin/sh" "#! /bin/sh" ] @section[#:tag "parse-vector"]{Reading Vectors} When the reader encounters a @litchar{#(}, @litchar{#[}, or @litchar["#{"], it starts parsing a vector; see @secref["vectors"] for information on vectors. The @litchar{#[} and @litchar["#{"] forms can be disabled through the @scheme[read-square-bracket-as-paren] and @scheme[read-curly-brace-as-paren] @tech{parameters}. The elements of the vector are recursively read until a matching @litchar{)}, @litchar{]}, or @litchar["}"] is found, just as for lists (see @secref["parse-pair"]). A delimited @litchar{.} is not allowed among the vector elements. An optional vector length can be specified between the @litchar{#} and @litchar{(}, @litchar{[}, or @litchar["{"]. The size is specified using a sequence of decimal digits, and the number of elements provided for the vector must be no more than the specified size. If fewer elements are provided, the last provided element is used for the remaining vector slots; if no elements are provided, then @scheme[0] is used for all slots. In @scheme[read-syntax] mode, each recursive read for the vector elements is also in @scheme[read-syntax] mode, so that the wrapped vector's elements are also wraped as syntax objects, and the vector is immutable. @reader-examples[ "#(1 apple 3)" "#3(\"apple\" \"banana\")" "#3()" ] @section[#:tag "parse-structure"]{Reading Structures} When the reader encounters a @litchar{#s(}, @litchar{#s[}, or @litchar["#s{"], it starts parsing an instance of a @tech{prefab} @tech{structure type}; see @secref["structures"] for information on @tech{structure types}. The @litchar{#s[} and @litchar["#s{"] forms can be disabled through the @scheme[read-square-bracket-as-paren] and @scheme[read-curly-brace-as-paren] @tech{parameters}. The elements of the structure are recursively read until a matching @litchar{)}, @litchar{]}, or @litchar["}"] is found, just as for lists (see @secref["parse-pair"]). A single delimited @litchar{.} is not allowed among the elements, but two @litchar{.}s can be used as in a list for an infix conversion. The first element is used as the structure descriptor, and it must have the form (when quoted) of a possible argument to @scheme[make-prefab-struct]; in the simplest case, it can be a symbol. The remaining elements correspond to field values within the structure. In @scheme[read-syntax] mode, the structure type must not have any mutable fields. The structure's elements are read in @scheme[read-syntax] mode, so that the wrapped structure's elements are also wraped as syntax objects. If the first structure element is not a valid @tech{prefab} structure type key, or if the number of provided fields is inconsistent with the indicated @tech{prefab} structure type, the @exnraise[exn:fail:read]. @section[#:tag "parse-hashtable"]{Reading Hash Tables} A @as-index{@litchar{#hash}} starts an immutable hash-table constant with key matching based on @scheme[equal?]. The characters after @litchar{hash} must parse as a list of pairs (see @secref["parse-pair"]) with a specific use of delimited @litchar{.}: it must appear between the elements of each pair in the list, and nowhere in the sequence of list elements. The first element of each pair is used as the key for a table entry, and the second element of each pair is the associated value. A @as-index{@litchar{#hasheq}} starts a hash table like @litchar{#hash}, except that it constructs a hash table based on @scheme[eq?] instead of @scheme[equal?]. A @as-index{@litchar{#hasheqv}} starts a hash table like @litchar{#hash}, except that it constructs a hash table based on @scheme[eqv?] instead of @scheme[equal?]. In all cases, the table is constructed by adding each mapping to the hash table from left to right, so later mappings can hide earlier mappings if the keys are equivalent. @reader-examples[ #:example-note @elem{, where @scheme[make-...] stands for @scheme[make-immutable-hash]} "#hash()" "#hasheq()" "#hash((\"a\" . 5))" "#hasheq((a . 5) (b . 7))" "#hasheq((a . 5) (a . 