#lang scribble/doc @(require scribble/manual scribble/struct scribble/decode scribble/eval scheme/sandbox (for-label scheme/base scheme/contract syntax/parse syntax/kerncase)) @(define ellipses @scheme[...]) @(begin (define the-eval (parameterize ((sandbox-output 'string) (sandbox-error-output 'string)) (make-evaluator 'scheme/base #:requires '(syntax/parse)))) (define-syntax-rule (myexamples e ...) (parameterize ((error-print-source-location #f)) (examples #:eval the-eval e ...)))) @title[#:tag "stxparse"]{Parsing and classifying syntax} The @schememodname[syntax/parse] library provides a framework for describing and parsing syntax. Using @schememodname[syntax/parse], macro writers can define new syntactic categories, specify their legal syntax, and use them to write clear, concise, and robust macros. The library also provides a pattern-matching form, @scheme[syntax-parse], which offers many improvements over @scheme[syntax-case]. @defmodule[syntax/parse] @;{----------} @section{Parsing syntax} This section describes the @scheme[syntax-parse] pattern matching form, syntax patterns, and attributes. @defform/subs[(syntax-parse stx-expr parse-option ... clause ...+) ([parse-option (code:line #:literals (literal ...)) (code:line #:literal-sets (literal-set ...)) (code:line #:conventions (convention-id ...))] [literal literal-id (pattern-id literal-id)] [literal-set literal-set-id [literal-set-id #:at context-id]] [clause (syntax-pattern pattern-directive ... expr)])]{ Evaluates @scheme[stx-expr], which should produce a syntax object, and matches it against the @scheme[clause]s in order. If some clause's pattern matches, its attributes are bound to the corresponding subterms of the syntax object and that clause's side conditions and @scheme[expr] is evaluated. The result is the result of @scheme[expr]. If the syntax object fails to match any of the patterns (or all matches fail the corresponding clauses' side conditions), a syntax error is raised. The @scheme[#:literals] option specifies identifiers that should match as literals, rather than simply being pattern variables. A literal in the literals list has two components: the identifier used within the pattern to signify the positions to be matched (@scheme[pattern-id]), and the identifier expected to occur in those positions (@scheme[literal-id]). If the single-identifier form is used, the same identifier is used for both purposes. Many literals can be declared at once via one or more @tech{literal sets}, imported with the @scheme[#:literal-sets] option. The literal-set definition determines the literal identifiers to recognize and the names used in the patterns to recognize those literals. The @scheme[#:conventions] option imports @tech{convention}s that give default syntax classes to pattern variables that do not explicitly specify a syntax class. } @defform[(syntax-parser maybe-literals clause ...)]{ Like @scheme[syntax-parse], but produces a matching procedure. The procedure accepts a single argument, which should be a syntax object. } The grammar of @deftech{syntax patterns} accepted by @scheme[syntax-parse] and @scheme[syntax-parser] is given in the following table: @schemegrammar*[#:literals (_ ~or ~and ~seq ~rep ~once ~optional ~rest ~struct ~! ~describe ~bind ~fail) [S-pattern pvar-id pvar-id:syntax-class-id literal-id atomic-datum (H-pattern . S-pattern) ((~or EH-pattern ...+) #,ellipses . S-pattern) (EH-pattern #,ellipses . S-pattern) (~and S-pattern ...+) (~or S-pattern ...+) #((unsyntax @svar[pattern-part]) ...) #s(prefab-struct-key (unsyntax @svar[pattern-part]) ...) (~rest S-pattern) (~describe expr S-pattern) (~! . S-pattern) (~bind [attr-id expr] ...) (~fail maybe-fail-condition message-expr)] [L-pattern () (H-pattern . L-pattern) ((~or EH-pattern ...+) #,ellipses . L-pattern) (EH-pattern #,ellipses . L-pattern) (~rest L-pattern) (~! . L-pattern)] [H-pattern (~or H-pattern ...