#!/bin/sh #| exec mred -u "$0" "$@" |# (module through-tests mzscheme (require (lib "shared.ss" "stepper" "private") (lib "model.ss" "stepper" "private") (lib "model-settings.ss" "stepper" "private") (lib "match.ss") (lib "sexp-diff.ss" "tests" "utils") "module-elaborator.ss" ;; for xml testing: ;; (lib "class.ss") ;; (all-except (lib "xml-snipclass.ss" "xml") snip-class) ;; (all-except (lib "scheme-snipclass.ss" "xml") snip-class) ;; (lib "mred.ss" "mred") ) (define test-directory (find-system-path 'temp-dir)) (define (stream-ify expr-list iter) (lambda () (if (null? expr-list) (iter eof void) (iter (expand (car expr-list)) (stream-ify (cdr expr-list) iter))))) (define (warn who fmt . args) (fprintf (current-error-port) "~a: ~a\n" who (apply format fmt args))) (define (test-sequence-core namespace-spec teachpack-specs render-settings track-inferred-names? in-port expected-steps) (let* ([current-error-display-handler (error-display-handler)] [all-steps (append expected-steps '((finished-stepping)))] [receive-result (lambda (result) (if (null? all-steps) (warn 'test-sequence "ran out of expected steps. Given result: ~v" result) (begin (unless (compare-steps result (car all-steps)) (warn 'test-sequence "steps do not match\n given: ~v\nexpected: ~v" result (car all-steps))) ;; uncomment to see successful steps, too: #;(when (compare-steps result (car all-steps)) (printf "test-sequence: steps match for expected result: ~v\n" (car all-steps))) (set! all-steps (cdr all-steps)))))] [program-expander (lambda (init iter) (init) (let* ([exps (let read-loop () (let ([expr (read-syntax "test-input" in-port)]) (if (eof-object? expr) null (cons expr (read-loop)))))] [exprs (wrap-in-module exps namespace-spec teachpack-specs)]) ((stream-ify exprs iter))))]) (let/ec escape (parameterize ([error-escape-handler (lambda () (escape (void)))]) (go program-expander receive-result render-settings track-inferred-names? ;; language level: 'testing ;; run-in-drscheme thunk: (lambda (thunk) (thunk))))) (error-display-handler current-error-display-handler))) (define (test-sequence namespace-spec teachpack-specs render-settings track-inferred-names? exp-str expected-steps) (let ([filename (build-path test-directory "stepper-test")]) (call-with-output-file filename (lambda (port) (fprintf port "~a" exp-str)) 'truncate) (printf "testing string: ~v\n" exp-str) (letrec ([port (open-input-file filename)]) (test-sequence-core namespace-spec teachpack-specs render-settings track-inferred-names? port expected-steps)))) (define (lang-level-test-sequence namespace-spec rs track-inferred-names?) (lambda args (apply test-sequence namespace-spec `() rs track-inferred-names? args))) (define (make-multi-level-test-sequence level-fns) (lambda args (for-each (lambda (fn) (apply fn args)) level-fns))) (define test-mz-sequence (lang-level-test-sequence 'mzscheme fake-mz-render-settings #f)) (define test-beginner-sequence (lang-level-test-sequence `(lib "htdp-beginner.ss" "lang") fake-beginner-render-settings #t)) (define test-beginner-wla-sequence (lang-level-test-sequence `(lib "htdp-beginner-abbr.ss" "lang") fake-beginner-wla-render-settings #t)) (define test-intermediate-sequence (lang-level-test-sequence `(lib "htdp-intermediate.ss" "lang") fake-intermediate-render-settings #t)) (define test-intermediate/lambda-sequence (lang-level-test-sequence `(lib "htdp-intermediate-lambda.ss" "lang") fake-intermediate/lambda-render-settings #f)) (define test-advanced-sequence (lang-level-test-sequence `(lib "htdp-advanced.ss" "lang") fake-advanced-render-settings #f)) (define test-upto-int/lam (make-multi-level-test-sequence (list test-beginner-sequence test-beginner-wla-sequence test-intermediate-sequence test-intermediate/lambda-sequence))) (define test-upto-int (make-multi-level-test-sequence (list test-beginner-sequence test-beginner-wla-sequence test-intermediate-sequence))) (define test-bwla-to-int/lam (make-multi-level-test-sequence (list test-beginner-wla-sequence test-intermediate-sequence test-intermediate/lambda-sequence))) (define test-both-ints (make-multi-level-test-sequence (list test-intermediate-sequence test-intermediate/lambda-sequence))) (define test-lazy-sequence (lang-level-test-sequence `(lib "lazy.ss" "lazy") fake-mz-render-settings #f)) ;; mutate these to values you want to examine in the repl: (define bell-jar-specimen-1 #f) (define bell-jar-specimen-2 #f) ;; so->d/finished : call (syntax-object->hilite-datum stx #t). For finished ;; steps, we want to ignore the highlight but not the xml boxes (and other ;; future stuff?) (define (so->d/finished stx) (syntax-object->hilite-datum stx #t)) ;; (-> step-result? sexp? boolean?) (define (compare-steps actual expected) (match expected [`(before-after ,before ,after) (and (before-after-result? actual) (andmap (lambda (fn expected) (unless (list? (fn actual)) (warn 'compare-steps "not a list: ~v" (syntax-object->hilite-datum (fn actual)))) (noisy-equal? (map syntax-object->hilite-datum (fn actual)) expected)) (list before-after-result-pre-exps before-after-result-post-exps) (list before after)))] [`(error ,err-msg) (and (error-result? actual) (equal? err-msg (error-result-err-msg actual)))] [`(before-error ,before ,err-msg) (and (before-error-result? actual) (and (noisy-equal? (map syntax-object->hilite-datum (before-error-result-pre-exps actual)) before) (equal? err-msg (before-error-result-err-msg actual))))] [`(finished-stepping) (finished-stepping? actual)] [else (begin (warn 'compare-steps "unexpected expected step type: ~v" expected) #f)])) ;; noisy-equal? : (any any . -> . boolean) ;; like equal?, but prints a noisy error message (define (noisy-equal? a b) (if (equal? a b) #t (begin (warn 'not-equal? "~e =/= ~e\n here's the diff: ~e" a b (sexp-diff a b)) #f))) ;; (-> (listof sexp) (listof sexp) boolean?) (define (compare-finished finished-exps expected-exps) (and (>= (length finished-exps) (length expected-exps)) (andmap (lambda (x y) (if (equal? x y) #t (begin (warn 'not-equal? "~e =/= ~e\n here's the diff: ~e" x y (sexp-diff x y)) #f))) (list-tail finished-exps (- (length finished-exps) (length expected-exps))) expected-exps))) ;; (-> (listof sexp) string?) (define (exprs->string exprs) (apply string-append (cdr (apply append (map (lambda (x) (list " " (format "~s" x))) exprs))))) (define list-of-tests null) (define (add-test name thunk) (when (assq name list-of-tests) (error 'add-test "name ~v is already in the list of tests" name)) (set! list-of-tests (append list-of-tests (list (list name thunk))))) (define-syntax (t1 stx) (syntax-case stx () [(_ name test) (syntax/loc stx (add-test `name (lambda () test)))])) ;; Eli can't help adding his own convenient but complex syntax here (JBC, 2006-11-14): (define-syntax (t stx) (define (split l) (let loop ([l l] [r '()]) (cond [(null? l) (reverse! r)] [(symbol? (car l)) (loop (cdr l) (cons (car l) r))] [(or (null? r) (not (pair? (car r)))) (loop (cdr l) (cons (list (car l)) r))] [else (append! (car r) (list (car l))) (loop (cdr l) r)]))) (define (process-hilites s) (syntax-case s () [(x) (eq? #\{ (syntax-property s 'paren-shape)) (with-syntax ([x (process-hilites #'x)]) #'(hilite x))] [(x . y) (let* ([x0 #'x] [y0 #'y] [x1 (process-hilites #'x)] [y1 (process-hilites #'y)]) (if (and (eq? x0 x1) (eq? y0 y1)) s (with-syntax ([x x1] [y y1]) #'(x . y))))] [_else s])) (define (process stx) (split (map (lambda (s) (if (and (identifier? s) (memq (syntax-e s) '(:: -> error:))) (syntax-e s) (process-hilites s))) (syntax->list stx)))) (define (parse l) (syntax-case l (::) [(fst :: rest ...) (cons #'fst (let loop ([rest #'(rest ...)]) (syntax-case rest (:: -> error:) [(error: (err)) (list #'(error err))] [() (list #'(finished-stepping))] [(x -> y) (list #'(before-after x y) #'(finished-stepping))] [(x -> error: (err)) (list #'(before-error x err))] [(x -> y :: . rest) (cons #'(before-after x y) (loop #'rest))] [(x -> y -> . rest) (cons #'(before-after x y) (loop #'(y -> . rest)))])))])) (syntax-case stx (::) [(_ name tester . rest) (with-syntax ([(exprs arg ...) (parse (process #'rest))]) (quasisyntax/loc stx (add-test `name (lambda () (tester ;printf "exprs = ~s\n args = ~s\n" (exprs->string `exprs) `(arg ...))))))])) (define (run-all-tests) (for-each (lambda (test-pair) (printf "running test: ~v\n" (car test-pair)) ((cadr test-pair))) list-of-tests)) (define (run-test name) (printf "running test: ~v\n" name) ((cadr (or (assq name list-of-tests) (error 'run-test "test not found: ~e" name))))) (define (run-tests names) (for-each run-test names)) (t mz1 test-mz-sequence (for-each (lambda (x) x) '(1 2 3)) :: {(for-each (lambda (x) x) `(1 2 3))} -> (... {1} ...) :: ... -> (... {2} ...) :: ... -> (... {3} ...) :: ... -> {(void)}) ;; new test case language: ;; an expected is (listof step) ;; a step is one of ;; (before-after exps exps) ;; (before-error exps str) ;; (error str) ;; (finished) ;; an exps is a list of s-expressions with certain non-hygienic extensions: ;; - (hilite X) denotes the s-expression X, only highlighted ;; - any denotes any s-expression (matches everything) ;; ... in principle, these could collide with programs that use the ;; identifiers 'hilite' and 'any', but since I'm writing the test cases, ;; I can alpha-rename manually to avoid collisions. ;; on top of this, the `t' macro makes things easier to write, informally: ;; (t name ; symbolic name for the test ;; tester ; tester function that gets used ;; expr1 ... :: expr2 ... -> expr3 ...) ;; means that `expr1 ...' is the original, the first step is ;; (before-after (expr2 ...) (expr3 ...)) ;; Cute stuff: ;; * use `::' to mark a new step that doesn't continue the previous one ;; e1 :: e2 -> e3 -> e4 ;; is the same as ;; e1 :: e2 -> e3 :: e3 -> e4 ;; * use `-> error: "..."' for a `before-error' step ;; * use `:: error: "..."' for an `error' step ;; * a `finished-stepping' is added if no error was specified ;; * a `{...}' is replaced with `(hilite ...)' (t mz-app test-mz-sequence (+ 3 4) :: {(+ 3 4)} -> {7}) (t mz-app2 test-mz-sequence ((lambda (x) (+ x 3)) 4) :: {((lambda (x) (+ x 3)) 4)} -> {(+ 4 3)} -> {7}) (t mz-if test-mz-sequence (if 3 4 5) :: {(if 3 4 5)} -> {4}) (t simple-if test-upto-int/lam (if true false true) :: {(if true false true)} -> {false}) (t if-bool test-upto-int/lam (if (if true false true) false true) :: (if {(if true false true)} false true) -> (if {false} false true) :: {(if false false true)} -> {true}) (t direct-app test-mz-sequence ((lambda (x) x) 3) :: {((lambda (x) x) 3)} -> {3}) ; (test-mz-sequence "((lambda (x) x) (begin (+ 3 4) (+ 4 5)))" ; `((before-after ((begin (hilite (+ 3 4)) (+ 4 5))) ; ((begin (hilite 7) (+ 4 5)))) ; (before-after ((hilite (begin 7 (+ 4 5)))) ((hilite (+ 4 5)))) ; (before-after ((hilite (+ 4 5))) ((hilite 9))) ; (finished-stepping))) (t curried test-mz-sequence ((lambda (a) (lambda (b) (+ a b))) 14) :: {((lambda (a) (lambda (b) (+ a b))) 14)} -> {(lambda (b) (+ 14 b))}) (t case-lambda test-mz-sequence ((case-lambda ((a) 3) ((b c) (+ b c))) 5 6) :: {((case-lambda ((a) 3) ((b c) (+ b c))) 5 6)} -> {(+ 5 6)} -> {11}) (t 2armed-if test-mz-sequence (if 3 4) :: {(if 3 4)} -> {4}) ;(test-mz-sequence "((call-with-current-continuation call-with-current-continuation) (call-with-current-continuation call-with-current-continuation))" ; `((before-after (((hilite ,h-p) (call-with-current-continuation call-with-current-continuation))) ((call-with-current-continuation call-with-current-continuation)) ; (((hilite ,h-p) (call-with-current-continuation call-with-current-continuation))) ((lambda args ...))) ; (before-after (((lambda args ...) (hilite ,h-p))) ((call-with-current-continuation call-with-current-continuation)) ; (((lambda args ...) (hilite ,h-p))) ((lambda args ...))))) ;(test-mz-sequence '(begin (define g 3) g) ; `((before-after ((hilite ,h-p)) (g) ; ((hilite ,h-p)) 3))) ;(syntax-object->datum (cadr (annotate-expr test2 'mzscheme 0 (lambda (x) x)))) (t top-def test-upto-int/lam (define a (+ 3 4)) :: (define a {(+ 3 4)}) -> (define a {7})) (t top-def-ref test-upto-int/lam (define a 6) a :: (define a 6) {a} -> (define a 6) {6}) (t app test-upto-int/lam (+ 4 129) :: {(+ 4 129)} -> {133}) (t if test-upto-int/lam (if true 3 4) :: {(if true 3 4)} -> {3}) (let ([def `(define (a3 x) (if true x x))]) (t top-app test-upto-int ,def (a3 false) :: ,def {(a3 false)} -> ,def {(if true false false)} -> ,def {false}) ;; (t top-app/lam test-intermediate/lambda-sequence ,def (a3 false) :: ,def ({a3} false) -> ,def ({(lambda (x) (if true x x))} false) :: ,def {((lambda (x) (if true x x)) false)} -> ,def {(if true false false)} -> ,def {false})) (let ([defs `((define (a12 x) (+ x 9)) (define b12 a12))]) (t top-interref test-intermediate-sequence ,@defs (b12 12) :: ,@defs ({b12} 12) -> ,@defs ({a12} 12) :: ,@defs {(a12 12)} -> ,@defs {(+ 12 9)} -> ,@defs {21})) ;;;;;;;;;;;; ;; ;; OR / AND ;; ;;;;;;;;;;;;;. (t or1 test-upto-int/lam (or false true false) :: {(or false true false)} -> {true}) (t and1 test-upto-int/lam (and true false true) :: {(and true false true)} -> {false}) (t and2 test-upto-int/lam (and true (if true true false)) :: (and true {(if true true false)}) -> (and true {true}) :: {(and true true)} -> {true}) (let ([def `(define (b2 x) (and true x))]) (t and3 test-upto-int ,def (b2 false) :: ,def {(b2 false)} -> ,def {(and true false)} -> ,def {false}) ;; (t and3/lam test-intermediate/lambda-sequence (define (b2 x) (and true x)) (b2 false) :: ,def ({b2} false) -> ,def ({(lambda (x) (and true x))} false) :: ,def {((lambda (x) (and true x)) false)} -> ,def {(and true false)} -> ,def {false})) (let ([defs `((define a1 true) (define (b1 x) (and a1 true x)))]) (t and4 test-upto-int ,@defs (b1 false) :: ,@defs {(b1 false)} -> ,@defs {(and a1 true false)} :: ,@defs (and {a1} true false) -> ,@defs (and {true} true false) :: ,@defs {(and true true false)} -> ,@defs {false}) ;; (t and4/lam test-intermediate/lambda-sequence ,@defs (b1 false) :: ,@defs ({b1} false) -> ,@defs ({(lambda (x) (and a1 true x))} false) :: ,@defs {((lambda (x) (and a1 true x)) false)} -> ,@defs {(and a1 true false)} :: ,@defs (and {a1} true false) -> ,@defs (and {true} true false) :: ,@defs {(and true true false)} -> ,@defs {false})) (t bad-and test-upto-int/lam (and true 1) :: {(and true 1)} -> error: "and: question result is not true or