#lang lazy (require tests/eli-tester) ;; tests for lazy language constructs (define (basic-tests) (test (! ((car (list if)) (< 1 2) 3 (error "poof"))) => 3 (! ((car (list or)) 3 (error "poof"))) => 3 (! ((car (list and)) (< 2 1) (error "poof"))) => #f (!! (let ([x 0]) (set! x 1) (list x))) => '(1) ; implicit begin forces (! (let ([x 0]) (when (zero? x) (error "poof")) 1)) =error> "poof" (! (let ([x 0]) (when (zero? x) (set! x (add1 x)) (set! x (add1 x))) x)) => 2 (! (let ([x 1]) (unless (zero? x) (set! x (add1 x)) (set! x (add1 x))) x)) => 3 (! (let ([x 0]) (cond [(zero? x) (set! x (add1 x)) (set! x (add1 x))]) x)) => 2 (! (eq? 1 1)) => #t (! (eq? 1 2)) => #f (! (eqv? 1.0 1.0)) => #t (! (eqv? 1.0 1)) => #f (! (= 1.0 1)) => #t (! (equal? (list 1.0) (list 1.0))) => #t (! (letrec ([zs (cons 0 zs)]) (equal? (list zs zs) (list zs zs)))) => #t )) (define (list-tests) (test (! (car 0)) =error> "car: contract violation\n expected: pair?" (! (cdr 0)) =error> "cdr: contract violation\n expected: pair?" (! (car (cons 1 (/ 1 0)))) => 1 (! (cdr (cons (/ 1 0) 1))) => 1 (! (list-ref (list (/ 1 0) 1 (/ 1 0)) 1)) => 1 (! (list-ref (cons 1 (/ 1 0)) 0)) => 1 ; doesn't force list structure (! (list-tail (cons (/ 1 0) 0) 1)) => 0 (! (length (list (/ 1 0) (/ 1 0) (/ 1 0)))) => 3 (! (let ([l (list (/ 1 0) (/ 1 0))]) (length (append l l l)))) => 6 (!! (member 1 (cons 0 (cons 1 2)))) => '(1 . 2) (!! (memq 1 (cons 0 (cons 1 2)))) => '(1 . 2) (!! (memv 1 (cons 0 (cons 1 2)))) => '(1 . 2) (! (second (map car (list 1 2 3)))) =error> "contract violation" (! (second (map car (list 1 '(2) 3)))) => 2 )) (define (take-tests) (define test-lst1 '(1 2 3)) (test (! (take "nonnum" test-lst1)) =error> #rx"take: expects type as 1st argument, given: \"nonnum\"; other arguments were: .*\\((list )?1 2 3\\)" (! (take -1 test-lst1)) =error> "take: expects type as 1st argument" (! (take -1 "nonlist")) =error> "take: expects type as 1st argument" (! (take 0 "nonlist")) => '() (! (take 1 "nonlist")) =error> "take: not a proper list: \"nonlist\"" (! (take 0 null)) => '() (! (take 0 test-lst1)) => '() (!! (take 1 test-lst1)) => '(1) (!! (take 2 test-lst1)) => '(1 2) (!! (take 3 (take 4 test-lst1))) => '(1 2 3) ; doesn't force the error (! (fourth (take 4 test-lst1))) ; this one does =error> "take: index 4 too large for input list" (! (list-ref (take (~ 1) (list 2)) 0)) => 2 (! (take 0 (error))) => '() ; doesn't even force the list structure (!! (take 1 (cons 0 (error "poof")))) => '(0) )) (define (misc-tests) (define-struct a (b c)) (define-struct d (e f)) (test (! (a-b (make-a 1 2))) => 1 (! (a-c (make-a 1 2))) => 2 (! (a-b (a 1 2))) => 1 (! (a-c (a 1 2))) => 2 (! (a? (a 1 2))) => true (! (a? (d 1 2))) => false )) ; Lazy Racket examples from Premiers cours de programmation avec Scheme (Roy) (define (pcps-tests) ;; Definitions -------------------------------------------------------------- (define (f x y) x) (define (fac n) (if (= n 0) 1 (* n (fac (- n 1))))) (define (new-if test p q) (cond (test p) (else q))) (define fibs (cons 0 (cons 1 (map + fibs (cdr fibs))))) #;(define ($list-ref L k) (let loop ((k (force k)) (L (force L))) (if (= k 0) (car L) (loop (- k 1) (cdr (force L)))))) (define L2 (cons 2 (map add1 L2))) (define (rayer n L) ; L prive des multiples de n (filter (lambda (x) (not (= 0 (modulo x n)))) L)) (define (crible L) (cons (car L) (crible (rayer (car L) (cdr L))))) (define PREMS (crible L2)) ; primes (define ZERO (cons 0 ZERO)) ; le flot infini <0,0,0,0,...