+) (~seq . L-pattern) (~describe expr H-pattern) S-pattern] [EH-pattern (~once H-pattern once-option ...) (~optional H-pattern optional-option ...) H-pattern]] There are three main kinds of syntax pattern: @tech{S-patterns} (for ``single patterns''), @tech{H-patterns} (for ``head patterns''), and @tech{EH-patterns} (for ``ellipsis head patterns''). A fourth kind, @tech{L-patterns} (for ``list patterns''), is a restricted subset of @tech{S-patterns}. When a special form in this manual refers to @svar[syntax-pattern] (eg, the description of the @scheme[syntax-parse] special form), it means specifically @tech{S-pattern}. @subsection{S-pattern variants} An @deftech{S-pattern} (for ``single pattern'') is a pattern that describes a single term. The pattern may, of course, consist of other parts. For example, @scheme[(17 ...)] is an @tech{S-pattern} that matches any term that is a proper list of repeated @schemeresult[17] numerals. The @deftech{L-pattern}s (for ``list pattern'') are @tech{S-pattern} having a restricted structure that constrains it to match only terms that are proper lists. Here are the variants of @tech{S-pattern}: @specsubform[pvar-id]{ If @scheme[pvar-id] has no syntax class (by @scheme[#:declare] or @scheme[#:convention]), the pattern matches anything. The pattern variable is bound to the matched subterm, unless the pattern variable is the wildcard (@scheme[_]), in which case no binding occurs. If @scheme[pvar-id] does have an associated syntax class, it behaves like the following form. } @specsubform[pvar-id:syntax-class-id]{ Matches only subterms specified by the @svar[syntax-class-id]. The syntax class's attributes are computed for the subterm and bound to the pattern variables formed by prefixing @svar[pvar-id.] to the name of the attribute. @svar[pvar-id] is bound to the matched subterm. If @svar[pvar-id] is @scheme[_], no attributes are bound. If @svar[pvar-id] is empty (that is, if the pattern is of the form @svar[:syntax-class-id]), then the syntax class's attributes are bound, but their names are not prefixed first. @myexamples[ (syntax-parse #'x [var:id (syntax-e #'var)]) (syntax-parse #'12 [var:id (syntax-e #'var)]) (syntax-parse #'(x y z) [var:id (syntax-e #'var)])] } @specsubform[literal-id]{ An identifier that appears in the literals list is not a pattern variable; instead, it is a literal that matches any identifier @scheme[free-identifier=?] to it. Specifically, if @scheme[literal-id] is the ``pattern'' name of an entry in the literals list, then it represents a pattern that matches only identifiers @scheme[free-identifier=?] to the ``literal'' name. These identifiers are often the same. @myexamples[ (syntax-parse #'(define x 12) #:literals (define) [(define var:id body:expr) 'ok]) (syntax-parse #'(lambda x 12) #:literals (define) [(define var:id body:expr) 'ok]) (syntax-parse #'(define x 12) #:literals ([def define]) [(def var:id body:expr) 'ok]) (syntax-parse #'(lambda x 12) #:literals ([def define]) [(def var:id body:expr) 'ok]) ] } @specsubform[atomic-datum]{ Numbers, strings, booleans, keywords, and the empty list match as literals. @myexamples[ (syntax-parse #'(a #:foo bar) [(x #:foo y) (syntax->datum #'y)]) (syntax-parse #'(a foo bar) [(x #:foo y) (syntax->datum #'y)]) ] } @specsubform[(H-pattern . S-pattern)]{ Matches any term that can be decomposed into a list prefix matching the @tech{H-pattern} and a suffix matching the S-pattern. Note that the pattern may match terms that are not even improper lists; if the head pattern can match a zero-length head, then the whole pattern matches whatever the tail pattern accepts. The first pattern can be an @tech{S-pattern}, in which case the whole pattern matches any pair whose first element matches the first pattern and whose rest matches the second. See @tech{H-patterns} for more information. } @specsubform[#:literals (~or) ((~or EH-pattern ...+) #,ellipses . S-pattern)] @specsubform[(EH-pattern #,ellipses . S-pattern)]{ Matches any term that can be decomposed into a list head matching some number of repetitions of the @tech{EH-pattern} alternatives (subject to its repetition constraints) followed by a list tail matching the S-pattern. In other words, the whole pattern matches either the second pattern (which need not be a list) or a term whose head matches one of the alternatives of the first pattern and whose tail recursively matches the whole sequence pattern. The @scheme[~or]-free variant is shorthand for the @scheme[~or] variant with just one alternative. See @tech{EH-patterns} for more information. } @specsubform[#:literals (~and) (~and S-pattern ...)]