7))" ] @section[#:tag "parse-box"]{Reading Boxes} When the reader encounters a @as-index{@litchar{#&}}, it starts parsing a box; see @secref["boxes"] for information on boxes. The content of the box is determined by recursively reading the next datum. In @scheme[read-syntax] mode, the recursive read for the box content is also in @scheme[read-syntax] mode, so that the wrapped box's content is also wraped as a syntax object, and the box is immutable. @reader-examples[ "#&17" ] @section[#:tag "parse-character"]{Reading Characters} @guideintro["characters"]{the syntax of characters} A @as-index{@litchar{#\}} starts a character constant, which has one of the following forms: @itemize[ @item{ @litchar{#\nul} or @litchar{#\null}: NUL (ASCII 0)@nonalpha[]} @item{ @litchar{#\backspace}: backspace (ASCII 8)@nonalpha[]} @item{ @litchar{#\tab}: tab (ASCII 9)@nonalpha[]} @item{ @litchar{#\newline} or @litchar{#\linefeed}: linefeed (ASCII 10)@nonalpha[]} @item{ @litchar{#\vtab}: vertical tab (ASCII 11)@nonalpha[]} @item{ @litchar{#\page}: page break (ASCII 12)@nonalpha[]} @item{ @litchar{#\return}: carriage return (ASCII 13)@nonalpha[]} @item{ @litchar{#\space}: space (ASCII 32)@nonalpha[]} @item{ @litchar{#\rubout}: delete (ASCII 127)@nonalpha[]} @item{@litchar{#\}@kleenerange[1 3]{@nonterm{digit@sub{8}}}: Unicode for the octal number specified by @kleenerange[1 3]{@nonterm{digit@sub{8}}}, as in string escapes (see @secref["parse-string"]).} @item{@litchar{#\x}@kleenerange[1 2]{@nonterm{digit@sub{16}}}: Unicode for the hexadecimal number specified by @kleenerange[1 2]{@nonterm{digit@sub{16}}}, as in string escapes (see @secref["parse-string"]).} @item{@litchar{#\u}@kleenerange[1 4]{@nonterm{digit@sub{16}}}: like @litchar{#\x}, but with up to four hexadecimal digits.} @item{@litchar{#\U}@kleenerange[1 6]{@nonterm{digit@sub{16}}}: like @litchar{#\x}, but with up to six hexadecimal digits.} @item{@litchar{#\}@nonterm{c}: the character @nonterm{c}, as long as @litchar{#\}@nonterm{c} and the characters following it do not match any of the previous cases, and as long as the character after @nonterm{c} is not @schemelink[char-alphabetic?]{alphabetic}.} ] @reader-examples[ "#\\newline" "#\\n" "#\\u3BB" "#\\\u3BB" ] @section[#:tag "parse-keyword"]{Reading Keywords} A @as-index{@litchar{#:}} starts a keyword. The parsing of a keyword after the @litchar{#:} is the same as for a symbol, including case-folding in case-insensitive mode, except that the part after @litchar{#:} is never parsed as a number. @reader-examples[ "#:Apple" "#:1" ] @section[#:tag "parse-regexp"]{Reading Regular Expressions} A @as-index{@litchar{#rx}} or @as-index{@litchar{#px}} starts a regular expression. The characters immediately after @litchar{#rx} or @litchar{#px} must parse as a string or byte string (see @secref["parse-string"]). A @litchar{#rx} prefix starts a regular expression as would be constructed by @scheme[regexp], @litchar{#px} as constructed by @scheme[pregexp], @litchar{#rx#} as constructed by @scheme[byte-regexp], and @litchar{#px#} as constructed by @scheme[byte-pregexp]. @reader-examples[ "#rx\".*\"" "#px\"[\\\\s]*\"" "#rx#\".*\"" "#px#\"[\\\\s]*\"" ] @section[#:tag "parse-graph"]{Reading Graph Structure} @section-index["#0="] @section-index["#0#"] A @graph-defn[] tags the following datum for reference via @graph-ref[], which allows the reader to produce a datum that have graph structure. For a specific @graph-tag[] in a single read result, each @graph-ref[] reference is replaced by the datum read for the corresponding @graph-defn[]; the definition @graph-defn[] also produces just the datum after it. A @graph-defn[] definition can appear at most once, and a @graph-defn[] definition must appear before a @graph-ref[] reference appears, otherwise the @exnraise[exn:fail:read]. If the @scheme[read-accept-graph] parameter is set to @scheme[#f], then @graph-defn[] or @graph-ref[] triggers a @scheme[exn:fail:read] exception. Although a comment parsed via @litchar{#;} discards the datum afterward, @graph-defn[] definitions in the discarded datum still can be referenced by other parts of the reader input, as long as both the comment and the reference are grouped together by some other form (i.e., some recursive read); a top-level @litchar{#;} comment neither defines nor uses graph tags for other top-level forms. @reader-examples[ "(#1=100 #1# #1#)" "#0=(1 . #0#)" ] @local-table-of-contents[] @section[#:tag "parse-reader"]{Reading via an Extension} When the reader