#lang racket ;;; ;;; ---- SRFI 19 Time Data Types and Procedures port to PLT Scheme ;;; Time-stamp: <2004-07-21 12:57:06 solsona> ;;; ;;; Usually, I would add a copyright notice, and the announce that ;;; this code is under the LGPL licence. Nevertheless, I only did the ;;; port to PLT Scheme v200, and here is the copyright notice, ;;; comments, and licence from the original source: ;;; Based on a corrected version by Will F. Feb/2003 ;; SRFI-19: Time Data Types and Procedures. ;; ;; Copyright (C) I/NET, Inc. (2000, 2002, 2003). All Rights Reserved. ;; Copyright (C) Neodesic Corporation (2000). All Rights Reserved. ;; ;; This document and translations of it may be copied and furnished to others, ;; and derivative works that comment on or otherwise explain it or assist in its ;; implementation may be prepared, copied, published and distributed, in whole or ;; in part, without restriction of any kind, provided that the above copyright ;; notice and this paragraph are included on all such copies and derivative works. ;; However, this document itself may not be modified in any way, such as by ;; removing the copyright notice or references to the Scheme Request For ;; Implementation process or editors, except as needed for the purpose of ;; developing SRFIs in which case the procedures for copyrights defined in the SRFI ;; process must be followed, or as required to translate it into languages other ;; than English. ;; ;; The limited permissions granted above are perpetual and will not be revoked ;; by the authors or their successors or assigns. ;; ;; This document and the information contained herein is provided on an "AS IS" ;; basis and THE AUTHOR AND THE SRFI EDITORS DISCLAIM ALL WARRANTIES, EXPRESS OR ;; IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE ;; INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF ;; MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. ;; -- Racket implementation ;; ;; The only Racket specific features of this implementation is ;; CURRENT-SECONDS, the DEFINE-STRUCT procedure (SRFI 9: Defining Record Types ;; could be used), and the constants tm:time-at-zero-seconds ;; and tm:julian-day-at-zero-seconds, which refer to the '0' of CURRENT-SECONDS. ;; ;; SRFI-6, String Ports, and SRFI-8, RECEIVE: Binding Multiple Values, ;; are also used. Racket has String Ports built-in. The RECEIVE form ;; is copied below. ;; ; srfi-8: receive ;(require-library "synrule.ss") -- PLT doesn't like DEFINE-SYNTAX. ;(define-syntax receive ; (syntax-rules () ; ((receive formals expression body ...) ; (call-with-values (lambda () expression) ; (lambda formals body ...))))) ;; -- Multiple helper procedures. TM:xxx procedures are meant to be ;; internal. (require scheme/serialize srfi/8/receive srfi/29 srfi/optional) (provide time-tai time-utc time-monotonic time-thread time-process time-duration time-gc current-date current-julian-day current-modified-julian-day current-time time-resolution ;; Time object and accessors make-time time? time-type time-nanosecond deserialize-info:tm:time-v0 time-second set-time-type! set-time-nanosecond! set-time-second! copy-time ;; Time comparison time<=? time=? time>? ;; Time arithmetic time-difference time-difference! add-duration add-duration! subtract-duration subtract-duration! ;; Date object and accessors ;; date structure is provided by core PLT Scheme, we just extended tu support miliseconds: srfi:make-date srfi:date? deserialize-info:tm:date-v0 date-nanosecond srfi:date-second srfi:date-minute srfi:date-hour srfi:date-day srfi:date-month srfi:date-year date-zone-offset ;; This are not part of the date structure (as they are in the original PLT Scheme's date) srfi:date-year-day srfi:date-week-day date-week-number ;; The following procedures work with this modified version. ;; Time/Date/Julian Day/Modified Julian Day Converters date->julian-day date->modified-julian-day date->time-monotonic date->time-tai date->time-utc julian-day->date julian-day->time-monotonic julian-day->time-tai julian-day->time-utc modified-julian-day->date modified-julian-day->time-monotonic modified-julian-day->time-tai modified-julian-day->time-utc time-monotonic->date time-monotonic->julian-day time-monotonic->modified-julian-day time-monotonic->time-tai time-monotonic->time-tai! time-monotonic->time-utc time-monotonic->time-utc! time-tai->date time-tai->julian-day time-tai->modified-julian-day time-tai->time-monotonic time-tai->time-monotonic! time-tai->time-utc time-tai->time-utc! time-utc->date time-utc->julian-day time-utc->modified-julian-day time-utc->time-monotonic time-utc->time-monotonic! time-utc->time-tai time-utc->time-tai! ;; Date to String/String to Date Converters date->string string->date ) (define localized? #f) (define localized-message (lambda (message-name) (unless localized? ;; SRFI-29: Localization initialization: (re-read-locale) (or (load-bundle! (list* 'srfi-19 (current-language) (current-country) (current-locale-details))) ;; A little bit less specific (load-bundle! (list 'srfi-19 (current-language) (current-country))) ;; less specific (load-bundle! (list 'srfi-19 (current-language))) ;; the least specific one (this one *does* exist!, it comes with this srfi) don't worry: (load-bundle! (list 'srfi-19))) (set! localized? #t)) (localized-template 'srfi-19 message-name))) ;; Constants (define time-tai 'time-tai) (define time-utc 'time-utc) (define time-monotonic 'time-monotonic) (define time-thread 'time-thread) (define time-process 'time-process) (define time-duration 'time-duration) ;; example of extension (Racket specific) (define time-gc 'time-gc) ;;-- LOCALE dependent constants (define tm:locale-number-separator 'separator) (define tm:locale-abbr-weekday-vector (vector 'sun 'mon 'tue 'wed 'thu 'fri 'sat)) (define tm:locale-long-weekday-vector (vector 'sunday 'monday 'tuesday 'wednesday 'thursday 'friday 'saturday)) ;; note empty string in 0th place. (define tm:locale-abbr-month-vector (vector 'jan 'feb 'mar 'apr 'may 'jun 'jul 'aug 'sep 'oct 'nov 'dec)) (define tm:locale-long-month-vector (vector 'january 'february 'march 'april 'may 'june 'july 'august 'september 'october 'november 'december)) (define tm:locale-pm 'pm) (define tm:locale-am 'am) ;; See date->string (define tm:locale-date-time-format 