false: 1") ;;;;;;;;;;;;; ;; ;; COND ;; ;;;;;;;;;;;;; (t cond1 test-upto-int/lam (cond [false 4] [false 5] [true 3]) :: {(cond (false 4) (false 5) (true 3))} -> {(cond (false 5) (true 3))} -> {(cond (true 3))} -> {3}) (t cond-else test-upto-int/lam (cond [false 4] [else 9]) :: {(cond [false 4] [else 9])} -> {(cond [else 9])} -> {9}) (t cond-andelse test-upto-int/lam (cond [true 3] [else (and true true)]) :: {(cond (true 3) (else (and true true)))} -> {3}) (t bad-cond test-upto-int/lam (cond) :: error: "cond: expected a question--answer clause after `cond', but nothing's there") (t just-else test-upto-int/lam (cond [else 3]) :: {(cond (else 3))} -> {3}) (t nested-cond test-upto-int/lam (cond [else (cond [else 3])]) :: {(cond (else (cond (else 3))))} -> {(cond (else 3))} -> {3}) ;; reconstruct can't handle 'begin' #; (test-mz-sequence "(cond [#f 3 4] [#t (+ 3 4) (+ 4 9)])" `((before-after ((hilite (cond (#f 3 4) (#t (+ 3 4) (+ 4 9))))) ((hilite (cond (#t (+ 3 4) (+ 4 9)))))) (before-after ((hilite (cond (#t (+ 3 4) (+ 4 9))))) ((hilite (begin (+ 3 4) (+ 4 9))))) (before-after ((begin (hilite (+ 3 4)) (+ 4 9))) ((begin (hilite 7) (+ 4 9)))) (before-after ((hilite (begin 7 (+ 4 9)))) ((hilite (+ 4 9)))) (before-after ((hilite (+ 4 9))) ((hilite 13))) (finished-stepping))) (t nested-cond2 test-upto-int/lam (cond [false 3] [else (cond [true 4])]) :: {(cond (false 3) (else (cond (true 4))))} -> {(cond (else (cond (true 4))))} -> {(cond (true 4))} -> {4}) (t top-ref test-intermediate-sequence (define a4 +) a4 :: (define a4 +) {a4} -> (define a4 +) {+}) (t top-ref2 test-intermediate-sequence (define (f123 x) (+ x 13)) f123 ::) (t top-ref3 test-intermediate/lambda-sequence (define (f123 x) (+ x 13)) f123 :: (define (f123 x) (+ x 13)) {f123} -> (define (f123 x) (+ x 13)) {(lambda (x) (+ x 13))}) (let* ([defs1 `((define (a x) (+ x 5)) (define b a))] [defs2 (append defs1 `((define c a)))]) (t top-ref4 test-intermediate-sequence ,@defs1 (define c b) (c 3) :: ,@defs1 (define c {b}) -> ,@defs1 (define c {a}) :: ,@defs2 ({c} 3) -> ,@defs2 ({a} 3) :: ,@defs2 {(a 3)} -> ,@defs2 {(+ 3 5)} -> ,@defs2 {8})) (t define-struct test-upto-int/lam (define-struct mamba (rhythm tempo)) (mamba-rhythm (make-mamba 24 2)) :: (define-struct mamba (rhythm tempo)) {(mamba-rhythm (make-mamba 24 2))} -> (define-struct mamba (rhythm tempo)) {24}) (let ([def `(define a5 (lambda (a5) (+ a5 13)))]) (t lam-def test-upto-int ,def (a5 23) :: ,def {(a5 23)} -> ,def {(+ 23 13)} -> ,def {36})) (let ([def `(define a5 (lambda (a5) (+ a5 13)))]) (t lam-def/lam test-intermediate/lambda-sequence ,def (a5 23) :: ,def ({a5} 23) -> ,def ({(lambda (a5) (+ a5 13))} 23) :: ,def {((lambda (a5) (+ a5 13)) 23)} -> ,def {(+ 23 13)} -> ,def {36})) (let ([def `(define a_0 (lambda (x) (+ x 5)))]) (t lam-let test-intermediate-sequence (let ([a (lambda (x) (+ x 5))]) (a 6)) :: {(let ([a (lambda (x) (+ x 5))]) (a 6))} -> {(define a_0 (lambda (x) (+ x 5)))} {(a_0 6)} :: ,def {(a_0 6)} -> ,def {(+ 6 5)} -> ,def {11})) (let ([defs `((define c1 false) (define (d2 x) (or c1 false x)))]) (t whocares test-upto-int ,@defs (d2 false) :: ,@defs {(d2 false)} -> ,@defs {(or c1 false false)} :: ,@defs (or {c1} false false) -> ,@defs (or {false} false false) :: ,@defs {(or false false false)} -> ,@defs {false})) (let ([defs `((define c1 false) (define (d2 x) (or c1 false x)))]) (t whocares/lam test-intermediate/lambda-sequence ,@defs (d2 false) :: ,@defs ({d2} false) -> ,@defs ({(lambda (x) (or c1 false x))} false) :: ,@defs {((lambda (x) (or c1 false x)) false)} -> ,@defs {(or c1 false false)} :: ,@defs (or {c1} false false) -> ,@defs (or {false} false false) :: ,@defs {(or false false false)} -> ,@defs {false})) (let ([defs `((define (f x) (+ (g x) 10)) (define (g x) (- x 22)))]) (t forward-ref test-upto-int ,@defs (f 13) :: ,@defs {(f 13)} -> ,@defs {(+ (g 13) 10)} :: ,@defs (+ {(g 13)} 10) -> ,@defs (+ {(- 13 22)} 10) -> ,@defs (+ {-9} 10) :: ,@defs {(+ -9 10)} -> ,@defs {1})) (let ([defs `((define (f x) (+ (g x) 10)) (define (g x) (- x 22)))]) (t forward-ref/lam test-intermediate/lambda-sequence ,@defs (f 13) :: ,@defs ({f} 13) -> ,@defs ({(lambda (x) (+ (g x) 10))} 13) :: ,@defs {((lambda (x) (+ (g x) 10)) 13)} -> ,@defs {(+ (g 13) 10)} :: ,@defs (+ ({g} 13) 10) -> ,@defs (+ ({(lambda (x) (- x 22))} 13) 10) :: ,@defs (+ {((lambda (x) (- x 22)) 13)} 10) -> ,@defs (+ {(- 13 22)} 10) -> ,@defs (+ {-9} 10) :: ,@defs {(+ -9 10)} -> ,@defs {1})) (t bad-cons test-upto-int/lam (cons 1 2) :: {(cons 1 2)} -> error: "cons: second argument must be of type , given 1 and 2") (t1 prims (test-beginner-sequence "(cons 3 (cons 1 empty)) (list 1 2 3) (define-struct aa (b)) (make-aa 3)" (let ([defs `((cons 3 (cons 1 empty)))]) `((before-after (,@defs (hilite (list 1 2 3))) (,@defs (hilite (cons 1 (cons 2 (cons 3 empty)))))) (finished-stepping))))) (t1 prims/non-beginner (test-bwla-to-int/lam "(cons 3 (cons 1 empty)) (list 1 2 3) (define-struct aa (b)) (make-aa 3)" `((before-after ((cons 3 (hilite (cons 1 empty)))) ((cons 3 (hilite (list 1))))) (before-after ((hilite (cons 3 (list 1)))) ((hilite (list 3 1)))) (finished-stepping)))) (t1 map (test-mz-sequence "(map (lambda (x) x) (list 3 4 5))" `((before-after ((map (lambda (x) x) (hilite (list 3 4 5)))) ((map (lambda (x) x) (hilite `( 3 4 5))))) (before-after ((hilite (map (lambda (x) x) `(3 4 5)))) ((... (hilite 3) ...))) (before-after (...) ((... (hilite 4) ...))) (before-after (...) ((... (hilite 5) ...))) (before-after (...) ((hilite `(3 4 5)))) (finished-stepping)))) (t1 quoted-list (test-beginner-wla-sequence "'(3 4 5)" `((finished-stepping)))) (t1 quoted-list-display (test-bwla-to-int/lam "(define (f x) '((a))) (+ 3 4)" `((before-after ((define (f x) (list (list 'a))) (hilite (+ 3 4))) ((define (f x) (list (list 'a))) (hilite 7))) (finished-stepping)))) ;;;;;;;;;;;;; ;; ;; QUASIQUOTE ;; ;;;;;;;;;;;;;. ; note: we currently punt on trying to unwind quasiquote. (t1 qq1 (test-beginner-wla-sequence "`(3 4 ,(+ 4 5))" `((before-after ((cons 3 (cons 4 (cons (hilite (+ 4 5)) empty)))) ((cons 3 (cons 4 (cons (hilite 9) empty))))) (before-after ((cons 3 (cons 4 (hilite (cons 9 empty))))) ((cons 3 (cons 4 (hilite (list 9)))))) (before-after ((cons 3 (hilite (cons 4 (list 9))))) ((cons 3 (hilite (list 4 9))))) (before-after ((hilite (cons 3 (list 4 9)))) ((hilite (list 3 4 9)))) (finished-stepping)))) (t1 qq-splice (test-beginner-wla-sequence "`(3 ,@(list (+ 3 4) 5) 6)" `((before-after ((cons 3 (append (list (hilite (+ 3 4)) 5) (cons 6 empty)))) ((cons 3 (append (list (hilite 7) 5) (cons 6 empty))))) (before-after ((cons 3 (append (list 7 5) (hilite (cons 6 empty))))) ((cons 3 (append (list 7 5) (list 6))))) (before-after ((cons 3 (hilite (append (list 7 5) (list 6))))) ((cons 3 (hilite (list 7 5 6))))) (before-after ((hilite (cons 3 (list 7 5 6)))) ((hilite (list 3 7 5 6)))) (finished-stepping)))) ;;;;;;;;;;;;; ;; ;; LET ;; ;;;;;;;;;;;;; (t1 let1 (test-both-ints "(let ([a 3]) 4)" `((before-after ((hilite (let ([a 3]) 4))) ((hilite (define a_0 3)) (hilite 4))) (finished-stepping)))) (t1 let2 (test-both-ints "(let ([a (+ 4 5)] [b (+ 9 20)]) (+ a b))" `((before-after ((hilite (let ([a (+ 