encounters @as-index{@litchar{#reader}}, it loads an external reader procedure and applies it to the current input stream. The reader recursively reads the next datum after @litchar{#reader}, and passes it to the procedure that is the value of the @scheme[current-reader-guard] @tech{parameter}; the result is used as a module path. The module path is passed to @scheme[dynamic-require] with either @scheme['read] or @scheme['read-syntax] (depending on whether the reader is in @scheme[read] or @scheme[read-syntax] mode). The arity of the resulting procedure determines whether it accepts extra source-location information: a @schemeidfont{read} procedure accepts either one argument (an input port) or five, and a @schemeidfont{read-syntax} procedure accepts either two arguments (a name value and an input port) or six. In either case, the four optional arguments are the module path (as a syntax object in @scheme[read-syntax] mode) followed by the line (positive exact integer or @scheme[#f]), column (non-negative exact integer or @scheme[#f]), and position (positive exact integer or @scheme[#f]) of the start of the @litchar{#reader} form. The input port is the one whose stream contained @litchar{#reader}, where the stream position is immediately after the recursively-read module path. The procedure should produce a datum result. If the result is a syntax object in @scheme[read] mode, then it is converted to a datum using @scheme[syntax->datum]; if the result is not a syntax object in @scheme[read-syntax] mode, then it is converted to one using @scheme[datum->syntax]. See also @secref["reader-procs"] for information on the procedure's results. If the @scheme[read-accept-reader] @tech{parameter} is set to @scheme[#f], then if the reader encounters @litchar{#reader}, the @exnraise[exn:fail:read]. @guideintro["hash-lang"]{@schememodfont["#lang"]} The @as-index{@litchar{#lang}} reader form is similar to @litchar{#reader}, but more constrained: the @litchar{#lang} must be followed by a single space (ASCII 32), and then a non-empty sequence of alphanumeric ASCII, @litchar{+}, @litchar{-}, @litchar{_}, and/or @litchar{/} characters terminated by @schemelink[char-whitespace?]{whitespace} or an end-of-file. The sequence must not start or end with @litchar{/}. A sequence @litchar{#lang }@nonterm{name} is equivalent to @litchar{#reader }@nonterm{name}@litchar{/lang/reader}. Note that the terminating whitespace (if any) is not consumed before the external reading procedure is called. @margin-note{The @schememodname[syntax/module-reader] library provides a domain-specific language for writing language readers.} Finally, @as-index{@litchar{#!}} is a synonym for @litchar{#lang} followed by a space when @litchar{#!} is followed by alphanumeric ASCII, @litchar{+}, @litchar{-}, or @litchar{_}. Use of this synonym is discouraged except as needed to construct programs that conform to certain grammars, such as that of R@superscript{6}RS @cite["Sperber07"]. By convention, @litchar{#lang} normally appears at the beginning of a file, possibly after comment forms, to specify the syntax of a module. @subsection{S-Expression Reader Language} @defmodulelang[s-exp] The @scheme[s-exp] ``language'' is a kind of meta-language. It @scheme[read]s the S-expression that follows @litchar{#lang s-exp} and uses it as the language of a @scheme[module] form. It also reads all remaining S-expressions until an end-of-file, using them for the body of the generated @scheme[module]. That is, @schememod[ s-exp _module-path _form ... ] is equivalent to @schemeblock[ (module _name _module-path _form ...) ] @subsection{Chaining Reader Language} @defmodulelang[reader] The @scheme[reader] ``language'' is a kind of meta-language. It @scheme[read]s the S-expression that follows @litchar{#lang reader} and uses it as a module path (relative to the module being read) that effectively takes the place of @schememodname[reader]. In other words, the @schememodname[reader] meta-language generalizes the syntax of the module specified after @hash-lang[] to be a module path, and without the implicit addition of @litchar{/lang/reader} to the path. @section[#:tag "parse-honu"]{Honu Parsing} See @|HonuManual| for information on @litchar{#hx} and @litchar{#sx}.