'date-time) (define tm:locale-short-date-format 'date) (define tm:locale-time-format 'time) (define tm:iso-8601-date-time-format 'iso8601) ;;-- Miscellaneous Constants. ;;-- only the tm:tai-epoch-in-jd might need changing if ;; a different epoch is used. (define tm:nano (expt 10 9)) (define tm:sid 86400) ; seconds in a day (define tm:sihd 43200) ; seconds in a half day (define tm:tai-epoch-in-jd 4881175/2) ; julian day number for 'the epoch' ;; A Very simple Error system for the time procedures ;; (define tm:time-error-types '(invalid-clock-type unsupported-clock-type incompatible-time-types not-duration dates-are-immutable bad-date-format-string bad-date-template-string invalid-month-specification )) (define (tm:time-error caller type value) (if (member type tm:time-error-types) (if value (error caller "TIME-ERROR type ~S: ~S" type value) (error caller "TIME-ERROR type ~S" type)) (error caller "TIME-ERROR unsupported error type ~S" type))) ;; A table of leap seconds ;; See ftp://maia.usno.navy.mil/ser7/tai-utc.dat ;; and update as necessary. ;; this procedures reads the file in the abover ;; format and creates the leap second table ;; it also calls the almost standard, but not R5 procedures read-line ;; & open-input-string ;; ie (set! tm:leap-second-table (tm:read-tai-utc-date "tai-utc.dat")) (define (tm:read-tai-utc-data filename) (define (convert-jd jd) (* (- (inexact->exact jd) tm:tai-epoch-in-jd) tm:sid)) (define (convert-sec sec) (inexact->exact sec)) (let ( (port (open-input-file filename)) (table '()) ) (let loop ((line (read-line port))) (unless (eq? line eof) (let* ( (data (read (open-input-string (string-append "(" line ")")))) (year (car data)) (jd (cadddr (cdr data))) (secs (cadddr (cdddr data))) ) (when (>= year 1972) (set! table (cons (cons (convert-jd jd) (convert-sec secs)) table))) (loop (read-line port))))) table)) ;; each entry is ( utc seconds since epoch . # seconds to add for tai ) ;; note they go higher to lower, and end in 1972. ;; added another one for 2006, based on random web-searching. (define tm:leap-second-table '((1136073600 . 33) (915148800 . 32) (867715200 . 31) (820454400 . 30) (773020800 . 29) (741484800 . 28) (709948800 . 27) (662688000 . 26) (631152000 . 25) (567993600 . 24) (489024000 . 23) (425865600 . 22) (394329600 . 21) (362793600 . 20) (315532800 . 19) (283996800 . 18) (252460800 . 17) (220924800 . 16) (189302400 . 15) (157766400 . 14) (126230400 . 13) (94694400 . 12) (78796800 . 11) (63072000 . 10))) (define (read-leap-second-table filename) (set! tm:leap-second-table (tm:read-tai-utc-data filename)) (values)) (define (tm:leap-second-delta utc-seconds) (letrec ( (lsd (lambda (table) (cond ((>= utc-seconds (caar table)) (cdar table)) (else (lsd (cdr table)))))) ) (if (< utc-seconds (* (- 1972 1970) 365 tm:sid)) 0 (lsd tm:leap-second-table)))) ;; going from tai seconds to utc seconds ... (define (tm:leap-second-neg-delta tai-seconds) (letrec ( (lsd (lambda (table) (cond ((null? table) 0) ((<= (cdar table) (- tai-seconds (caar table))) (cdar table)) (else (lsd (cdr table)))))) ) (if (< tai-seconds (* (- 1972 1970) 365 tm:sid)) 0 (lsd tm:leap-second-table)))) (define-values (tm:time make-time time? tm:time-ref tm:time-set!) (make-struct-type 'tm:time #f 3 0 #f (list (cons prop:serializable (make-serialize-info (lambda (t) (vector (time-type t) (time-nanosecond t) (time-second t))) #'deserialize-info:tm:time-v0 #f (or (current-load-relative-directory) (current-directory))))) (make-inspector) #f null)) (define deserialize-info:tm:time-v0 (make-deserialize-info make-time (lambda () (let ([t0 (make-time #f #f #f)]) (values t0 (lambda (t1) (set-time-type! t0 (time-type t1)) (set-time-nanosecond! t0 (time-nanosecond t1)) (set-time-second! t0 (time-second t1)))))))) (define (time-type t) (tm:time-ref t 0)) (define (time-nanosecond t) (tm:time-ref t 1)) (define (time-second t) (tm:time-ref t 2)) (define (set-time-type! t type) (tm:time-set! t 0 type)) (define (set-time-nanosecond! t ns) (tm:time-set! t 1 ns)) (define (set-time-second! t s) (tm:time-set! t 2 s)) (define (copy-time time) (let ((ntime (make-time #f #f #f))) (set-time-type! ntime (time-type time)) (set-time-second! ntime (time-second time)) (set-time-nanosecond! ntime (time-nanosecond time)) ntime)) ;;; specific time getters. ;;; These should be rewritten to be OS specific. ;; ;; -- using GNU gettimeofday() would be useful here -- gets ;; second + millisecond ;; let's pretend we do, using Racket's current-seconds & current-milliseconds ;; this is supposed to return UTC. ;; (define (tm:get-time-of-day) (let* ((total-msecs (inexact->exact (floor (current-inexact-milliseconds))))) (quotient/remainder total-msecs 1000))) (define (tm:current-time-utc) (receive (seconds ms) (tm:get-time-of-day) (make-time time-utc (* ms 1000000) seconds))) (define (tm:current-time-tai) (receive (seconds ms) (tm:get-time-of-day) (make-time time-tai (* ms 1000000) (+ seconds (tm:leap-second-delta seconds)) ))) (define (tm:current-time-ms-time time-type proc) (let ((current-ms (proc))) (make-time time-type (* (remainder current-ms 1000) 1000000) (quotient current-ms 1000000) ))) ;; -- we define it to be the same as TAI. ;; A different implemation of current-time-montonic ;; will require rewriting all of the time-monotonic converters, ;; of course. (define (tm:current-time-monotonic) (receive (seconds ms) (tm:get-time-of-day) (make-time time-monotonic (* ms 1000000) (+ seconds (tm:leap-second-delta seconds)) ))) (define (tm:current-time-thread) (tm:current-time-ms-time time-process current-process-milliseconds)) (define (tm:current-time-process) (tm:current-time-ms-time time-process current-process-milliseconds)) (define (tm:current-time-gc) (tm:current-time-ms-time time-gc current-gc-milliseconds)) (define (current-time . clock-type) (let ( (clock-type (:optional clock-type time-utc)) ) (cond ((eq? clock-type time-tai) (tm:current-time-tai)) ((eq? clock-type time-utc) (tm:current-time-utc)) ((eq? clock-type time-monotonic) (tm:current-time-monotonic)) ((eq? clock-type time-thread) (tm:current-time-thread)) ((eq? clock-type time-process) (tm:current-time-process)) ((eq? clock-type time-gc) (tm:current-time-gc)) (else (tm:time-error 'current-time 'invalid-clock-type clock-type))))) ;; -- Time Resolution ;; This is the resolution of the clock in nanoseconds. ;; This will be implementation specific. (define (time-resolution . clock-type) (let ((clock-type (:optional clock-type time-utc))) (cond ((eq? clock-type time-tai) 1000000) ((eq? clock-type time-utc) 1000000) ((eq? clock-type time-monotonic) 1000000) ((eq? clock-type time-thread) 1000000) ((eq? clock-type time-process) 1000000) ((eq? clock-type time-gc) 1000000) (else (tm:time-error 'time-resolution 'invalid-clock-type clock-type))))) (define (tm:time-compare-check time1 time2 caller) (if (or (not (and (time? time1) (time? time2))) (not (eq? (time-type time1) (time-type time2)))) (tm:time-error caller 'incompatible-time-types #f) #t)) (define (time=? time1 time2) (tm:time-compare-check time1 time2 'time=?) (and (= (time-second time1) (time-second time2)) (= (time-nanosecond time1) (time-nanosecond time2)))) (define (time>? time1 time2) (tm:time-compare-check time1 time2 'time>?) (or (> (time-second time1) (time-second time2)) (and (= (time-second time1) (time-second time2)) (> (time-nanosecond time1) (time-nanosecond time2))))) (define (time=? time1 time2) (tm:time-compare-check time1 time2 'time>=?) (or (> (time-second time1) (time-second time2)) (and (= (time-second time1) (time-second time2)) (>= (time-nanosecond time1) (time-nanosecond time2))))) (define (time<=? time1 time2) (tm:time-compare-check time1 time2 'time<=?) (or (< (time-second time1) (time-second time2)) (and (= (time-second time1) (time-second time2)) (<= (time-nanosecond time1) (time-nanosecond time2))))) ;; -- Time arithmetic (define (tm:time->nanoseconds time) (define (sign1 n) (if (negative? n) -1 1)) (+ (* (time-second time) tm:nano) (time-nanosecond time))) (define (tm:nanoseconds->time time-type nanoseconds) (make-time time-type (remainder nanoseconds tm:nano) (quotient nanoseconds tm:nano))) (define (tm:nanoseconds->values nanoseconds) (values (abs (remainder nanoseconds tm:nano)) (quotient nanoseconds tm:nano))) (define (tm:time-difference time1 time2 time3) (when (or (not (and (time? time1) (time? time2))) (not (eq? (time-type time1) (time-type time2)))) (tm:time-error 'time-difference 'incompatible-time-types #f)) (set-time-type! time3 time-duration) (if (time=? time1 time2) (begin (set-time-second! time3 0) (set-time-nanosecond! time3 0)) (receive (nanos secs) (tm:nanoseconds->values (- (tm:time->nanoseconds time1) (tm:time->nanoseconds time2))) (set-time-second! time3 secs) (set-time-nanosecond! time3 nanos))) time3) (define (time-difference time1 time2) (tm:time-difference time1 time2 (make-time #f #f #f))) (define (time-difference! time1 time2) (tm:time-difference time1 time2 time1)) (define (tm:add-duration time1 duration time3) (unless (and (time? time1) (time? duration)) (tm:time-error 'add-duration 'incompatible-time-types #f)) (if (not (eq? (time-type duration) time-duration)) (tm:time-error 'add-duration 'not-duration duration) (let ( (sec-plus (+ (time-second time1) (time-second duration))) (nsec-plus (+ (time-nanosecond time1) (time-nanosecond duration))) ) (let ((r (remainder nsec-plus tm:nano)) (q (quotient nsec-plus tm:nano))) ; (set-time-type! time3 (time-type time1)) (if (negative? r) (begin (set-time-second! time3 (+ sec-plus q -1)) (set-time-nanosecond! time3 (+ tm:nano r))) (begin (set-time-second! time3 (+ sec-plus q)) (set-time-nanosecond! time3 r))) time3)))) (define (add-duration time1 duration) (tm:add-duration time1 duration (make-time (time-type time1) #f #f))) (define (add-duration! time1 duration) (tm:add-duration time1 duration time1)) (define (tm:subtract-duration time1 duration time3) (unless (and (time? time1) (time? duration)) (tm:time-error 'add-duration 'incompatible-time-types #f)) (if (not (eq? (time-type duration) time-duration)) (tm:time-error 'tm:subtract-duration 'not-duration duration) (let ( (sec-minus (- (time-second time1) (time-second duration))) (nsec-minus (- (time-nanosecond time1) (time-nanosecond duration))) ) (let ((r (remainder nsec-minus tm:nano)) (q (quotient nsec-minus tm:nano))) (if (negative? r) (begin (set-time-second! time3 (- sec-minus q 1)) (set-time-nanosecond! time3 (+ tm:nano r))) (begin (set-time-second! time3 (- sec-minus q)) (set-time-nanosecond! time3 r))) time3)))) (define (subtract-duration time1 duration) (tm:subtract-duration time1 duration (make-time (time-type time1) #f #f))) (define (subtract-duration! time1 duration) (tm:subtract-duration time1 duration time1)) ;; -- Converters between types. (define (tm:time-tai->time-utc! time-in time-out caller) (unless (eq? (time-type time-in) time-tai) (tm:time-error caller 'incompatible-time-types time-in)) (set-time-type! time-out time-utc) (set-time-nanosecond! time-out (time-nanosecond time-in)) (set-time-second! time-out (- (time-second time-in) (tm:leap-second-neg-delta (time-second time-in)))) time-out) (define (time-tai->time-utc time-in) (tm:time-tai->time-utc! time-in (make-time #f #f #f) 'time-tai->time-utc)) (define (time-tai->time-utc! time-in) (tm:time-tai->time-utc! time-in time-in 'time-tai->time-utc!)) (define (tm:time-utc->time-tai! time-in time-out caller) (unless (eq? (time-type time-in) time-utc) (tm:time-error caller 'incompatible-time-types time-in)) (set-time-type! time-out time-tai) (set-time-nanosecond! time-out (time-nanosecond time-in)) (set-time-second! time-out (+ (time-second time-in) (tm:leap-second-delta (time-second time-in)))) time-out) (define (time-utc->time-tai time-in) (tm:time-utc->time-tai! time-in (make-time #f #f #f) 'time-utc->time-tai)) (define (time-utc->time-tai! time-in) (tm:time-utc->time-tai! time-in time-in 'time-utc->time-tai!)) ;; -- these depend on time-monotonic having the same definition as time-tai! (define (time-monotonic->time-utc time-in) (unless (eq? (time-type time-in) time-monotonic) (tm:time-error 'time-monotoinc->time-utc 'incompatible-time-types time-in)) (let ((ntime (copy-time time-in))) (set-time-type! ntime time-tai) (tm:time-tai->time-utc! ntime ntime 'time-monotonic->time-utc))) (define (time-monotonic->time-utc! time-in) (unless (eq? (time-type time-in) time-monotonic) (tm:time-error 'time-monotonic->time-utc! 'incompatible-time-types time-in)) (set-time-type! time-in time-tai) (tm:time-tai->time-utc! time-in time-in 'time-monotonic->time-utc)) (define (time-monotonic->time-tai time-in) (unless (eq? (time-type time-in) time-monotonic) (tm:time-error 'time-monotonic->time-tai 'incompatible-time-types time-in)) (let ((ntime (copy-time time-in))) (set-time-type! ntime time-tai) ntime)) (define (time-monotonic->time-tai! time-in) (unless (eq? (time-type time-in) time-monotonic) (tm:time-error 'time-monotonic->time-tai! 'incompatible-time-types time-in)) (set-time-type! time-in time-tai) time-in) (define (time-utc->time-monotonic time-in) (unless (eq? (time-type time-in) time-utc) (tm:time-error 'time-utc->time-monotonic 'incompatible-time-types time-in)) (let ((ntime (tm:time-utc->time-tai! time-in (make-time #f #f #f) 'time-utc->time-monotonic))) (set-time-type! ntime time-monotonic) ntime)) (define (time-utc->time-monotonic! time-in) (unless (eq? (time-type time-in) time-utc) (tm:time-error 'time-utc->time-montonic! 'incompatible-time-types time-in)) (let ((ntime (tm:time-utc->time-tai! time-in time-in 'time-utc->time-monotonic!))) (set-time-type! ntime time-monotonic) ntime)) (define (time-tai->time-monotonic time-in) (unless (eq? (time-type time-in) time-tai) (tm:time-error 'time-tai->time-monotonic 'incompatible-time-types time-in)) (let ((ntime (copy-time time-in))) (set-time-type! ntime time-monotonic) ntime)) (define (time-tai->time-monotonic! time-in) (unless (eq? (time-type time-in) time-tai) (tm:time-error 'time-tai->time-monotonic! 'incompatible-time-types time-in)) (set-time-type! time-in time-monotonic) time-in) ;; -- Date Structures (define-values (tm:date srfi:make-date srfi:date? tm:date-ref tm:date-set!) (make-struct-type 'tm:date #f 8 0 #f (list (cons prop:serializable (make-serialize-info (lambda (d) (vector (date-nanosecond d) (srfi:date-second d) (srfi:date-minute d) (srfi:date-hour d) (srfi:date-day d) (srfi:date-month d) (srfi:date-year d) (date-zone-offset d))) #'deserialize-info:tm:date-v0 #f (or (current-load-relative-directory) (current-directory))))) (make-inspector) #f null)) (define deserialize-info:tm:date-v0 (make-deserialize-info srfi:make-date (lambda () (let ([d0 (srfi:make-date #f #f #f #f #f #f #f #f)]) (values d0 (lambda (d1) (tm:set-date-nanosecond! d1 (date-nanosecond d0)) (tm:set-date-second! d1 (srfi:date-second d0)) (tm:set-date-minute! d1 (srfi:date-minute d0)) (tm:set-date-hour! d1 (srfi:date-hour d0)) (tm:set-date-day! d1 (srfi:date-day d0)) (tm:set-date-month! d1 (srfi:date-month d0)) (tm:set-date-year! d1 (srfi:date-year d0)) (tm:set-date-zone-offset! d1 (date-zone-offset d0)))))))) ;; PLT Scheme date structure has the following: ;; * second : 0 to 61 (60 and 61 are for unusual leap-seconds) ;; * minute : 0 to 59 ;; * hour : 0 to 23 ;; * day : 1 to 31 ;; * month : 1 to 12 ;; * year : e.g., 1996 ;; * week-day : 0 (Sunday) to 6 (Saturday) ;; * year-day : 0 to 365 (364 in non-leap years) ;; * dst? : #t (daylight savings time) or #f ;; * time-zone-offset : the number of seconds east of GMT for this time zone (e.g., Pacific Standard Time is -28800), an exact integer 36 (define (date-nanosecond d) (tm:date-ref d 0)) (define (srfi:date-second d) (tm:date-ref d 1)) (define (srfi:date-minute d) (tm:date-ref d 2)) (define (srfi:date-hour d) (tm:date-ref d 3)) (define (srfi:date-day d) (tm:date-ref d 4)) (define (srfi:date-month d) (tm:date-ref d 5)) (define (srfi:date-year d) (tm:date-ref d 6)) (define (date-zone-offset d) (tm:date-ref d 7)) (define (tm:set-date-nanosecond! d ns) (tm:date-set! d 0 ns)) (define (tm:set-date-second! d s) (tm:date-set! d 1 s)) (define (tm:set-date-minute! d m) (tm:date-set! d 2 m)) (define (tm:set-date-hour! d h) (tm:date-set! d 3 h)) (define (tm:set-date-day! d day) (tm:date-set! d 4 day)) (define (tm:set-date-month! d m) (tm:date-set! d 5 m)) (define (tm:set-date-year! d y) (tm:date-set! d 6 y)) (define (tm:set-date-zone-offset! d i) (tm:date-set! d 7 i)) ;; gives the julian day which starts at noon. (define (tm:encode-julian-day-number day month year) (let* ((a (quotient (- 14 month) 12)) (y (- (+ year 4800) a (if (negative? year) -1 0))) (m (- (+ month (* 12 a)) 3))) (+ day (quotient (+ (* 153 m) 2) 5) (* 365 y) (quotient y 4) (- (quotient y 100)) (quotient y 400) -32045))) (define (tm:char-pos char str index len) (cond ((>= index len) #f) ((char=? (string-ref str index) char) index) (else (tm:char-pos char str (+ index 1) len)))) ; return a string representing the decimal expansion of the fractional ; portion of a number, limited by a specified precision (define (tm:decimal-expansion r precision) (let loop ([num (- r (round r))] [p precision]) (if (or (= p 0) (= num 0)) "" (let* ([num-times-10 (* 10 num)] [round-num-times-10 (round num-times-10)]) (string-append (number->string (inexact->exact round-num-times-10)) (loop (- num-times-10 round-num-times-10) (- p 1))))))) ;; gives the seconds/date/month/year (define (tm:decode-julian-day-number jdn) (let* ((days (truncate jdn)) (a (+ days 32044)) (b (quotient (+ (* 4 a) 3) 146097)) (c (- a (quotient (* 146097 b) 4))) (d (quotient (+ (* 4 c) 3) 1461)) (e (- c (quotient (* 1461 d) 4))) (m (quotient (+ (* 5 e) 2) 153)) (y (+ (* 100 b) d -4800 (quotient m 10)))) (values ; seconds date month year (* (- jdn days) tm:sid) (+ e (- (quotient (+ (* 153 m) 2) 5)) 1) (+ m 3 (* -12 (quotient m 10))) (if (>= 0 y) (- y 1) y)) )) ;; relies on the fact that we named our time zone accessor ;; differently from Racket's.... ;; This should be written to be OS specific. (define (tm:local-tz-offset) (date-time-zone-offset (seconds->date (current-seconds)))) ;; special thing -- ignores nanos (define (tm:time->julian-day-number seconds tz-offset) (+ (/ (+ seconds tz-offset tm:sihd) tm:sid) tm:tai-epoch-in-jd)) (define (tm:find proc l) (if (null? l) #f (if (proc (car l)) #t (tm:find proc (cdr l))))) (define (tm:tai-before-leap-second? second) (tm:find (lambda (x) (= second (- (+ (car x) (cdr x)) 1))) tm:leap-second-table)) (define (tm:time->date time tz-offset ttype) (unless (eq? (time-type time) ttype) (tm:time-error 'time->date 'incompatible-time-types time)) (let* ( (offset (:optional tz-offset (tm:local-tz-offset))) ) (receive (secs date month year) (tm:decode-julian-day-number (tm:time->julian-day-number (time-second time) offset)) (let* ( (hours (quotient secs (* 60 60))) (rem (remainder secs (* 60 60))) (minutes (quotient rem 60)) (seconds (remainder rem 60)) ) (srfi:make-date (time-nanosecond time) seconds minutes hours date month year offset))))) (define (time-tai->date time . tz-offset) (if (tm:tai-before-leap-second? (time-second time)) ;; if it's *right* before the leap, we need to pretend to subtract a second ... (let ((d (tm:time->date (subtract-duration! (time-tai->time-utc time) (make-time time-duration 0 1)) tz-offset time-utc))) (tm:set-date-second! d 60) d) (tm:time->date (time-tai->time-utc time) tz-offset time-utc))) (define (time-utc->date time . tz-offset) (tm:time->date time tz-offset time-utc)) ;; again, time-monotonic is the same as time tai (define (time-monotonic->date time . tz-offset) (tm:time->date time tz-offset time-monotonic)) (define (date->time-utc date) (let ( (nanosecond (date-nanosecond date)) (second (srfi:date-second date)) (minute (srfi:date-minute date)) (hour (srfi:date-hour date)) (day (srfi:date-day date)) (month (srfi:date-month date)) (year (srfi:date-year date)) (offset (date-zone-offset date)) ) (let ( (jdays (- (tm:encode-julian-day-number day month year) tm:tai-epoch-in-jd)) ) (make-time time-utc nanosecond (+ (* (- jdays 1/2) 24 60 60) (* hour 60 60) (* minute 60) second (- offset)) )))) (define (date->time-tai d) (if (= (srfi:date-second d) 60) (subtract-duration! (time-utc->time-tai! (date->time-utc d)) (make-time time-duration 0 1)) (time-utc->time-tai! (date->time-utc d)))) (define (date->time-monotonic date) (time-utc->time-monotonic! (date->time-utc date))) (define (tm:leap-year? year) (or (= (modulo year 400) 0) (and (= (modulo year 4) 0) (not (= (modulo year 100) 0))))) (define (leap-year? date) (tm:leap-year? (srfi:date-year date))) ;; tm:year-day fixed: adding wrong number of days. (define tm:month-assoc '((0 . 0) (1 . 31) (2 . 59) (3 . 90) (4 . 120) (5 . 151) (6 . 181) (7 . 212) (8 . 243) (9 . 273) (10 . 304) (11 . 334))) (define (tm:year-day day month year) (let ((days-pr (assoc (- month 1) tm:month-assoc))) (unless days-pr (tm:time-error 'date-year-day 'invalid-month-specification month)) (if (and (tm:leap-year? year) (> month 2)) (+ day (cdr days-pr) 1) (+ day (cdr days-pr))))) (define (srfi:date-year-day date) (tm:year-day (srfi:date-day date) (srfi:date-month date) (srfi:date-year date))) ;; from calendar faq (define (tm:week-day day month year) (let* ((a (quotient (- 14 month) 12)) (y (- year a)) (m (+ month (* 12 a) -2))) (modulo (+ day y (quotient y 4) (- (quotient y 100)) (quotient y 400) (quotient (* 31 m) 12)) 7))) (define (srfi:date-week-day date) (tm:week-day (srfi:date-day date) (srfi:date-month date) (srfi:date-year date))) (define (tm:days-before-first-week date day-of-week-starting-week) (let* ( (first-day (srfi:make-date 0 0 0 0 1 1 (srfi:date-year date) #f)) (fdweek-day (srfi:date-week-day first-day)) ) (modulo (- day-of-week-starting-week fdweek-day) 7))) (define (date-week-number date day-of-week-starting-week) (quotient (- (srfi:date-year-day date) (tm:days-before-first-week date day-of-week-starting-week)) 7)) (define (current-date . tz-offset) (time-utc->date (current-time time-utc) (:optional tz-offset (tm:local-tz-offset)))) ;; given a 'two digit' number, find the year within 50 years +/- (define (tm:natural-year n) (let* ( (current-year (srfi:date-year (current-date))) (current-century (* (quotient current-year 100) 100)) ) (cond ((>= n 100) n) ((< n 0) n) ((<= (- (+ current-century n) current-year) 50) (+ current-century n)) (else (+ (- current-century 100) n))))) (define (date->julian-day date) (let ( (nanosecond (date-nanosecond date)) (second (srfi:date-second date)) (minute (srfi:date-minute date)) (hour (srfi:date-hour date)) (day (srfi:date-day date)) (month (srfi:date-month date)) (year (srfi:date-year date)) (offset (date-zone-offset date)) ) (+ (tm:encode-julian-day-number day month year) (- 1/2) (+ (/ (+ (* hour 60 60) (* minute 60) second (/ nanosecond tm:nano) (- offset)) tm:sid))))) (define (date->modified-julian-day date) (- (date->julian-day date) 4800001/2)) (define (time-utc->julian-day time) (unless (eq? (time-type time) time-utc) (tm:time-error 'time->date 'incompatible-time-types time)) (+ (/ (+ (time-second time) (/ (time-nanosecond time) tm:nano)) tm:sid) tm:tai-epoch-in-jd)) (define (time-utc->modified-julian-day time) (- (time-utc->julian-day time) 4800001/2)) (define (time-tai->julian-day time) (unless (eq? (time-type time) time-tai) (tm:time-error 'time->date 'incompatible-time-types time)) (+ (/ (+ (- (time-second time) (tm:leap-second-delta (time-second time))) (/ (time-nanosecond time) tm:nano)) tm:sid) tm:tai-epoch-in-jd)) (define (time-tai->modified-julian-day time) (- (time-tai->julian-day time) 4800001/2)) ;; this is the same as time-tai->julian-day (define (time-monotonic->julian-day time) (unless (eq? (time-type time) time-monotonic) (tm:time-error 'time->date 'incompatible-time-types time)) (+ (/ (+ (- (time-second time) (tm:leap-second-delta (time-second time))) (/ (time-nanosecond time) tm:nano)) tm:sid) tm:tai-epoch-in-jd)) (define (time-monotonic->modified-julian-day time) (- (time-monotonic->julian-day time) 4800001/2)) (define (julian-day->time-utc jdn) (let ( (nanosecs (* tm:nano tm:sid (- jdn tm:tai-epoch-in-jd))) ) (make-time time-utc (remainder nanosecs tm:nano) (floor (/ nanosecs tm:nano))))) (define (julian-day->time-tai jdn) (time-utc->time-tai! (julian-day->time-utc jdn))) (define (julian-day->time-monotonic jdn) (time-utc->time-monotonic! (julian-day->time-utc jdn))) (define (julian-day->date jdn . tz-offset) (let ((offset (:optional tz-offset (tm:local-tz-offset)))) (time-utc->date (julian-day->time-utc jdn) offset))) (define (modified-julian-day->date jdn . tz-offset) (let ((offset (:optional tz-offset (tm:local-tz-offset)))) (julian-day->date (+ jdn 4800001/2) offset))) (define (modified-julian-day->time-utc jdn) (julian-day->time-utc (+ jdn 4800001/2))) (define (modified-julian-day->time-tai jdn) (julian-day->time-tai (+ jdn 4800001/2))) (define (modified-julian-day->time-monotonic jdn) (julian-day->time-monotonic (+ jdn 4800001/2))) (define (current-julian-day) (time-utc->julian-day (current-time time-utc))) (define (current-modified-julian-day) (time-utc->modified-julian-day (current-time time-utc))) ;; returns a string rep. of number N, of minimum LENGTH, ;; padded with character PAD-WITH. If PAD-WITH if #f, ;; no padding is done, and it's as if number->string was used. ;; if string is longer than LENGTH, it's as if number->string was used. (define (tm:padding n pad-with length) (let* ( (str (number->string n)) (str-len (string-length str)) ) (if (or (> str-len length) (not pad-with)) str (let* ( (new-str (make-string length pad-with)) (new-str-offset (- (string-length new-str) str-len)) ) (do ((i 0 (+ i 1))) ((>= i (string-length str))) (string-set! new-str (+ new-str-offset i) (string-ref str i))) new-str)))) (define (tm:last-n-digits i n) (abs (remainder i (expt 10 n)))) (define (tm:locale-abbr-weekday n) (localized-message (vector-ref tm:locale-abbr-weekday-vector n))) (define (tm:locale-long-weekday n) (localized-message (vector-ref tm:locale-long-weekday-vector n))) (define (tm:locale-abbr-month n) (localized-message (vector-ref tm:locale-abbr-month-vector (- n 1)))) (define (tm:locale-long-month n) (localized-message (vector-ref tm:locale-long-month-vector (- n 1)))) (define (tm:vector-find needle haystack comparator) (let ((len (vector-length haystack))) (define (tm:vector-find-int index) (cond ((>= index len) #f) ((comparator needle (localized-message (vector-ref haystack index))) (+ index 1)) (else (tm:vector-find-int (+ index 1))))) (tm:vector-find-int 0))) (define (tm:locale-abbr-weekday->index string) (tm:vector-find string tm:locale-abbr-weekday-vector string=?)) (define (tm:locale-long-weekday->index string) (tm:vector-find string tm:locale-long-weekday-vector string=?)) (define (tm:locale-abbr-month->index string) (tm:vector-find string tm:locale-abbr-month-vector string=?)) (define (tm:locale-long-month->index string) (tm:vector-find string tm:locale-long-month-vector string=?)) ;; do nothing. ;; Your implementation might want to do something... ;; (define (tm:locale-print-time-zone date port) (values)) ;; Again, locale specific. (define (tm:locale-am/pm hr) (localized-message (if (> hr 11) tm:locale-pm tm:locale-am))) (define (tm:tz-printer offset port) (display (cond [(= offset 0) "Z"] [else (let ([sign (cond [(negative? offset) "-"] [else "+"])] [hours (abs (quotient offset (* 60 60)))] [minutes (abs (quotient (remainder offset (* 60 60)) 60))]) (string-append sign (tm:padding hours #\0 2) (tm:padding minutes #\0 2)))]) port)) ;; A table of output formatting directives. ;; the first time is the format char. ;; the second is a procedure that takes the date, a padding character ;; (which might be #f), and the output port. ;; (define tm:directives (list (cons #\~ (lambda (date pad-with port) (display #\~ port))) (cons #\a (lambda (date pad-with port) (display (tm:locale-abbr-weekday (srfi:date-week-day date)) port))) (cons #\A (lambda (date pad-with port) (display (tm:locale-long-weekday (srfi:date-week-day date)) port))) (cons #\b (lambda (date pad-with port) (display (tm:locale-abbr-month (srfi:date-month date)) port))) (cons #\B (lambda (date pad-with port) (display (tm:locale-long-month (srfi:date-month date)) port))) (cons #\c (lambda (date pad-with port) (display (date->string date (localized-message tm:locale-date-time-format)) port))) (cons #\d (lambda (date pad-with port) (display (tm:padding (srfi:date-day date) #\0 2) port))) (cons #\D (lambda (date pad-with port) (display (date->string date "~m/~d/~y") port))) (cons #\e (lambda (date pad-with port) (display (tm:padding (srfi:date-day date) #\Space 2) port))) (cons #\f (lambda (date pad-with port) (if (> (date-nanosecond date) tm:nano) (display (tm:padding (+ (srfi:date-second date) 1) pad-with 2) port) (display (tm:padding (srfi:date-second date) pad-with 2) port)) (let ([f (tm:decimal-expansion (/ (date-nanosecond date) tm:nano) 6)]) (when (> (string-length f) 0) (display (localized-message tm:locale-number-separator) port) (display f port))))) (cons #\h (lambda (date pad-with port) (display (date->string date "~b") port))) (cons #\H (lambda (date pad-with port) (display (tm:padding (srfi:date-hour date) pad-with 2) port))) (cons #\I (lambda (date pad-with port) (let ((hr (srfi:date-hour date))) (if (> hr 12) (display (tm:padding (- hr 12) pad-with 2) port) (display (tm:padding hr pad-with 2) port))))) (cons #\j (lambda (date pad-with port) (display (tm:padding (srfi:date-year-day date) pad-with 3) port))) (cons #\k (lambda (date pad-with port) (display (tm:padding (srfi:date-hour date) #\0 2) port))) (cons #\l (lambda (date pad-with port) (let ((hr (if (> (srfi:date-hour date) 12) (- (srfi:date-hour date) 12) (srfi:date-hour date)))) (display (tm:padding hr #\Space 2) port)))) (cons #\m (lambda (date pad-with port) (display (tm:padding (srfi:date-month date) pad-with 2) port))) (cons #\M (lambda (date pad-with port) (display (tm:padding (srfi:date-minute date) pad-with 2) port))) (cons #\n (lambda (date pad-with port) (newline port))) (cons #\N (lambda (date pad-with port) (display (tm:padding (date-nanosecond date) pad-with 9) port))) (cons #\p (lambda (date pad-with port) (display (tm:locale-am/pm (srfi:date-hour date)) port))) (cons #\r (lambda (date pad-with port) (display (date->string date "~I:~M:~S ~p") port))) (cons #\s (lambda (date pad-with port) (display (time-second (date->time-utc date)) port))) (cons #\S (lambda (date pad-with port) (if (> (date-nanosecond date) tm:nano) (display (tm:padding (+ (srfi:date-second date) 1) pad-with 2) port) (display (tm:padding (srfi:date-second date) pad-with 2) port)))) (cons #\t (lambda (date pad-with port) (display #\Tab port))) (cons #\T (lambda (date pad-with port) (display (date->string date "~H:~M:~S") port))) (cons #\U (lambda (date pad-with port) (if (> (tm:days-before-first-week date 0) 0) (display (tm:padding (+ (date-week-number date 0) 1) #\0 2) port) (display (tm:padding (date-week-number date 0) #\0 2) port)))) (cons #\V (lambda (date pad-with port) (display (tm:padding (date-week-number date 1) #\0 2) port))) (cons #\w (lambda (date pad-with port) (display (srfi:date-week-day date) port))) (cons #\x (lambda (date pad-with port) (display (date->string date (localized-message tm:locale-short-date-format)) port))) (cons #\X (lambda (date pad-with port) (display (date->string date (localized-message tm:locale-time-format)) port))) (cons #\W (lambda (date pad-with port) (if (> (tm:days-before-first-week date 1) 0) (display (tm:padding (+ (date-week-number date 1) 1) #\0 2) port) (display (tm:padding (date-week-number date 1) #\0 2) port)))) (cons #\y (lambda (date pad-with port) (display (tm:padding (tm:last-n-digits (srfi:date-year date) 2) pad-with 2) port))) (cons #\Y (lambda (date pad-with port) (display (srfi:date-year date) port))) (cons #\z (lambda (date pad-with port) (tm:tz-printer (date-zone-offset date) port))) (cons #\Z (lambda (date pad-with port) (tm:locale-print-time-zone date port))) (cons #\1 (lambda (date pad-with port) (display (date->string date "~Y-~m-~d") port))) (cons #\2 (lambda (date pad-with port) (display (date->string date "~k:~M:~S~z") port))) (cons #\3 (lambda (date pad-with port) (display (date->string date "~k:~M:~S") port))) (cons #\4 (lambda (date pad-with port) (display (date->string date "~Y-~m-~dT~k:~M:~S~z") port))) (cons #\5 (lambda (date pad-with port) (display (date->string date "~Y-~m-~dT~k:~M:~S") port))) )) (define (tm:get-formatter char) (let ( (associated (assoc char tm:directives)) ) (if associated (cdr associated) #f))) (define (tm:date-printer date index format-string str-len port) (if (>= index str-len) (values) (let ( (current-char (string-ref format-string index)) ) (if (not (char=? current-char #\~)) (begin (display current-char port) (tm:date-printer date (+ index 1) format-string str-len port)) (if (= (+ index 1) str-len) ; bad format string. (tm:time-error 'tm:date-printer 'bad-date-format-string format-string) (let ( (pad-char? (string-ref format-string (+ index 1))) ) (cond ((char=? pad-char? #\-) (if (= (+ index 2) str-len) ; bad format string. (tm:time-error 'tm:date-printer 'bad-date-format-string format-string) (let ( (formatter (tm:get-formatter (string-ref format-string (+ index 2)))) ) (if (not formatter) (tm:time-error 'tm:date-printer 'bad-date-format-string format-string) (begin (formatter date #f port) (tm:date-printer date (+ index 3) format-string str-len port)))))) ((char=? pad-char? #\_) (if (= (+ index 2) str-len) ; bad format string. (tm:time-error 'tm:date-printer 'bad-date-format-string format-string) (let ( (formatter (tm:get-formatter (string-ref format-string (+ index 2)))) ) (if (not formatter) (tm:time-error 'tm:date-printer 'bad-date-format-string format-string) (begin (formatter date #\Space port) (tm:date-printer date (+ index 3) format-string str-len port)))))) (else (let ( (formatter (tm:get-formatter (string-ref format-string (+ index 1)))) ) (if (not formatter) (tm:time-error 'tm:date-printer 'bad-date-format-string format-string) (begin (formatter date #\0 port) (tm:date-printer date (+ index 2) format-string str-len port)))))))))))) (define (date->string date . format-string) (let ( (str-port (open-output-string)) (fmt-str (:optional format-string "~c")) ) (tm:date-printer date 0 fmt-str (string-length fmt-str) str-port) (get-output-string str-port))) (define (tm:char->int ch) (cond ((char=? ch #\0) 0) ((char=? ch #\1) 1) ((char=? ch #\2) 2) ((char=? ch #\3) 3) ((char=? ch #\4) 4) ((char=? ch #\5) 5) ((char=? ch #\6) 6) ((char=? ch #\7) 7) ((char=? ch #\8) 8) ((char=? ch #\9) 9) (else (tm:time-error 'bad-date-template-string 'digit-char ch)))) ;; read an integer upto n characters long on port; upto -> #f if any length (define (tm:integer-reader upto port) (define (accum-int port accum nchars) (let ((ch (peek-char port))) (if (or (eof-object? ch) (not (char-numeric? ch)) (and upto (>= nchars upto ))) accum (accum-int port (+ (* accum 10) (tm:char->int (read-char port))) (+ nchars 1))))) (accum-int port 0 0)) (define (tm:make-integer-reader upto) (lambda (port) (tm:integer-reader upto port))) ;; read an fractional integer upto n characters long on port; upto -> #f if any length ;; ;; The return value is normalized to upto decimal places. For example, if upto is 9 and ;; the string read is "123", the return value is 123000000. (define (tm:fractional-integer-reader upto port) (define (accum-int port accum nchars) (let ((ch (peek-char port))) (if (or (eof-object? ch) (not (char-numeric? ch)) (and upto (>= nchars upto ))) (* accum (expt 10 (- upto nchars))) (accum-int port (+ (* accum 10) (tm:char->int (read-char port))) (+ nchars 1))))) (accum-int port 0 0)) (define (tm:make-fractional-integer-reader upto) (lambda (port) (tm:fractional-integer-reader upto port))) ;; read *exactly* n characters and convert to integer; could be padded (define (tm:integer-reader-exact n port) (let ( (padding-ok #t) ) (define (accum-int port accum nchars) (let ((ch (peek-char port))) (cond ((>= nchars n) accum) ((eof-object? ch) (tm:time-error 'string->date 'bad-date-template-string "Premature ending to integer read.")) ((char-numeric? ch) (set! padding-ok #f) (accum-int port (+ (* accum 10) (tm:char->int (read-char port))) (+ nchars 1))) (padding-ok (read-char port) ; consume padding (accum-int port accum (+ nchars 1))) (else ; padding where it shouldn't be (tm:time-error 'string->date 'bad-date-template-string "Non-numeric characters in integer read."))))) (accum-int port 0 0))) (define (tm:make-integer-exact-reader n) (lambda (port) (tm:integer-reader-exact n port))) (define (tm:zone-reader port) (let ( (offset 0) (positive? #f) ) (let ( (ch (read-char port)) ) (when (eof-object? ch) (tm:time-error 'string->date 'bad-date-template-string (list "Invalid time zone +/-" ch))) (if (or (char=? ch #\Z) (char=? ch #\z)) 0 (begin (cond ((char=? ch #\+) (set! positive? #t)) ((char=? ch #\-) (set! positive? #f)) (else (tm:time-error 'string->date 'bad-date-template-string (list "Invalid time zone +/-" ch)))) (let ((ch (read-char port))) (when (eof-object? ch) (tm:time-error 'string->date 'bad-date-template-string (list "Invalid time zone number" ch))) (set! offset (* (tm:char->int ch) 10 60 60))) (let ((ch (read-char port))) (unless (eof-object? ch) ;; FIXME: non-existing values should be considered Zero instead of an error ;; (tm:time-error 'string->date 'bad-date-template-string (list "Invalid time zone number" ch))) (set! offset (+ offset (* (tm:char->int ch) 60 60))))) (let ((ch (read-char port))) (unless (eof-object? ch) ;; FIXME: non-existing values should be considered Zero instead of an error ;; (tm:time-error 'string->date 'bad-date-template-string (list "Invalid time zone number" ch))) (set! offset (+ offset (* (tm:char->int ch) 10 60))))) (let ((ch (read-char port))) (unless (eof-object? ch) ;; FIXME: non-existing values should be considered Zero instead of an error ;; (tm:time-error 'string->date 'bad-date-template-string (list "Invalid time zone number" ch))) (set! offset (+ offset (* (tm:char->int ch) 60))))) (if positive? offset (- offset))))))) ;; looking at a char, read the char string, run thru indexer, return index (define (tm:locale-reader port indexer) (let ( (string-port (open-output-string)) ) (define (read-char-string) (let ((ch (peek-char port))) (if (char-alphabetic? ch) (begin (write-char (read-char port) string-port) (read-char-string)) (get-output-string string-port)))) (let* ( (str (read-char-string)) (index (indexer str)) ) (if index index (tm:time-error 'string->date 'bad-date-template-string (list "Invalid string for " indexer)))))) (define (tm:make-locale-reader indexer) (lambda (port) (tm:locale-reader port indexer))) (define (tm:make-char-id-reader char) (lambda (port) (if (char=? char (read-char port)) char (tm:time-error 'string->date 'bad-date-template-string "Invalid character match.")))) ;; A List of formatted read directives. ;; Each entry is a list. ;; 1. the character directive; ;; a procedure, which takes a character as input & returns ;; 2. #t as soon as a character on the input port is acceptable ;; for input, ;; 3. a port reader procedure that knows how to read the current port ;; for a value. Its one parameter is the port. ;; 4. a action procedure, that takes the value (from 3.) and some ;; object (here, always the date) and (probably) side-effects it. ;; In some cases (e.g., ~A) the action is to do nothing (define tm:read-directives (let ( (ireader4 (tm:make-integer-reader 4)) (ireader2 (tm:make-integer-reader 2)) (fireader9 (tm:make-fractional-integer-reader 9)) (ireaderf (tm:make-integer-reader #f)) (eireader2 (tm:make-integer-exact-reader 2)) (eireader4 (tm:make-integer-exact-reader 4)) (locale-reader-abbr-weekday (tm:make-locale-reader tm:locale-abbr-weekday->index)) (locale-reader-long-weekday (tm:make-locale-reader tm:locale-long-weekday->index)) (locale-reader-abbr-month (tm:make-locale-reader tm:locale-abbr-month->index)) (locale-reader-long-month (tm:make-locale-reader tm:locale-long-month->index)) (char-fail (lambda (ch) #t)) (do-nothing (lambda (val object) (values))) ) (list (list #\~ char-fail (tm:make-char-id-reader #\~) do-nothing) (list #\a char-alphabetic? locale-reader-abbr-weekday do-nothing) (list #\A char-alphabetic? locale-reader-long-weekday do-nothing) (list #\b char-alphabetic? locale-reader-abbr-month (lambda (val object) (tm:set-date-month! object val))) (list #\B char-alphabetic? locale-reader-long-month (lambda (val object) (tm:set-date-month! object val))) (list #\d char-numeric? ireader2 (lambda (val object) (tm:set-date-day! object val))) (list #\e char-fail eireader2 (lambda (val object) (tm:set-date-day! object val))) (list #\h char-alphabetic? locale-reader-abbr-month (lambda (val object) (tm:set-date-month! object val))) (list #\H char-numeric? ireader2 (lambda (val object) (tm:set-date-hour! object val))) (list #\k char-fail eireader2 (lambda (val object) (tm:set-date-hour! object val))) (list #\m char-numeric? ireader2 (lambda (val object) (tm:set-date-month! object val))) (list #\M char-numeric? ireader2 (lambda (val object) (tm:set-date-minute! object val))) (list #\N char-numeric? fireader9 (lambda (val object) (tm:set-date-nanosecond! object val))) (list #\S char-numeric? ireader2 (lambda (val object) (tm:set-date-second! object val))) (list #\y char-fail eireader2 (lambda (val object) (tm:set-date-year! object (tm:natural-year val)))) (list #\Y char-numeric? ireader4 (lambda (val object) (tm:set-date-year! object val))) (list #\z (lambda (c) (or (char=? c #\Z) (char=? c #\z) (char=? c #\+) (char=? c #\-))) tm:zone-reader (lambda (val object) (tm:set-date-zone-offset! object val))) ; PLT-specific extension for 2- or 4-digit years: (list #\? char-numeric? ireader4 (lambda (val object) (tm:set-date-year! object (tm:natural-year val)))) ))) (define (tm:string->date date index format-string str-len port template-string) (define (skip-until port skipper) (let ((ch (peek-char port))) (if (eof-object? ch) (tm:time-error 'string->date 'bad-date-format-string template-string) (unless (skipper ch) (read-char port) (skip-until port skipper))))) (if (>= index str-len) (begin (values)) (let ( (current-char (string-ref format-string index)) ) (if (not (char=? current-char #\~)) (let ((port-char (read-char port))) (when (or (eof-object? port-char) (not (char=? current-char port-char))) (tm:time-error 'string->date 'bad-date-format-string template-string)) (tm:string->date date (+ index 1) format-string str-len port template-string)) ;; otherwise, it's an escape, we hope (if (> (+ index 1) str-len) (tm:time-error 'string->date 'bad-date-format-string template-string) (let* ( (format-char (string-ref format-string (+ index 1))) (format-info (assoc format-char tm:read-directives)) ) (if (not format-info) (tm:time-error 'string->date 'bad-date-format-string template-string) (begin (let ((skipper (cadr format-info)) (reader (caddr format-info)) (actor (cadddr format-info))) (skip-until port skipper) (let ((val (reader port))) (if (eof-object? val) (tm:time-error 'string->date 'bad-date-format-string template-string) (actor val date))) (tm:string->date date (+ index 2) format-string str-len port template-string)))))))))) (define (string->date input-string template-string) (define (tm:date-ok? date) (and (date-nanosecond date) (srfi:date-second date) (srfi:date-minute date) (srfi:date-hour date) (srfi:date-day date) (srfi:date-month date) (srfi:date-year date) (date-zone-offset date))) (let ( (newdate (srfi:make-date 0 0 0 0 #t #t #t (tm:local-tz-offset))) ) (tm:string->date newdate 0 template-string (string-length template-string) (open-input-string input-string) template-string) (if (tm:date-ok? newdate) newdate (tm:time-error 'string->date 'bad-date-format-string (list "Incomplete date read. " newdate template-string)))))