> (define (poly->serie L) ; L = coeffs en puissances croissantes (define (copy L) (if (null? L) ZERO ; padding à droite par des 0 (cons (car L) (copy (cdr L))))) (copy L)) (define (int-serie S) ; integration terme a terme (define (aux S i) (cons (/ (car S) i) (aux (cdr S) (+ i 1)))) (aux S 1)) (define EXPO (cons 1 (int-serie EXPO))) (define SIN (cons 0 (int-serie COS))) (define COS (cons 1 (map - (int-serie SIN)))) (define (ints-from n) (cons n (ints-from (+ n 1)))) (define NAT (ints-from 0)) (define UN (cons 1 UN)) (define nats (cons 0 (map + nats UN))) (define QUATRE (filter (lambda (x) (zero? (modulo x 4))) NAT)) (define (melanger F1 F2) ; F1 et F2 infinis strictement croissants (cond ((< (car F1) (car F2)) (cons (car F1) (melanger (cdr F1) F2))) ((> (car F1) (car F2)) (cons (car F2) (melanger F1 (cdr F2)))) (else (cons (car F1) (melanger (cdr F1) (cdr F2)))))) (define (zoom x F) (cons (* (car F) x) (zoom x (cdr F)))) (define PAIR (zoom 2 NAT)) (define (hamming) (define h (cons 1 (melanger (zoom 2 h) (melanger (zoom 3 h) (zoom 5 h))))) h) (define h (hamming)) (define FACT (cons 1 (map * FACT (cdr NAT)))) (define (entrelacer s1 s2) (cons (car s1) (entrelacer s2 (cdr s1)))) (define F (entrelacer NAT F)) ;; Tests -------------------------------------------------------------------- (test (!! (fac 5)) => 120 (!! (new-if (= 1 2) (/ 1 0) 3)) => 3 (!! (take 20 PREMS)) => '(2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71) (!! (list-ref PREMS 999)) => 7919 (!! (apply + (take 100 PREMS))) => 24133 (!! (take 10 (poly->serie '(1 2 3)))) => '(1 2 3 0 0 0 0 0 0 0) (!! (take 10 EXPO)) => '(1 1 1/2 1/6 1/24 1/120 1/720 1/5040 1/40320 1/362880) (!! (take 8 SIN)) => '(0 1 0 -1/6 0 1/120 0 -1/5040) (!! (take 8 COS)) => '(1 0 -1/2 0 1/24 0 -1/720 0) (!! (take 10 (ints-from 5))) => '(5 6 7 8 9 10 11 12 13 14) (!! (take 10 NAT)) => '(0 1 2 3 4 5 6 7 8 9) (!! (take 10 UN)) => '(1 1 1 1 1 1 1 1 1 1) (!! (take 10 nats)) => '(0 1 2 3 4 5 6 7 8 9) (!! (take 10 QUATRE)) => '(0 4 8 12 16 20 24 28 32 36) (!! (take 10 (melanger NAT QUATRE))) => '(0 1 2 3 4 5 6 7 8 9) (!! (take 10 PAIR)) => '(0 2 4 6 8 10 12 14 16 18) (!! (take 30 h)) => '(1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36 40 45 48 50 54 60 64 72 75 80) (!! (list-ref h 10000)) => 288555831593533440 (!! (take 10 FACT)) => '(1 1 2 6 24 120 720 5040 40320 362880) (!! (take 10 (entrelacer NAT PAIR))) => '(0 0 1 2 2 4 3 6 4 8) (!! (take 10 F)) => '(0 0 1 0 2 1 3 0 4 2))) (define (strictness-tests) (test (! (and (/ 1 0))) =error> "/: division by zero" (! (and #f (/ 1 0))) => #f (! (and #t (/ 1 0))) =error> "/: division by zero" (! (cdr (append (list (/ 1 0)) '()))) => '() (! (cdr (append '() (list (/ 1 0))))) => '() (! (append (/ 1 0) '())) =error> "/: division by zero" (! (append (/ 1 0) '() '())) =error> "/: division by zero" (! (append (/ 1 0) '(1))) =error> "/: division by zero" (! (append '() (/ 1 0))) =error> "/: division by zero" (! (car (append '(1) (/ 1 0)))) => 1 (! (cdr (append '(1) (/ 1 0)))) =error> "/: division by zero" (! (car (append '(1) 1 (/ 1 0)))) => 1 (! (foldr (/ 1 0) 0 '())) =error> "/: division by zero" (! (foldr 1 (/ 1 0) '())) =error> "/: division by zero" (! (foldr 1 2 (/ 1 0))) =error> "/: division by zero" (! (foldr (/ 1 0) 1 '(1))) =error> "/: division by zero" (! (foldr 1 (/ 1 0) '(1))) =error> "/: division by zero" (! (foldl (/ 1 0) 0 '())) =error> "/: division by zero" (! (foldl 1 (/ 1 0) '())) =error> "/: division by zero" (! (foldl 1 2 (/ 1 0))) =error> "/: division by zero" (! (foldl (/ 1 0) 1 '(1))) =error> "/: division by zero" (! (foldl 1 (/ 1 0) '(1))) =error> "/: division by zero" (! (filter (/ 1 0) '())) =error> "/: division by zero" (! (filter 1 (/ 1 0))) =error> "/: division by zero" (! (filter (/ 1 0) '(1))) =error> "/: division by zero" (! (map (/ 1 0) '())) =error> "/: division by zero" (! (map (/ 1 0) '(1))) =error> "/: division by zero" (! (map 1 (/ 1 0))) =error> "/: division by zero" (! (if (/ 1 0) 1 2)) =error> "/: division by zero" (! (if #t 1 (/ 1 0))) => 1 (! (if #f (/ 1 0) 1)) => 1 (! (andmap (/ 1 0) '())) =error> "/: division by zero" (! (andmap (/ 1 0) '(1))) =error> "/: division by zero" (! (andmap 1 (/ 1 0))) =error> "/: division by zero" )) (provide lang-tests) (module+ main (lang-tests)) (define (lang-tests) (! (begin (basic-tests) (list-tests) (take-tests) (misc-tests) (pcps-tests) (strictness-tests))))