#lang racket/base (require racket/list racket/contract racket/match "math.rkt" "contract.rkt" "contract-doc.rkt" "parameters.rkt" "sample.rkt") (provide (all-defined-out)) (struct plot-element (bounds-rect bounds-fun ticks-fun) #:transparent) (struct non-renderer plot-element () #:transparent) (struct renderer2d plot-element (render-proc) #:transparent) (struct renderer3d plot-element (render-proc) #:transparent) ;; =================================================================================================== ;; Common field values (define (default-ticks-fun r) (match r [(vector (ivl xa xb) (ivl ya yb)) (values (default-x-ticks xa xb) (default-x-far-ticks xa xb) (default-y-ticks ya yb) (default-y-far-ticks ya yb))] [(vector (ivl xa xb) (ivl ya yb) (ivl za zb)) (values (default-x-ticks xa xb) (default-x-far-ticks xa xb) (default-y-ticks ya yb) (default-y-far-ticks ya yb) (default-z-ticks za zb) (default-z-far-ticks za zb))] [_ (raise-type-error 'default-ticks-fun "2- or 3-vector of ivl" r)])) (define ((function-bounds-fun f samples) r) (match-define (vector xi yi) r) (cond [(ivl-known? xi) (match-define (ivl x-min x-max) xi) (match-define (list xs ys) (f x-min x-max samples)) (define rys (filter regular? ys)) (cond [(not (empty? rys)) (vector xi (ivl (apply min* rys) (apply max* rys)))] [else r])] [else r])) (define ((inverse-bounds-fun f samples) r) (match-define (vector xi yi) r) (cond [(ivl-known? yi) (match-define (ivl y-min y-max) yi) (match-define (list ys xs) (f y-min y-max samples)) (define rxs (filter regular? xs)) (cond [(not (empty? rxs)) (vector (ivl (apply min* rxs) (apply max* rxs)) yi)] [else r])] [else r])) (define ((function-interval-bounds-fun f1 f2 samples) r) (rect-join ((function-bounds-fun f1 samples) r) ((function-bounds-fun f2 samples) r))) (define ((inverse-interval-bounds-fun f1 f2 samples) r) (rect-join ((inverse-bounds-fun f1 samples) r) ((inverse-bounds-fun f2 samples) r))) (define ((surface3d-bounds-fun f samples) r) (match-define (vector xi yi zi) r) (cond [(and (ivl-known? xi) (ivl-known? yi)) (match-define (ivl x-min x-max) xi) (match-define (ivl y-min y-max) yi) (match-define (list xs ys zss) (f x-min x-max samples y-min y-max samples)) (define zs (filter regular? (2d-sample->list zss))) (cond [(not (empty? zs)) (vector xi yi (ivl (apply min* zs) (apply max* zs)))] [else r])] [else r])) ;; =================================================================================================== ;; Fixpoint computation of bounding rectangles ;; The reasoning in the following comments is in terms of a lattice comprised of rectangles, ;; rect-meet and rect-join. Think of rect-meet like a set intersection; rect-join like a set union. ;; Attempts to comptute a fixpoint of, roughly, the bounds functions for the given plot elements. ;; More precisely, starting with the given plot bounds, it attempts to compute a fixpoint of ;; (apply-bounds* elems), overridden at every iteration by the plot bounds (if given). Because a ;; fixpoint doesn't always exist, or only exists in the limit, it stops after max-iters. (define (bounds-fixpoint elems plot-bounds-rect [max-iters 4]) (let/ec break ;; Shortcut eval: if the plot bounds are all known, the code below just returns them anyway (when (rect-known? plot-bounds-rect) (break plot-bounds-rect)) ;; Objective: find the fixpoint of F starting at plot-bounds-rect (define (F bounds-rect) (rect-meet plot-bounds-rect (apply-bounds* elems bounds-rect))) ;; Iterate joint bounds to (hopefully) a fixpoint (for/fold ([bounds-rect plot-bounds-rect]) ([n (in-range max-iters)]) ;(printf "bounds-rect = ~v~n" bounds-rect) ;; Get new bounds from the elements' bounds functions (define new-bounds-rect (F bounds-rect)) ;; Shortcut eval: if the bounds haven't changed, we have a fixpoint (cond [(equal? bounds-rect new-bounds-rect) (break bounds-rect)] [else new-bounds-rect])))) ;; Applies the bounds functions of multiple plot elements, in parallel, and returns the smallest ;; bounds containing all the new bounds. This function is monotone and increasing regardless of ;; whether any element's bounds function is. If iterating it is bounded, a fixpoint exists. (define (apply-bounds* elems bounds-rect) (apply rect-join bounds-rect (for/list ([elem (in-list elems)]) (apply-bounds elem bounds-rect)))) ;; Applies the plot element's bounds function. Asks this question: If these are your allowed bounds, ;; what bounds will you try to use? (define (apply-bounds elem bounds-rect) (match-define (plot-element elem-bounds-rect elem-bounds-fun _) elem) (let ([elem-bounds-rect (cond [elem-bounds-rect (rect-meet bounds-rect elem-bounds-rect)] [else bounds-rect])]) (cond [elem-bounds-fun (elem-bounds-fun elem-bounds-rect)] [else elem-bounds-rect])))