{ Matches any syntax that matches all of the included patterns. Attributes bound in subpatterns are available to subsequent subpatterns. The whole pattern binds all of the subpatterns' attributes. One use for @scheme[~and]-patterns is preserving a whole term (including its lexical context, source location, etc) while also examining its structure. Syntax classes are useful for the same purpose, but @scheme[~and] can be lighter weight. @(interaction-eval #:eval the-eval (begin (define (check-imports . _) #f))) @myexamples[ (syntax-parse #'(m (import one two)) #:literals (import) [(_ (~and import-clause (import i ...))) (let ([bad (check-imports (syntax->list #'(i ...)))]) (when bad (raise-syntax-error #f "bad import" #'import-clause bad)) 'ok)]) ] } @specsubform[#:literals (~or) (~or S-pattern ...)]{ Matches any term that matches one of the included patterns. The whole pattern binds @emph{all} of the subpatterns' attributes. An attribute that is not bound by the ``chosen'' subpattern has a value of @scheme[#f]. The same attribute may be bound by multiple subpatterns, and if it is bound by all of the subpatterns, it is sure to have a value if the whole pattern matches. @myexamples[ (syntax-parse #'a [(~or x:id (~and x #f)) (syntax->datum #'x)]) (syntax-parse #'#f [(~or x:id (~and x #f)) (syntax->datum #'x)]) ] } @specsubform[#(#, @svar[pattern-part] ...)]{ Matches a term that is a vector whose elements, when considered as a list, match the @tech{S-pattern} corresponding to @scheme[(pattern-part ...)]. @myexamples[ (syntax-parse #'#(1 2 3) [#(x y z) (syntax->datum #'z)]) (syntax-parse #'#(1 2 3) [#(x y ...) (syntax->datum #'(y ...))]) (syntax-parse #'#(1 2 3) [#(x ~rest y) (syntax->datum #'y)]) ] } @specsubform[#s(prefab-struct-key #, @svar[pattern-part] ...)]{ Matches a term that is a prefab struct whose key is exactly the given key and whose sequence of fields, when considered as a list, match the @tech{S-pattern} corresponding to @scheme[(pattern-part ...)]. @myexamples[ (syntax-parse #'#s(point 1 2 3) [#s(point x y z) 'ok]) (syntax-parse #'#s(point 1 2 3) [#s(point x y ...) (syntax->datum #'(y ...))]) (syntax-parse #'#s(point 1 2 3) [#s(point x ~rest y) (syntax->datum #'y)]) ] } @specsubform[#:literals (~rest) (~rest S-pattern)]{ Matches just like the inner @scheme[S-pattern]. The @scheme[~rest] pattern form is useful in positions where improper lists (``dots'') are not allowed by the reader, such as vector and structure patterns (see above). @myexamples[ (syntax-parse #'(1 2 3) [(x ~rest y) (syntax->datum #'y)]) (syntax-parse #'#(1 2 3) [#(x ~rest y) (syntax->datum #'y)]) ] } @specsubform[#:literals (~describe) (~describe expr S-pattern)]{ The @scheme[~describe] pattern form annotates a pattern with a description, a string expression that is evaluated in the scope of all prior attribute bindings. If parsing the inner pattern fails, then the description is used to synthesize the error message. A describe-pattern also affects backtracking in two ways: @itemize{ @item{A cut-pattern (@scheme[~!]) within a describe-pattern only eliminates choice-points created within the describe-pattern.} @item{If a describe-pattern succeeds, then all choice points created within the describe-pattern are discarded, and a failure @emph{after} the describe-pattern backtracks to a choice point @emph{before} the describe-pattern, never one @emph{within} it.}}} @specsubform[#:literals (~!) (~! . S-pattern)]{ The @scheme[~!] operator, pronounced ``cut'', eliminates backtracking choice points and commits parsing to the current branch of the pattern it is exploring. Common opportunities for cut-patterns come from recognizing special forms based on keywords. Consider the following expression: @interaction[#:eval the-eval (syntax-parse #'(define-values a 123) #:literals (define-values define-syntaxes) [(define-values (x:id ...) e) 'define-values] [(define-syntaxes (x:id ...) e) 'define-syntaxes] [e 'expression])] Given the ill-formed term @scheme[(define-values a 123)], the expression tries the first clause, fails to match @scheme[a] against the pattern @scheme[(x:id ...)], and then backtracks to the second clause and ultimately the third clause, producing the value @scheme['expression]. But the term is not an expression; it is an ill-formed use of @scheme[define-values]! The proper way to write the @scheme[syntax-parse] expression follows: @interaction[#:eval the-eval (syntax-parse #'(define-values a 123) #:literals (define-values define-syntaxes) [(define-values ~! (x:id ...) e) 'define-values] [(define-syntaxes ~! (x:id ...) e) 'define-syntaxes] [e 'expression])] Now, given the same term, @scheme[syntax-parse] tries the first clause, and since the keyword @scheme[define-values] matches, the cut-pattern commits to the current pattern, eliminating the choice points for the second and third clauses. So when the clause fails to match, the @scheme[syntax-parse] expression raises an error. The effect of a @scheme[~!] pattern is delimited by the nearest enclosing @scheme[~describe] pattern. If there is no enclosing @scheme[~describe] pattern but the cut occurs within a syntax class definition, then only choice points within the syntax class definition are discarded. } @specsubform[#:literals (~bind) (~bind [attr-id expr] ...)]