4 5)] [b (+ 9 20)]) (+ a b)))) ((hilite (define a_0 (+ 4 5))) (hilite (define b_0 (+ 9 20))) (hilite (+ a_0 b_0)))) (before-after ((define a_0 (hilite (+ 4 5))) (define b_0 (+ 9 20)) (+ a_0 b_0)) ((define a_0 (hilite 9)) (define b_0 (+ 9 20)) (+ a_0 b_0))) (before-after ((define a_0 9) (define b_0 (hilite (+ 9 20))) (+ a_0 b_0)) ((define a_0 9) (define b_0 (hilite 29)) (+ a_0 b_0))) (before-after ((define a_0 9) (define b_0 29) (+ (hilite a_0) b_0)) ((define a_0 9) (define b_0 29) (+ (hilite 9) b_0))) (before-after ((define a_0 9) (define b_0 29) (+ 9 (hilite b_0))) ((define a_0 9) (define b_0 29) (+ 9 (hilite 29)))) (before-after ((define a_0 9) (define b_0 29) (hilite (+ 9 29))) ((define a_0 9) (define b_0 29) (hilite 38))) (finished-stepping)))) (t1 let-scoping1 (test-intermediate-sequence "(let ([a 3]) (let ([a (lambda (x) (+ a x))]) (a 4)))" (let ([d1 `(define a_0 3)] [d2 `(define a_1 (lambda (x) (+ a_0 x)))]) `((before-after ((hilite (let ([a 3]) (let ([a (lambda (x) (+ a x))]) (a 4))))) ((hilite (define a_0 3)) (hilite (let ([a (lambda (x) (+ a_0 x))]) (a 4))))) (before-after (,d1 (hilite (let ([a (lambda (x) (+ a_0 x))]) (a 4)))) (,d1 (hilite (define a_1 (lambda (x) (+ a_0 x)))) (hilite (a_1 4)))) (before-after (,d1 ,d2 (hilite (a_1 4))) (,d1 ,d2 (hilite (+ a_0 4)))) (before-after (,d1 ,d2 (+ (hilite a_0) 4)) (,d1 ,d2 (+ (hilite 3) 4))) (before-after (,d1 ,d2 (hilite (+ 3 4))) (,d1 ,d2 (hilite 7))) (finished-stepping))))) (t1 let-scoping2 (test-intermediate/lambda-sequence "(let ([a 3]) (let ([a (lambda (x) (+ a x))]) (a 4)))" (let* ([d1 `(define a_0 3)] [defs `(,d1 (define a_1 (lambda (x) (+ a_0 x))))]) `((before-after ((hilite (let ([a 3]) (let ([a (lambda (x) (+ a x))]) (a 4))))) ((hilite (define a_0 3)) (hilite (let ([a (lambda (x) (+ a_0 x))]) (a 4))))) (before-after (,d1 (hilite (let ([a (lambda (x) (+ a_0 x))]) (a 4)))) (,d1 (hilite (define a_1 (lambda (x) (+ a_0 x)))) (hilite (a_1 4)))) (before-after (,@defs ((hilite a_1) 4)) (,@defs ((hilite (lambda (x) (+ a_0 x))) 4))) (before-after (,@defs (hilite ((lambda (x) (+ a_0 x)) 4))) (,@defs (hilite (+ a_0 4)))) (before-after (,@defs (+ (hilite a_0) 4)) (,@defs (+ (hilite 3) 4))) (before-after (,@defs (hilite (+ 3 4))) (,@defs (hilite 7))) (finished-stepping))))) (t1 let-scoping3 (test-intermediate-sequence "(define a12 3) (define c12 19) (let ([a12 13] [b12 a12]) (+ b12 a12 c12))" (let* ([defs1 `((define a12 3) (define c12 19))] [defs2 `(,@defs1 (define a12_0 13))] [defs3 `(,@defs2 (define b12_0 3))]) `((before-after (,@defs1 (hilite (let ([a12 13] [b12 a12]) (+ b12 a12 c12)))) (,@defs1 (hilite (define a12_0 13)) (hilite (define b12_0 a12)) (hilite (+ b12_0 a12_0 c12)))) (before-after (,@defs2 (define b12_0 (hilite a12)) (+ b12_0 a12_0 c12)) (,@defs2 (define b12_0 (hilite 3)) (+ b12_0 a12_0 c12))) (before-after (,@defs3 (+ (hilite b12_0) a12_0 c12)) (,@defs3 (+ (hilite 3) a12_0 c12))) (before-after (,@defs3 (+ 3 (hilite a12_0) c12)) (,@defs3 (+ 3 (hilite 13) c12))) (before-after (,@defs3 (+ 3 13 (hilite c12))) (,@defs3 (+ 3 13 (hilite 19)))) (before-after (,@defs3 (hilite (+ 3 13 19))) (,@defs3 (hilite 35))) (finished-stepping))))) (t1 let-lifting1 (test-intermediate-sequence "(let ([a (lambda (x) (+ x 14))] [b (+ 3 4)]) 9)" `((before-after ((hilite (let ([a (lambda (x) (+ x 14))] [b (+ 3 4)]) 9))) ((hilite (define a_0 (lambda (x) (+ x 14)))) (hilite (define b_0 (+ 3 4))) (hilite 9))) (before-after ((define a_0 (lambda (x) (+ x 14))) (define b_0 (hilite (+ 3 4))) 9) ((define a_0 (lambda (x) (+ x 14))) (define b_0 (hilite 7)) 9)) (finished-stepping)))) (t1 let-deriv (test-intermediate-sequence "(define (f g) (let ([gp (lambda (x) (/ (- (g (+ x 0.1)) (g x)) 0.001))]) gp)) (define gprime (f cos))" (let ([defs `((define (f g) (let ([gp (lambda (x) (/ (- (g (+ x 0.1)) (g x)) 0.001))]) gp)))]) `((before-after (,@defs (define gprime (hilite (f cos)))) (,@defs (define gprime (hilite (let ([gp (lambda (x) (/ (- (cos (+ x 0.1)) (cos x)) 0.001))]) gp))))) (before-after (,@defs (define gprime (hilite (let ([gp (lambda (x) (/ (- (cos (+ x 0.1)) (cos x)) 0.001))]) gp)))) (,@defs (hilite (define gp_0 (lambda (x) (/ (- (cos (+ x 0.1)) (cos x)) 0.001)))) (define gprime (hilite gp_0)))) (finished-stepping))))) (t1 let-assigned (test-intermediate-sequence "(define a (let ([f (lambda (x) (+ x 13))]) f))" `((before-after ((define a (hilite (let ([f (lambda (x) (+ x 13))]) f)))) ((hilite (define f_0 (lambda (x) (+ x 13)))) (define a (hilite f_0)))) (finished-stepping)))) (t1 let-assigned/lam (test-intermediate/lambda-sequence "(define a (let ([f (lambda (x) (+ x 13))]) f))" `((before-after ((define a (hilite (let ([f (lambda (x) (+ x 13))]) f)))) ((hilite (define f_0 (lambda (x) (+ x 13)))) (define a (hilite f_0)))) (before-after ((define f_0 (lambda (x) (+ x 13))) (define a (hilite f_0))) ((define f_0 (lambda (x) (+ x 13))) (define a (hilite (lambda (x) (+ x 13)))))) (finished-stepping)))) ;;;;;;;;;;;;; ;; ;; LET* ;; ;;;;;;;;;;;;; (t1 let*-scoping1 (test-both-ints "(define a 3) (define c 19) (let* ([a 13] [b a]) (+ b a c))" (let* ([defs1 `((define a 3) (define c 19))] [defs2 (append defs1 `((define a_0 13)))] [defs3 (append defs2 `((define b_1 13)))]) `((before-after (,@defs1 (hilite (let* ([a 13] [b a]) (+ b a c)))) (,@defs1 (hilite (define a_0 13)) (hilite (let* ([b a_0]) (+ b a_0 c))))) (before-after (,@defs2 (hilite (let* ([b a_0]) (+ b a_0 c)))) (,@defs2 (hilite (define b_1 a_0)) (hilite (+ b_1 a_0 c)))) (before-after (,@defs2 (define b_1 (hilite a_0)) (+ b_1 a_0 c)) (,@defs2 (define b_1 (hilite 13)) (+ b_1 a_0 c))) (before-after (,@defs3 (+ (hilite b_1) a_0 c)) (,@defs3 (+ (hilite 13) a_0 c))) (before-after (,@defs3 (+ 13 (hilite a_0) c)) (,@defs3 (+ 13 (hilite 13) c))) (before-after (,@defs3 (+ 13 13 (hilite c))) (,@defs3 (+ 13 13 (hilite 19)))) (before-after (,@defs3 (hilite (+ 13 13 19))) (,@defs3 (hilite 45))) (finished-stepping))))) (t1 let*-lifting1 (test-intermediate-sequence "(let* ([a (lambda (x) (+ x 14))] [b (+ 3 4)]) 9)" (let ([defs `((define a_0 (lambda (x) (+ x 14))))]) `((before-after ((hilite (let* ([a (lambda (x) (+ x 14))] [b (+ 3 4)]) 9))) ((hilite (define a_0 (lambda (x) (+ x 14)))) (hilite (let* ([b (+ 3 4)]) 9)))) (before-after (,@defs (hilite (let* ([b (+ 3 4)]) 9))) (,@defs (hilite (define b_1 (+ 3 4))) (hilite 9))) (before-after (,@defs (define b_1 (hilite (+ 3 4))) 9) (,@defs (define b_1 (hilite 7)) 9)) (finished-stepping))))) (t1 let*-deriv (test-intermediate-sequence "(define (f g) (let* ([gp (lambda (x) (/ (- (g (+ x 0.1)) (g x)) 0.001))]) gp)) (define gprime (f cos))" (let ([defs `((define (f g) (let* ([gp (lambda (x) (/ (- (g (+ x 0.1)) (g x)) 0.001))]) gp)))]) `((before-after (,@defs (define gprime (hilite (f cos)))) (,@defs (define gprime (hilite (let* ([gp (lambda (x) (/ (- (cos (+ x 0.1)) (cos x)) 0.001))]) gp))))) (before-after (,@defs (define gprime (hilite (let* ([gp (lambda (x) (/ (- (cos (+ x 0.1)) (cos x)) 0.001))]) gp)))) (,@defs (hilite (define gp_0 (lambda (x) (/ (- (cos (+ x 0.1)) (cos x)) 0.001)))) (define gprime (hilite gp_0)))) (finished-stepping))))) (t1 let/let* (test-both-ints "(let* ([a 9]) (let ([b 6]) a))" `((before-after ((hilite (let* ([a 9]) (let ([b 6]) a)))) ((hilite (define a_0 9)) (hilite (let ([b 6]) a_0)))) (before-after ((define a_0 9) (hilite (let ([b 6]) a_0))) ((define a_0 9) (hilite (define b_1 6)) (hilite a_0))) (before-after ((define a_0 9) (define b_1 6) (hilite a_0)) ((define a_0 9) (define b_1 6) (hilite 9))) (finished-stepping)))) ;;;;;;;;;;;;; ;; ;; LETREC ;; ;;;;;;;;;;;;; (t1 letrec1 (test-intermediate-sequence "(define a 3) (define c 19) (letrec ([a 13] [b a]) (+ b a c))" (let* ([defs1 `((define a 3) (define c 19))] [defs2 (append defs1 `((define a_0 13)))] [defs3 (append defs2 `((define b_0 13)))]) `((before-after (,@defs1 (hilite (letrec ([a 13] [b a]) (+ b a c)))) (,@defs1 (hilite (define a_0 13)) (hilite (define b_0 a_0)) (hilite (+ b_0 a_0 c)))) (before-after (,@defs2 (define b_0 (hilite a_0)) (+ b_0 a_0 c)) (,@defs2 (define b_0 (hilite 13)) (+ b_0 a_0 c))) (before-after (,@defs3 (+ (hilite b_0) a_0 c)) (,@defs3 (+ (hilite 13) a_0 c))) (before-after (,@defs3 (+ 13 (hilite a_0) c)) (,@defs3 (+ 13 (hilite 13) c))) (before-after (,@defs3 (+ 13 13 (hilite c))) (,@defs3 (+ 13 13 (hilite 19)))) (before-after (,@defs3 (hilite (+ 13 13 19))) (,@defs3 (hilite 45))) (finished-stepping))))) (t1 letrec2 (test-intermediate-sequence "(letrec ([a (lambda (x) (+ x 14))] [b (+ 3 4)]) 9)" `((before-after ((hilite (letrec ([a (lambda (x) (+ x 14))] [b (+ 3 4)]) 9))) ((hilite (define a_0 (lambda (x) (+ x 14)))) (hilite (define b_0 (+ 3 4))) (hilite 9))) (before-after ((define a_0 (lambda (x) (+ x 14))) (define b_0 (hilite (+ 3 4))) 9) ((define a_0 (lambda (x) (+ x 14))) (define b_0 (hilite 7)) 9)) (finished-stepping)))) (t1 letrec3 (test-intermediate-sequence "(define (f g) (letrec ([gp (lambda (x) (/ (- (g (+ x 0.1)) (g x)) 0.001))]) gp)) (define gprime (f cos))" (let ([defs `((define (f g) (letrec ([gp (lambda (x) (/ (- (g (+ x 0.1)) (g x)) 0.001))]) gp)))]) `((before-after (,@defs (define gprime (hilite (f cos)))) (,@defs (define gprime (hilite (letrec ([gp (lambda (x) (/ (- (cos (+ x 0.1)) (cos x)) 0.001))]) gp))))) (before-after (,@defs (define gprime (hilite (letrec ([gp (lambda (x) (/ (- (cos (+ x 0.1)) (cos x)) 0.001))]) gp)))) (,@defs (hilite (define gp_0 (lambda (x) (/ (- (cos (+ x 0.1)) (cos x)) 0.001)))) (define gprime (hilite gp_0)))) (finished-stepping))))) ;;;;;;;;;;;;; ;; ;; RECUR ;; ;;;;;;;;;;;;; ;; N.B. : we cheat here. In particular, the rhs of the double-break expression should highlight the whole application, and not ;; just the applied loop identifier. This is hard to fix because we have an application which is initially hidden, but then later ;; not hidden. Fixing this involves parameterizing the unwind by what kind of break it was. Yuck! So we just fudge the test case. (t1 recur (test-advanced-sequence "(define (countdown n) (recur loop ([n n]) (if (= n 0) 13 (loop (- n 1))))) (countdown 2)" (let* ([defs1 `((define (countdown n) (recur loop ([n n]) (if (= n 0) 13 (loop (- n 1))))))] [defs2 (append defs1 `((define (loop_0 n) (if (= n 0) 13 (loop_0 (- n 1))))))]) `((before-after (,@defs1 ((hilite countdown) 2)) (,@defs1 ((hilite (lambda (n) (recur loop ([n n]) (if (= n 0) 13 (loop (- n 1)))))) 2))) (before-after (,@defs1 (hilite ((lambda (n) (recur loop ([n n]) (if (= n 0) 13 (loop (- n 1))))) 2))) (,@defs1 (hilite (recur loop ([n 2]) (if (= n 0) 13 (loop (- n 1))))))) (before-after (,@defs1 (hilite (recur loop ([n 2]) (if (= n 0) 13 (loop (- n 1)))))) (,@defs1 (hilite (define (loop_0 n) (if (= n 0) 13 (loop_0 (- n 1))))) ((hilite loop_0) 2))) (before-after (,@defs2 ((hilite loop_0) 2)) (,@defs2 ((hilite (lambda (n) (if (= n 0) 13 (loop_0 (- n 1))))) 2))) (before-after (,@defs2 (hilite ((lambda (n) (if (= n 0) 13 (loop_0 (- n 1)))) 2))) (,@defs2 (hilite (if (= 2 0) 13 (loop_0 (- 2 1)))))) (before-after (,@defs2 (if (hilite (= 2 0)) 13 (loop_0 (- 2 1)))) (,@defs2 (if (hilite false) 13 (loop_0 (- 2 1))))) (before-after (,@defs2 (hilite (if false 13 (loop_0 (- 2 1))))) (,@defs2 (hilite (loop_0 (- 2 1))))) (before-after (,@defs2 ((hilite loop_0) (- 2 1))) (,@defs2 ((hilite (lambda (n) (if (= n 0) 13 (loop_0 (- n 1))))) (- 2 1)))) (before-after (,@defs2 ((lambda (n) (if (= n 0) 13 (loop_0 (- n 1)))) (hilite (- 2 1)))) (,@defs2 ((lambda (n) (if (= n 0) 13 (loop_0 (- n 1)))) (hilite 1)))) (before-after (,@defs2 (hilite ((lambda (n) (if (= n 0) 13 (loop_0 (- n 1)))) 1))) (,@defs2 (hilite (if (= 1 0) 13 (loop_0 (- 1 1)))))) (before-after (,@defs2 (if (hilite (= 1 0)) 13 (loop_0 (- 1 1)))) (,@defs2 (if (hilite false) 13 (loop_0 (- 1 1))))) (before-after (,@defs2 (hilite (if false 13 (loop_0 (- 1 1))))) (,@defs2 (hilite (loop_0 (- 1 1))))) (before-after (,@defs2 ((hilite loop_0) (- 1 1))) (,@defs2 ((hilite (lambda (n) (if (= n 0) 13 (loop_0 (- n 1))))) (- 1 1)))) (before-after (,@defs2 ((lambda (n) (if (= n 0) 13 (loop_0 (- n 1)))) (hilite (- 1 1)))) (,@defs2 ((lambda (n) (if (= n 0) 13 (loop_0 (- n 1)))) (hilite 0)))) (before-after (,@defs2 (hilite ((lambda (n) (if (= n 0) 13 (loop_0 (- n 1)))) 0))) (,@defs2 (hilite (if (= 0 0) 13 (loop_0 (- 0 1)))))) (before-after (,@defs2 (if (hilite (= 0 0)) 13 (loop_0 (- 0 1)))) (,@defs2 (if (hilite true) 13 (loop_0 (- 0 1))))) (before-after (,@defs2 (hilite (if true 13 (loop_0 (- 0 1))))) (,@defs2 (hilite 13))) (finished-stepping))))) ;;;;;;;;;;;;; ;; ;; LOCAL ;; ;;;;;;;;;;;;; (t1 empty-local (test-both-ints "(local () (+ 3 4))" `((before-after ((hilite (local () (+ 3 4)))) ((hilite (+ 3 4)))) (before-after ((hilite (+ 3 4))) ((hilite 7))) (finished-stepping)))) (t1 local1 (test-both-ints "(local ((define a 3) (define b 8)) 4)" `((before-after ((hilite (local ((define a 3) (define b 8)) 4))) ((hilite (define a_0 3)) (hilite (define b_0 8)) (hilite 4))) (finished-stepping)))) (t1 local2 (test-intermediate-sequence "(local ((define (a x) (+ x 9))) (a 6))" (let ([defs `((define (a_0 x) (+ x 9)))]) `((before-after ((hilite (local ((define (a x) (+ x 9))) (a 6)))) ((hilite (define (a_0 x) (+ x 9))) (hilite (a_0 6)))) (before-after (,@defs (hilite (a_0 6))) (,@defs (hilite (+ 6 9)))) (before-after (,@defs (hilite (+ 6 9))) (,@defs (hilite 15))) (finished-stepping))))) (t1 local3 (test-intermediate/lambda-sequence "(local ((define (a x) (+ x 9))) (a 6))" (let ([defs `((define (a_0 x) (+ x 9)))]) `((before-after ((hilite (local ((define (a x) (+ x 9))) (a 6)))) ((hilite (define (a_0 x) (+ x 9))) (hilite (a_0 6)))) (before-after (,@defs ((hilite a_0) 6)) (,@defs ((hilite (lambda (x) (+ x 9))) 6))) (before-after (,@defs (hilite ((lambda (x) (+ x 9)) 6))) (,@defs (hilite (+ 6 9)))) (before-after (,@defs (hilite (+ 6 9))) (,@defs (hilite 15))) (finished-stepping))))) (t1 local4 (test-intermediate-sequence "(local ((define (a x) (+ x 13))) a)" `((before-after ((hilite (local ((define (a x) (+ x 13))) a))) ((hilite (define (a_0 x) (+ x 13))) (hilite a_0))) (finished-stepping)))) (t1 local5 (test-intermediate/lambda-sequence "(local ((define (a x) (+ x 13))) a)" `((before-after ((hilite (local ((define (a x) (+ x 13))) a))) ((hilite (define (a_0 x) (+ x 13))) (hilite a_0))) (before-after ((define (a_0 x) (+ x 13)) (hilite a_0)) ((define (a_0 x) (+ x 13)) (hilite (lambda (x) (+ x 13))))) (finished-stepping)))) (t1 