{ This pattern matches any term. Its effect is to evaluate the @scheme[expr]s and bind them to the given @scheme[attr-id]s as attributes. } @specsubform/subs[#:literals (~fail) (~fail maybe-fail-condition message-expr) ([maybe-fail-condition (code:line) (code:line #:when condition-expr) (code:line #:unless condition-expr)])]{ This pattern succeeds or fails independent of the term being matched against. If the condition is absent, or if the @scheme[#:when] condition evaluates to a true value, or if the @scheme[#:unless] condition evaluates to @scheme[#f], then the pattern fails with the given message. Otherwise the pattern succeeds. Fail patterns can be used together with cut patterns to recognize specific ill-formed terms and address them with specially-created failure messages. } @subsection{H-pattern variants} An @deftech{H-pattern} (for ``head pattern'') is a pattern that describes some number of terms that occur at the head of some list (possibly an improper list). An H-pattern's usefulness comes from being able to match heads of different lengths. H-patterns are useful for specifying optional forms such as keyword arguments. Here are the variants of @tech{H-pattern}: @specsubform[#:literals (~seq) (~seq . L-pattern)]{ Matches a head whose elements, if put in a list, would match the given @tech{L-pattern}. @myexamples[ (syntax-parse #'(1 2 3 4) [((~seq 1 2 3) 4) 'ok]) ] } @specsubform[#:literals (~or) (~or H-pattern ...)]{ Like the S-pattern version of @scheme[~or], but matches a term head instead. @myexamples[ (syntax-parse #'(#:foo 2 a b c) [((~or (~seq #:foo x) (~seq)) y:id ...) (attribute x)]) ] } @specsubform[#:literals (~describe) (~describe expr H-pattern)]{ Like the S-pattern version of @scheme[~describe], but matches a head pattern instead. } @specsubform[S-pattern]{ Matches a head of one element, which must be a term matching the given @tech{S-pattern}. } @subsection{EH-pattern forms} An @deftech{EH-pattern} (for ``ellipsis-head pattern'') is pattern that describes some number of terms, like an @tech{H-pattern}, but may also place contraints on the number of times it occurs in a repetition. EH-patterns (and ellipses) are useful for matching keyword arguments where the keywords may come in any order. @myexamples[ (define parser1 (syntax-parser [((~or (~once (~seq #:a x) #:name "#:a keyword") (~optional (~seq #:b y) #:name "#:b keyword") (~seq #:c z)) ...) 'ok])) (parser1 #'(#:a 1)) (parser1 #'(#:b 2 #:c 3 #:c 25 #:a 'hi)) (parser1 #'(#:a 1 #:a 2)) ] The pattern requires exactly one occurrence of the @scheme[#:a] keyword and argument, at most one occurrence of the @scheme[#:b] keyword and argument, and any number of @scheme[#:c] keywords and arguments. The ``pieces'' can occur in any order. Here are the variants of @tech{EH-pattern}: @specsubform/subs[#:literals (~once) (~once H-pattern once-option ...) ([once-option (code:line #:name name-expr) (code:line #:too-few too-few-message-expr) (code:line #:too-many too-many-message-expr)])]{ Matches if the inner H-pattern matches. This pattern must be selected exactly once in the match of the entire repetition sequence. If the pattern is not chosen in the repetition sequence, then an error is raised with a message, either @scheme[too-few-message-expr] or @schemevalfont{"missing required occurrence of @scheme[name-expr]"}. If the pattern is chosen more than once in the repetition sequence, then an error is raised with a message, either @scheme[too-many-message-expr] or @schemevalfont{"too many occurrences of @scheme[name-expr]"}. } @specsubform/subs[#:literals (~optional) (~optional H-pattern optional-option ...) ([optional-option (code:line #:name name-expr) (code:line #:too-many too-many-message-expr)])]{ Matches if the inner H-pattern matches. This pattern may be used at most once in the match of the entire repetition. If the pattern is chosen more than once in the repetition sequence, then an error is raised with a message, either @scheme[too-many-message-expr] or @schemevalfont{"too many occurrences of @scheme[name-expr]"}. } @subsection{Pattern directives} Both @scheme[syntax-parse] and @scheme[syntax-parser] support directives for annotating the pattern and specifying side conditions. The grammar for pattern directives follows: @schemegrammar[pattern-directive (code:line #:declare pattern-id syntax-class-id) (code:line #:declare pattern-id (syntax-class-id expr ...)) (code:line #:with syntax-pattern expr) (code:line #:fail-when condition-expr message-expr) (code:line #:fail-unless condition-expr message-expr)] @specsubform[(code:line #:declare pvar-id syntax-class-id)] @specsubform[(code:line #:declare pvar-id (syntax-class-id expr ...))]{ The first form is equivalent to using the @svar[pvar-id:syntax-class-id] form in the pattern (but it is illegal to use both for a single pattern variable). The @scheme[#:declare] form may be preferred when writing macro-defining macros or to avoid dealing with structured identifiers. The second form allows the use of parameterized syntax classes, which cannot be expressed using the ``colon'' notation. The @scheme[expr]s are evaluated outside the scope of any of the attribute bindings from pattern that the @scheme[#:declare] directive applies to. } @specsubform[(code:line #:with syntax-pattern expr)]{ Evaluates the @scheme[expr] in the context of all previous attribute bindings and matches it against the pattern. If the match succeeds, the pattern's attributes are added to environment for the evaluation of subsequent side conditions. If the @scheme[#:with] match fails, the matching process backtracks. Since a syntax object may match a pattern in several ways, backtracking may cause the same clause to be tried multiple times before the next clause is reached. } @specsubform[(code:line #:fail-when condition-expr message-expr)] @specsubform[(code:line #:fail-unless condition-expr message-expr)]{ Evaluates the @scheme[condition-expr] in the context of all previous attribute bindings. If the value is any non-false value for @scheme[#:fail-when] or if the value is @scheme[#f] for @scheme[#:fail-unless], the matching process backtracks (with the given message); otherwise, it continues. } @deftogether[[ @defidform[~or] @defidform[~and] @defidform[~seq] @defidform[~once] @defidform[~optional] @defidform[~rest] @;{@defidform[~struct]} @defidform[~describe] @defidform[~!] @defidform[~bind] @defidform[~fail]]]{ Syntax pattern keywords, recognized by @scheme[syntax-parse]. } @defform[(attribute attr-id)]{ Returns the value associated with the attribute named @scheme[attr-id]. If @scheme[attr-id] is not bound as an attribute, an error is raised. If @scheme[attr-id] is an attribute with a nonzero ellipsis depth, then the result has the corresponding level of list nesting. The values returned by @scheme[attribute] never undergo additional wrapping as syntax objects, unlike values produced by some uses of @scheme[syntax], @scheme[quasisyntax], etc. Consequently, the @scheme[attribute] form is preferred when the attribute value is used as data, not placed in a syntax object. } @;{----------} @section{Syntax Classes} Syntax classes provide an abstraction mechanism for the specification of syntax. Built-in syntax classes are supplied that recognize basic classes such as @scheme[identifier]s and @scheme[keyword]s. Programmers can compose basic syntax classes to build specifications of more complex syntax, such as lists of distinct identifiers and formal arguments with keywords. Macros that manipulate the same syntactic structures can share syntax class definitions. The structure of syntax classes and patterns also allows @scheme[syntax-parse] to automatically generate error messages for syntax errors. When a syntax class accepts (matches) a syntax object, it computes and provides attributes based on the contents of the matched syntax. While the values of the attributes depend on the matched syntax, the set of attributes and each attribute's ellipsis nesting depth is fixed for each syntax class. @defform*/subs[#:literals (pattern basic-syntax-class) [(define-syntax-class name-id stxclass-option ... stxclass-variant ...+) (define-syntax-class (name-id arg-id ...) stxclass-option ... stxclass-variant ...+)] ([stxclass-option (code:line #:attributes (attr-arity-decl ...)) (code:line #:description description) (code:line #:transparent) (code:line #:literals (literal-entry ...)) (code:line #:literal-sets (literal-set ...)) (code:line #:conventions (convention-id ...))] [attr-arity-decl attr-name-id (attr-name-id depth)] [stxclass-variant (pattern syntax-pattern stxclass-pattern-directive ...)])]{ Defines @scheme[name-id] as a syntax class. When the @scheme[arg-id]s are present, they are bound as variables (not pattern variables) in the body. The body of the syntax-class definition contains a non-empty sequence of @scheme[pattern] variants. @specsubform[(code:line #:attributes (attr-arity-decl ...))]{ Declares the attributes of the syntax class. An attribute arity declaration consists of the attribute name and optionally its ellipsis depth (zero if not explicitly specified). If the attributes are not explicitly listed, they are inferred as the set of all pattern variables occurring in every variant of the syntax class. Pattern variables that occur at different ellipsis depths are not included, nor are nested attributes. } @specsubform[(code:line #:description description)]{ The @scheme[description] argument is an expression (evaluated in a scope containing the syntax class's parameters) that should evaluate to a string. It is used in error messages involving the syntax class. For example, if a term is rejected by the syntax class, an error of the form @schemevalfont{"expected @scheme[description]"} may be synthesized. If absent, the name of the syntax class is used instead. } @specsubform[#:transparent]{ Indicates that errors may be reported with respect to the internal structure of the syntax class. } @specsubform[(code:line #:literals (literal-entry))] @specsubform[(code:line #:literal-sets (literal-set ...))] @specsubform[(code:line #:conventions (convention-id ...))]{ Declares the literals and conventions that apply to the syntax class's variant patterns and their immediate @scheme[#:with] clauses. Patterns occuring within subexpressions of the syntax class (for example, on the right-hand side of a @scheme[#:fail-when] clause) are not affected. These options have the same meaning as under @scheme[syntax-parse]. } @specsubform/subs[#:literals (pattern) (pattern syntax-pattern stxclass-pattern-directive ...) ([stxclass-pattern-directive pattern-directive (code:line #:rename internal-id external-id)])]{ Accepts syntax matching the given syntax pattern with the accompanying pattern directives as in @scheme[syntax-parse]. The attributes of the variant are the attributes of the pattern together with all attributes bound by @scheme[#:with] clauses, including nested attributes produced by syntax classes associated with the pattern variables. } } @defform*/subs[#:literals (pattern) [(define-splicing-syntax-class name-id stxclass-option ... stxclass-variant ...+) (define-splicing-syntax-class (name-id arg-id ...) stxclass-option ... stxclass-variant ...+)] ()]{ Defines @scheme[name-id] as a splicing syntax class. A splicing syntax class encapsulates @tech{H-patterns} as an ordinary syntax class encapsulates @tech{S-patterns}. } @defidform[pattern]{ Keyword recognized by @scheme[define-syntax-class]. It may not be used as an expression. } @subsection{Attributes} A syntax class has a set of @deftech{attribute}s. Each attribute has a name, an ellipsis depth, and a set of nested attributes. When an instance of the syntax class is parsed and bound to a pattern variable, additional pattern variables are bound for each of the syntax class's attributes. The name of these additional pattern variables is the dotted concatenation of the primary pattern variable with the name of the attribute. For example, if pattern variable @scheme[p] is bound to an instance of a syntax class with attribute @scheme[a], then the pattern variable @scheme[p.a] is bound to the value of that attribute. The ellipsis depth of @scheme[p.a] is the sum of the depths of @scheme[p] and attribute @scheme[a]. The attributes of a syntax class are either given explicitly with an @scheme[#:attributes] option or inferred from the pattern variables of the syntax class's variants. @subsection{Inspection tools} The following special forms are for debugging syntax classes. @defform[(syntax-class-attributes syntax-class-id)]{ Returns a list of the syntax class's attributes in flattened form. Each attribute is listed by its name and ellipsis depth. } @defform[(syntax-class-parse syntax-class-id stx-expr arg-expr ...)]{ Runs the parser for the syntax class (parameterized by the @scheme[arg-expr]s) on the syntax object produced by @scheme[stx-expr]. On success, the result is a list of vectors representing the attribute bindings of the syntax class. Each vector contains the attribute name, depth, and associated value. On failure, the result is some internal representation of the failure. } @;{----------} @section{Literal sets and Conventions} Sometimes the same literals are recognized in a number of different places. The most common example is the literals for fully expanded programs, which are used in many analysis and transformation tools. Specifying literals individually is burdensome and error-prone. As a remedy, @schememodname[syntax/parse] offers @deftech{literal set}s. A literal set is defined via @scheme[define-literal-set] and used via the @scheme[#:literal-set] option of @scheme[syntax-parse]. @defform/subs[(define-literal-set name-id (literal ...)) ([literal literal-id (pattern-id literal-id)])]{ Defines @scheme[name] as a @tech{literal set}. Each @scheme[literal] can have a separate @scheme[pattern-id] and @scheme[literal-id]. The @scheme[pattern-id] determines what identifiers in the pattern are treated as literals. The @scheme[literal-id] determines what identifiers the literal matches. @myexamples[ (define-literal-set def-litset (define-values define-syntaxes)) (syntax-parse #'(define-syntaxes (x) 12) #:literal-sets (def-litset) [(define-values (x:id ...) e:expr) 'v] [(define-syntaxes (x:id ...) e:expr) 's]) ] } @defform/subs[(define-conventions name-id (id-pattern syntax-class) ...) ([name-pattern exact-id name-rx] [syntax-class syntax-class-id (syntax-class-id expr ...)])]{ Defines @deftech{conventions} that supply default syntax classes for pattern variables. A pattern variable that has no explicit syntax class is checked against each @scheme[id-pattern], and the first one that matches determines the syntax class for the pattern. If no @scheme[id-pattern] matches, then the pattern variable has no syntax class. @myexamples[ (define-conventions xyz-as-ids [x id] [y id] [z id]) (syntax-parse #'(a b c 1 2 3) #:conventions (xyz-as-ids) [(x ... n ...) (syntax->datum #'(x ...))]) (define-conventions xn-prefixes [#rx"^x" id] [#rx"^n" nat]) (syntax-parse #'(a b c 1 2 3) #:conventions (xn-prefixes) [(x0 x ... n0 n ...) (syntax->datum #'(x0 (x ...) n0 (n ...)))]) ] } @;{----------} @section{Library syntax classes and literal sets} @subsection{Syntax classes} @(begin (define-syntax-rule (defstxclass name . pre-flows) (defidform name . pre-flows)) (define-syntax-rule (defstxclass* (name arg ...) . pre-flows) (defform (name arg ...) . pre-flows))) @defstxclass[expr]{ Matches anything except a keyword literal (to distinguish expressions from the start of a keyword argument sequence). The term is not otherwise inspected, and no guarantee is made that the term is actually a valid expression. } @deftogether[( @defstxclass[identifier] @defstxclass[boolean] @defstxclass[str] @defstxclass[char] @defstxclass[keyword] @defstxclass[number] @defstxclass[integer] @defstxclass[exact-integer] @defstxclass[exact-nonnegative-integer] @defstxclass[exact-positive-integer])]{ Match syntax satisfying the corresponding predicates. } @defstxclass[id]{ Alias for @scheme[identifier]. } @defstxclass[nat]{ Alias for @scheme[exact-nonnegative-integer]. } @defform[(static-of predicate description)]{ Matches an identifier that is bound in the syntactic environment to static information (see @scheme[syntax-local-value]) satisfying the given @scheme[predicate]. If the term does not match, the @scheme[description] argument is used to describe the expected syntax. When used outside of the dynamic extend of a macro transformer (see @scheme[syntax-transforming?]), matching fails. The attribute @var[value] contains the value the name is bound to. } @defstxclass[static]{ Like @scheme[static-of], but matches any identifier bound to static information (see @scheme[syntax-local-value]). The attribute @var[value] contains the value the name is bound to. } @subsection{Literal sets} @defidform[kernel-literals]{ Literal set containing the identifiers for fully-expanded expression and definition forms (the same as provided by @scheme[kernel-form-identifier-list]). }