local-interref1 (test-intermediate-sequence "(local ((define (a x) (+ x 9)) (define b a) (define p (+ 3 4))) (b 1))" (let* ([defs1 `((define (a_0 x) (+ x 9)) (define b_0 a_0))] [defs2 (append defs1 `((define p_0 7)))]) `((before-after ((hilite (local ((define (a x) (+ x 9)) (define b a) (define p (+ 3 4))) (b 1)))) ((hilite (define (a_0 x) (+ x 9))) (hilite (define b_0 a_0)) (hilite (define p_0 (+ 3 4))) (hilite (b_0 1)))) (before-after (,@defs1 (define p_0 (hilite (+ 3 4))) (b_0 1)) (,@defs1 (define p_0 (hilite 7)) (b_0 1))) (before-after (,@defs2 ((hilite b_0) 1)) (,@defs2 ((hilite a_0) 1))) (before-after (,@defs2 (hilite (a_0 1))) (,@defs2 (hilite (+ 1 9)))) (before-after (,@defs2 (hilite (+ 1 9))) (,@defs2 (hilite 10))) (finished-stepping))))) (t1 local-interref2 (test-intermediate/lambda-sequence "(local ((define (a x) (+ x 9)) (define b a) (define p (+ 3 4))) (b 1))" (let* ([defs1 `((define (a_0 x) (+ x 9)))] [defs2 (append defs1 `((define b_0 (lambda (x) (+ x 9)))))] [defs3 (append defs2 `((define p_0 7)))]) `((before-after ((hilite (local ((define (a x) (+ x 9)) (define b a) (define p (+ 3 4))) (b 1)))) ((hilite (define (a_0 x) (+ x 9))) (hilite (define b_0 a_0)) (hilite (define p_0 (+ 3 4))) (hilite (b_0 1)))) (before-after (,@defs1 (define b_0 (hilite a_0)) (define p_0 (+ 3 4)) (b_0 1)) (,@defs1 (define b_0 (hilite (lambda (x) (+ x 9)))) (define p_0 (+ 3 4)) (b_0 1))) (before-after (,@defs2 (define p_0 (hilite (+ 3 4))) (b_0 1)) (,@defs2 (define p_0 (hilite 7)) (b_0 1))) (before-after (,@defs3 ((hilite b_0) 1)) (,@defs3 ((hilite (lambda (x) (+ x 9))) 1))) (before-after (,@defs3 (hilite ((lambda (x) (+ x 9)) 1))) (,@defs3 (hilite (+ 1 9)))) (before-after (,@defs3 (hilite (+ 1 9))) (,@defs3 (hilite 10))) (finished-stepping))))) (t1 local-gprime (test-intermediate-sequence "(define (f12 g) (local ([define (gp x) (/ (- (g (+ x 0.1)) (g x)) 0.1)]) gp)) (define gprime (f12 cos))" (let ([defs `((define (f12 g) (local ([define (gp x) (/ (- (g (+ x 0.1)) (g x)) 0.1)]) gp)))]) `((before-after (,@defs (define gprime (hilite (f12 cos)))) (,@defs (define gprime (hilite (local ([define (gp x) (/ (- (cos (+ x 0.1)) (cos x)) 0.1)]) gp))))) (before-after (,@defs (define gprime (hilite (local ([define (gp x) (/ (- (cos (+ x 0.1)) (cos x)) 0.1)]) gp)))) (,@defs (hilite (define (gp_0 x) (/ (- (cos (+ x 0.1)) (cos x)) 0.1))) (define gprime (hilite gp_0)))) (finished-stepping))))) (t1 local-gprime/lambda (test-intermediate/lambda-sequence "(define (f12 g) (local ([define (gp x) (/ (- (g (+ x 0.1)) (g x)) 0.1)]) gp)) (define gprime (f12 cos))" (let ([defs `((define (f12 g) (local ([define (gp x) (/ (- (g (+ x 0.1)) (g x)) 0.1)]) gp)))]) `((before-after (,@defs (define gprime ((hilite f12) cos))) (,@defs (define gprime ((hilite (lambda (g) (local ([define (gp x) (/ (- (g (+ x 0.1)) (g x)) 0.1)]) gp))) cos)))) (before-after (,@defs (define gprime (hilite ((lambda (g) (local ([define (gp x) (/ (- (g (+ x 0.1)) (g x)) 0.1)]) gp)) cos)))) (,@defs (define gprime (hilite (local ([define (gp x) (/ (- (cos (+ x 0.1)) (cos x)) 0.1)]) gp))))) (before-after (,@defs (define gprime (hilite (local ([define (gp x) (/ (- (cos (+ x 0.1)) (cos x)) 0.1)]) gp)))) (,@defs (hilite (define (gp_0 x) (/ (- (cos (+ x 0.1)) (cos x)) 0.1))) (define gprime (hilite gp_0)))) (before-after (,@defs (define (gp_0 x) (/ (- (cos (+ x 0.1)) (cos x)) 0.1)) (define gprime (hilite gp_0))) (,@defs (define (gp_0 x) (/ (- (cos (+ x 0.1)) (cos x)) 0.1)) (define gprime (hilite (lambda (x) (/ (- (cos (+ x 0.1)) (cos x)) 0.1)))))) (finished-stepping))))) ; test generativity... that is, multiple evaluations of a local should get different lifted names: (t1 local-generative (test-intermediate-sequence "(define (a13 b13 c13) (b13 c13)) (define (f9 x) (local ((define (maker dc) x)) maker)) (define m1 (f9 3)) (a13 (f9 4) 1)" (let* ([defs1 `((define (a13 b13 c13) (b13 c13)) (define (f9 x) (local ((define (maker dc) x)) maker)))] [defs2 (append defs1 `((define (maker_0 dc) 3) (define m1 maker_0)))] [defs3 (append defs2 `((define (maker_1 dc) 4)))]) `((before-after (,@defs1 (define m1 (hilite (f9 3)))) (,@defs1 (define m1 (hilite (local ((define (maker dc) 3)) maker))))) (before-after (,@defs1 (define m1 (hilite (local ((define (maker dc) 3)) maker)))) (,@defs1 (hilite (define (maker_0 dc) 3)) (define m1 (hilite maker_0)))) (before-after (,@defs2 (a13 (hilite (f9 4)) 1)) (,@defs2 (a13 (hilite (local ((define (maker dc) 4)) maker)) 1))) (before-after (,@defs2 (a13 (hilite (local ((define (maker dc) 4)) maker)) 1)) (,@defs2 (hilite (define (maker_1 dc) 4)) (a13 (hilite maker_1) 1))) (before-after (,@defs3 (hilite (a13 maker_1 1))) (,@defs3 (hilite (maker_1 1)))) (before-after (,@defs3 (hilite (maker_1 1))) (,@defs3 (hilite 4))) (finished-stepping))))) (t1 local-generative/lambda (test-intermediate/lambda-sequence "(define (a13 b13 c13) (b13 c13)) (define (f9 x) (local ((define (maker dc) x)) maker)) (define m1 (f9 3)) (a13 (f9 4) 1)" (let* ([defs1 `((define (a13 b13 c13) (b13 c13)) (define (f9 x) (local ((define (maker dc) x)) maker)))] [defs2 (append defs1 `((define (maker_0 dc) 3)))] [defs3 (append defs2 `((define m1 (lambda (dc) 3))))] [defs4 (append defs3 `((define (maker_1 dc) 4)))]) `((before-after (,@defs1 (define m1 ((hilite f9) 3))) (,@defs1 (define m1 ((hilite (lambda (x) (local ((define (maker dc) x)) maker))) 3)))) (before-after (,@defs1 (define m1 (hilite ((lambda (x) (local ((define (maker dc) x)) maker)) 3)))) (,@defs1 (define m1 (hilite (local ((define (maker dc) 3)) maker))))) (before-after (,@defs1 (define m1 (hilite (local ((define (maker dc) 3)) maker)))) (,@defs1 (hilite (define (maker_0 dc) 3)) (define m1 (hilite maker_0)))) (before-after (,@defs2 (define m1 (hilite maker_0))) (,@defs2 (define m1 (hilite (lambda (dc) 3))))) (before-after (,@defs3 ((hilite a13) (f9 4) 1)) (,@defs3 ((hilite (lambda (b13 c13) (b13 c13))) (f9 4) 1))) (before-after (,@defs3 ((lambda (b13 c13) (b13 c13)) ((hilite f9) 4) 1)) (,@defs3 ((lambda (b13 c13) (b13 c13)) ((hilite (lambda (x) (local ((define (maker dc) x)) maker))) 4) 1))) (before-after (,@defs3 ((lambda (b13 c13) (b13 c13)) (hilite ((lambda (x) (local ((define (maker dc) x)) maker)) 4)) 1)) (,@defs3 ((lambda (b13 c13) (b13 c13)) (hilite (local ((define (maker dc) 4)) maker)) 1))) (before-after (,@defs3 ((lambda (b13 c13) (b13 c13)) (hilite (local ((define (maker dc) 4)) maker)) 1)) (,@defs3 (hilite (define (maker_1 dc) 4)) ((lambda (b13 c13) (b13 c13)) (hilite maker_1) 1))) (before-after (,@defs4 ((lambda (b13 c13) (b13 c13)) (hilite maker_1) 1)) (,@defs4 ((lambda (b13 c13) (b13 c13)) (hilite (lambda (dc) 4)) 1))) (before-after (,@defs4 (hilite ((lambda (b13 c13) (b13 c13)) (lambda (dc) 4) 1))) (,@defs4 (hilite ((lambda (dc) 4) 1)))) (before-after (,@defs4 (hilite ((lambda (dc) 4) 1))) (,@defs4 (hilite 4))) (finished-stepping))))) ;;;;;;;;;;;;; ;; ;; Reduction of Lambda in int/lambda ;; ;;;;;;;;;;;;; (t1 int/lam1 (test-intermediate/lambda-sequence "(define f ((lambda (x) x) (lambda (x) x))) (f f)" (let ([defs `((define f (lambda (x) x)))]) `((before-after ((define f (hilite ((lambda (x) x) (lambda (x) x))))) ((define f (hilite (lambda (x) x))))) (before-after (,@defs ((hilite f) f)) (,@defs ((hilite (lambda (x) x)) f))) (before-after (,@defs ((lambda (x) x) (hilite f))) (,@defs ((lambda (x) x) (hilite (lambda (x) x))))) (before-after (,@defs (hilite ((lambda (x) x) (lambda (x) x)))) (,@defs (hilite (lambda (x) x)))) (finished-stepping))))) (t1 int/lam2 (test-intermediate/lambda-sequence "(define f (if false (lambda (x) x) (lambda (x) x))) (f f)" (let ([defs `((define f (lambda (x) x)))]) `((before-after ((define f (hilite (if false (lambda (x) x) (lambda (x) x))))) ((define f (hilite (lambda (x) x))))) (before-after (,@defs ((hilite f) f)) (,@defs ((hilite (lambda (x) x)) f))) (before-after (,@defs ((lambda (x) x) (hilite f))) (,@defs ((lambda (x) x) (hilite (lambda (x) x))))) (before-after (,@defs (hilite ((lambda (x) x) (lambda (x) x)))) (,@defs (hilite (lambda (x) x)))) (finished-stepping))))) ; ; ;;;;;;;;;;;;; ; ;; ; ;; TIME ; ;; ; ;;;;;;;;;;;;; ; (t1 time (test-intermediate-sequence "(time (+ 3 4))" `((before-after ((hilite (+ 3 4))) ((hilite 7))) (finished-stepping)))) ;;;;;;;;;;;;;;;; ;; ;; XML (uses MrEd) ;; ;;;;;;;;;;;;;;;; ;; NOT UPDATED FOR NEW TEST CASE FORMAT #; (t1 ddj-screenshot (test-mz-sequence (define-syntax (xml stx) (letrec ([process-xexpr (lambda (xexpr) (syntax-case xexpr (lmx lmx-splice) [(lmx-splice unquoted) #`(unquote-splicing unquoted)] [(lmx unquoted) #`(unquote unquoted)] [(tag ([attr val] ...) . sub-xexprs) (identifier? #`tag) #`(tag ([attr val] ...) #,@(map process-xexpr (syntax->list #`sub-xexprs)))] [(tag . sub-xexprs) (identifier? #`tag) #`(tag () #,@(map process-xexpr (syntax->list #`sub-xexprs)))] [str (string? (syntax-e #`str)) xexpr]))]) (syntax-case stx () [(_ xexpr) #`(quasiquote #,(process-xexpr #`xexpr))]))) (xml (article (header (author "John Clements") (title (if (< 3 4) (xml "No Title Available") (get-title)))) (text "More Sample Text"))) '((before-after-finished ((define-syntax (xml stx) (letrec ([process-xexpr (lambda (xexpr) (syntax-case xexpr (lmx lmx-splice) [(lmx-splice unquoted) #`(unquote-splicing unquoted)] [(lmx unquoted) #`(unquote unquoted)] [(tag ([attr val] ...) . sub-xexprs) (identifier? #`tag) #`(tag ([attr val] ...) #,@(map process-xexpr (syntax->list #`sub-xexprs)))] [(tag . sub-xexprs) (identifier? #`tag) #`(tag () #,@(map process-xexpr (syntax->list #`sub-xexprs)))] [str (string? (syntax-e #`str)) xexpr]))]) (syntax-case stx () [(_ xexpr) #`(quasiquote #,(process-xexpr #`xexpr))])))) ((xml )) ((xml (a ([a "x"]) "ab" "hdo" "hon"))))))) #; (define (test-xml-sequence namespace-spec render-settings track-inferred-names? spec expected-steps) (letrec ([port (open-input-text-editor (construct-text spec))]) (test-sequence-core namespace-spec render-settings track-inferred-names? port expected-steps))) #; (define (construct-text spec) (let ([new-text (instantiate text% ())]) (for-each (match-lambda [`(xml-box ,@(xmlspec ...)) (send new-text insert (construct-xml-box xmlspec))] [(? string? text) (send new-text insert text)]) spec) new-text)) #; (define (test-xml-beginner-sequence spec expected) (test-xml-sequence `(lib "htdp-beginner.ss" "lang") fake-beginner-render-settings #t spec expected)) #; (t1 xml-box1 (test-xml-beginner-sequence `((xml-box "3")) `((finished-stepping)))) #; (t1 xml-box2 (text-xml-beginnner-sequence `("(cdr (cdr " (xml-box "a b") "))") `((before-after ((cdr (cdr (xml-box "a b")))))))) ;(t1 filled-rect-image ; (test-upto-int-lam "(image-width (filled-rect 10 10 'blue))" ; `((before-after ((image-width (hilite (filled-rect 10 10 'blue)))) ((image-width (hilite ))))))) ; add image test: (image-width (filled-rect 10 10 'blue)) ; ;;;;;;;;;;;;; ; ;; ; ;; TEACHPACK TESTS ; ;; ; ;;;;;;;;;;;;; ; ; as you can see, many teachpack tests work only in mred: ;; (require (lib "mred.ss" "mred")) (define test-teachpack-sequence (lambda (teachpack-specs expr-string expected-results) ;(let ([new-custodian (make-custodian)]) ; (parameterize ([current-custodian new-custodian]) ; (parameterize ([current-eventspace (make-eventspace)]) (test-sequence `(lib "htdp-beginner.ss" "lang") teachpack-specs fake-beginner-render-settings #t expr-string expected-results) ;)) ; (custodian-shutdown-all new-custodian)) )) ; uses set-render-settings! ;(reconstruct:set-render-settings! fake-beginner-render-settings) ;(test-sequence "(define (check-guess guess target) 'TooSmall) (guess-with-gui check-guess)" ; `((before-after ((hilite ,h-p)) ((guess-with-gui check-guess))) ; (((hilite ,h-p)) (true))) ; `((define (check-guess guess target) 'toosmall) true) ; tp-namespace) #; (t1 teachpack-drawing (test-teachpack-sequence `((lib "draw.ss" "htdp")) "(define (draw-limb i) (cond [(= i 1) (draw-solid-line (make-posn 20 20) (make-posn 20 100) 'blue)] [(= i 0) (draw-solid-line (make-posn (+ 1 10) 10) (make-posn 10 100) 'red)])) (and (start 100 100) (draw-limb 0))" `((before-after-finished ((define (draw-limb i) (cond [(= i 1) (draw-solid-line (make-posn 20 20) (make-posn 20 100) 'blue)] [(= i 0) (draw-solid-line (make-posn (+ 1 10) 10) (make-posn 10 100) 'red)]))) ((and (hilite (start 100 100)) (draw-limb 0))) ((and (hilite true) (draw-limb 0)))) (before-after ((and true (hilite (draw-limb 0)))) ((and true (hilite (cond [(= 0 1) (draw-solid-line (make-posn 20 20) (make-posn 20 100) 'blue)] [(= 0 0) (draw-solid-line (make-posn (+ 1 10) 10) (make-posn 10 100) 'red)]))))) (before-after ((and true (cond [(hilite (= 0 1)) (draw-solid-line (make-posn 20 20) (make-posn 20 100) 'blue)] [(= 0 0) (draw-solid-line (make-posn (+ 1 10) 10) (make-posn 10 100) 'red)]))) ((and true (cond [(hilite false) (draw-solid-line (make-posn 20 20) (make-posn 20 100) 'blue)] [(= 0 0) (draw-solid-line (make-posn (+ 1 10) 10) (make-posn 10 100) 'red)])))) (before-after ((and true (hilite (cond [false (draw-solid-line (make-posn 20 20) (make-posn 20 100) 'blue)] [(= 0 0) (draw-solid-line (make-posn (+ 1 10) 10) (make-posn 10 100) 'red)])))) ((and true (hilite (cond [(= 0 0) (draw-solid-line (make-posn (+ 1 10) 10) (make-posn 10 100) 'red)]))))) (before-after ((and true (cond [(hilite (= 0 0)) (draw-solid-line (make-posn (+ 1 10) 10) (make-posn 10 100) 'red)]))) ((and true (cond [(hilite true) (draw-solid-line (make-posn (+ 1 10) 10) (make-posn 10 100) 'red)])))) (before-after ((and true (hilite (cond [true (draw-solid-line (make-posn (+ 1 10) 10) (make-posn 10 100) 'red)])))) ((and true (hilite (draw-solid-line (make-posn (+ 1 10) 10) (make-posn 10 100) 'red))))) (before-after ((and true (draw-solid-line (make-posn (hilite (+ 1 10)) 10) (make-posn 10 100) 'red))) ((and true (draw-solid-line (make-posn (hilite 11) 10) (make-posn 10 100) 'red)))) (before-after ((and true (hilite (draw-solid-line (make-posn 11 10) (make-posn 10 100) 'red)))) ((and true (hilite true)))) (before-after ((hilite (and true true))) ((hilite true))) (finished-stepping)))) #; (t1 teachpack-name-rendering (test-teachpack-sequence `((file "/Users/clements/plt/teachpack/htdp/draw.ss")) "(start 300 300) (if true (get-key-event) 3)" `((before-after ((hilite (start 300 300))) ((hilite true))) (before-after-finished (true) ((hilite (if true (get-key-event) 3))) ((hilite (get-key-event)))) (before-after ((hilite (get-key-event))) ((hilite false))) (finished-stepping)))) #; (t1 teachpack-hop-names (test-teachpack-sequence `((file "/Users/clements/plt/teachpack/htdp/draw.ss")) "(start 300 300) (define (a x y) (+ 3 4)) (if true (on-key-event a) 3)" `((before-after ((hilite (start 300 300))) ((hilite true))) (before-after-finished (true (define (a x y) (+ 3 4))) ((hilite (if true (on-key-event a) 3))) ((hilite (on-key-event a)))) (before-after ((hilite (on-key-event a))) ((hilite true))) (finished-stepping)))) #; (t1 teachpack-web-interaction (test-teachpack-sequence `((lib "servlet2.ss" "htdp")) "(define (adder go) (inform (number->string (+ (single-query (make-number \"enter 10\")) (single-query (make-number \"enter 20\")))))) (adder true)" `((before-after-finished ((define (adder go) (inform (number->string (+ (single-query (make-number "enter 10")) (single-query (make-number "enter 20"))))))) ((hilite (adder true))) ((hilite (inform (number->string (+ (single-query (make-number "enter 10")) (single-query (make-number "enter 20")))))))) (before-after ((inform (number->string (+ (single-query (hilite (make-number "enter 10"))) (single-query (make-number "enter 20")))))) ; this step looks wrong wrong wrong. ((inform (number->string (+ (single-query (hilite (make-numeric "enter 10"))) (single-query (make-number "enter 20"))))))) (before-after ((inform (number->string (+ (hilite (single-query (make-numeric "enter 10"))) (single-query (make-number "enter 20")))))) ((inform (number->string (+ (hilite 10) (single-query (make-number "enter 20"))))))) (before-after ((inform (number->string (+ 10 (single-query (hilite (make-number "enter 20"))))))) ((inform (number->string (+ 10 (single-query (hilite (make-numeric "enter 20")))))))) (before-after ((inform (number->string (+ 10 (hilite (single-query (make-numeric "enter 20"))))))) ((inform (nut mber->string (+ 10 (hilite 20)))))) (before-after ((inform (number->string (hilite (+ 10 20))))) ((inform (number->string (hilite 30))))) (before-after ((inform (hilite (number->string 30)))) ((inform (hilite "30")))) (before-after ((hilite (inform "30"))) ((hilite true))) (finished-stepping)))) ;;;;;;;;;;;;; ;; ;; Set! ;; ;;;;;;;;;;;;; (t1 top-ref-to-lifted (test-advanced-sequence "(define a (local ((define i1 0) (define (i2 x) i1)) i2)) (+ 3 4)" (let ([defs `((define i1_0 0) (define (i2_0 x) i1_0))]) `((before-after ((define a (hilite (local ((define i1 0) (define (i2 x) i1)) i2)))) ((hilite (define i1_0 0)) (hilite (define (i2_0 x) i1_0)) (define a (hilite i2_0)))) (before-after (,@defs (define a (hilite i2_0))) (,@defs (define a (hilite (lambda (x) i1_0))))) (before-after (,@defs (define a (lambda (x) i1_0)) (hilite (+ 3 4))) (,@defs (define a (lambda (x) i1_0)) (hilite 7))))))) (t1 set! (test-advanced-sequence "(define a 3) (set! a (+ 4 5)) a" `((before-after ((define a 3) (set! a (hilite (+ 4 5)))) ((define a 3) (set! a (hilite 9)))) (before-after ((hilite (define a 3)) (hilite (set! a 9))) ((hilite (define a 9)) (hilite (void)))) (before-after ((define a 9) (void) (hilite a)) ((define a 9) (void) (hilite 9))) (finished-stepping)))) (t1 local-set! (test-advanced-sequence "(define a (local ((define in 14) (define (getter dc) in) (define (modder n) (set! in n))) modder)) (a 15)" (let ([d1 `(define in_0 14)] [d2 `(define (getter_0 dc) in_0)] [d3 `(define (modder_0 n) (set! in_0 n))] [d4 `(define a (lambda (n) (set! in_0 n)))]) `((before-after ((define a (hilite (local ((define in 14) (define (getter dc) in) (define (modder n) (set! in n))) modder)))) ((hilite ,d1) (hilite ,d2) (hilite ,d3) (define a (hilite modder_0)))) (before-after (,d1 ,d2 ,d3 (define a (hilite modder_0))) (,d1 ,d2 ,d3 (define a (hilite (lambda (n) (set! in_0 n)))))) (before-after (,d1 ,d2 ,d3 ,d4 ((hilite a) 15)) (,d1 ,d2 ,d3 ,d4 ((hilite (lambda (n) (set! in_0 n))) 15))) (before-after (,d1 ,d2 ,d3 ,d4 (hilite ((lambda (n) (set! in_0 n)) 15))) (,d1 ,d2 ,d3 ,d4 (hilite (set! in_0 15)))) (before-after ((hilite ,d1) ,d2 ,d3 , d4 (hilite (set! in_0 15))) ((hilite (define in_0 15)) ,d2 ,d3 ,d4 (void))) (finished-stepping))))) ;;;;;;;;;;; ;; ;; BEGIN ;; ;;;;;;;;;;; (t1 simple-begin (test-advanced-sequence "(+ 3 (begin 4 5))" `((before-after ((+ 3 (hilite (begin 4 5)))) ((+ 3 (hilite 5)))) (before-after ((hilite (+ 3 5))) ((hilite 8))) (finished-stepping)))) (t1 begin-onlyvalues (test-advanced-sequence "(+ 3 (begin 4 5 6))" `((before-after ((+ 3 (hilite (begin 4 5 6)))) ((+ 3 (hilite (begin 5 6))))) (before-after ((+ 3 (hilite (begin 5 6)))) ((+ 3 (hilite 6)))) (before-after ((hilite (+ 3 6))) ((hilite 9)))))) (t1 begin (test-advanced-sequence "(begin (+ 3 4) (+ 4 5) (+ 9 8))" `((before-after ((begin (hilite (+ 3 4)) (+ 4 5) (+ 9 8))) ((begin (hilite 7) (+ 4 5) (+ 9 8)))) (before-after ((hilite (begin 7 (+ 4 5) (+ 9 8)))) ((hilite (begin (+ 4 5) (+ 9 8))))) (before-after ((begin (hilite (+ 4 5)) (+ 9 8))) ((begin (hilite 9) (+ 9 8)))) (before-after ((hilite (begin 9 (+ 9 8)))) ((hilite (+ 9 8)))) (before-after ((hilite (+ 9 8))) ((hilite 17))) (finished-stepping)))) (t1 empty-begin (test-advanced-sequence "(begin)" `((error "begin: expected a sequence of expressions after `begin', but nothing's there")))) ;;;;;;;;;;;; ;; ;; BEGIN0 ;; ;;;;;;;;;;;; (t1 empty-begin0 (test-advanced-sequence "(begin0)" `((error "begin0: expected a sequence of expressions after `begin0', but nothing's there")))) (t1 trivial-begin0 (test-advanced-sequence "(begin0 3)" `((before-after ((hilite (begin0 3))) ((hilite 3))) (finished-stepping)))) ;; urg... the first element of a begin0 is in tail position if there's only one. (t1 one-item-begin0 (test-advanced-sequence "(begin0 (+ 3 4))" `((before-after ((hilite (begin0 (+ 3 4)))) ((hilite (+ 3 4)))) (before-after ((hilite (+ 3 4))) ((hilite 7))) (finished-stepping)))) (t1 begin0-onlyvalues (test-advanced-sequence "(begin0 3 4 5)" `((before-after ((hilite (begin0 3 4 5))) ((hilite (begin0 3 5)))) (before-after ((hilite (begin0 3 5))) ((hilite 3))) (finished-stepping)))) (t1 begin0 (test-advanced-sequence "(begin0 (+ 3 4) (+ 4 5) (+ 6 7))" `((before-after ((begin0 (hilite (+ 3 4)) (+ 4 5) (+ 6 7))) ((begin0 (hilite 7) (+ 4 5) (+ 6 7)))) (before-after ((begin0 7 (hilite (+ 4 5)) (+ 6 7))) ((begin0 7 (hilite 9) (+ 6 7)))) (before-after ((hilite (begin0 7 9 (+ 6 7)))) ((hilite (begin0 7 (+ 6 7))))) (before-after ((begin0 7 (hilite (+ 6 7)))) ((begin0 7 (hilite 13)))) (before-after ((hilite (begin0 7 13))) ((hilite 7)))))) ;; LAZY.SS: (t lazy1 test-lazy-sequence (! (+ 3 4)) :: 3 -> 3 :: 3 -> 3 :: 3 -> 3 :: {(! (+ 3 4))} -> {7}) (t lazy2 test-lazy-sequence (+ (+ 3 4) 5) :: (+ {(+ 3 4)} 5) -> (+ {7} 5) :: {(+ 7 5)} -> {12}) (t lazy3 test-lazy-sequence ((lambda (x y) (* x x)) (+ 1 2) (+ 3 4)) :: {((lambda (x y) (* x x)) (+ 1 2) (+ 3 4))} -> {(* (+ 1 2) (+ 1 2))} :: (* {(+ 1 2)} {(+ 1 2)}) -> (* {3} {3}) :: {(* 3 3)} -> {9}) #; (t1 teachpack-callbacks (test-teachpack-sequence "(define (f2c x) x) (convert-gui f2c)" `() ; placeholder )) #;(run-tests '(mz1 empty-begin empty-begin0)) (run-all-tests) ) ;; Local variables: ;; enable-local-eval: t ;; eval:(add-color-pattern "{[^{}]+}" '*/h404) ;; hide-local-variable-section: t ;; End: