(module list mzscheme (require "spidey.ss") (provide set-first! first second third fourth fifth sixth seventh eighth set-rest! rest cons? empty empty? foldl foldr last-pair remv remq remove remv* remq* remove* assf memf filter quicksort mergesort sort sort! merge-sorted-lists merge-sorted-lists!) ;; used by sort-internal, but can be useful by itself (define (merge-sorted-lists! a b less?) (define (loop r a b r-a?) ; r-a? for optimization -- is r connected to a? (if (less? (car b) (car a)) (begin (when r-a? (set-cdr! r b)) (if (null? (cdr b)) (set-cdr! b a) (loop b a (cdr b) #f))) ;; (car a) <= (car b) (begin (unless r-a? (set-cdr! r a)) (if (null? (cdr a)) (set-cdr! a b) (loop a (cdr a) b #t))))) (cond [(null? a) b] [(null? b) a] [(less? (car b) (car a)) (if (null? (cdr b)) (set-cdr! b a) (loop b a (cdr b) #f)) b] [else ; (car a) <= (car b) (if (null? (cdr a)) (set-cdr! a b) (loop a (cdr a) b #t)) a])) ;; a non-destructive version for symmetry with merge-sorted-lists! (define (merge-sorted-lists a b less?) (cond [(null? a) b] [(null? b) a] [else (let loop ([x (car a)] [a (cdr a)] [y (car b)] [b (cdr b)]) ;; The loop handles the merging of non-empty lists. It has ;; been written this way to save testing and car/cdring. (if (less? y x) (if (null? b) (list* y x a) (cons y (loop x a (car b) (cdr b)))) ;; x <= y (if (null? a) (list* x y b) (cons x (loop (car a) (cdr a) y b)))))])) ;; This is a destructive stable merge-sort, adapted from slib and improved by ;; Eli Barzilay ;; The original source said: ;; It uses a version of merge-sort invented, to the best of my knowledge, ;; by David H. D. Warren, and first used in the DEC-10 Prolog system. ;; R. A. O'Keefe adapted it to work destructively in Scheme. ;; but it's a plain destructive merge sort. (define (sort-internal lst less? copy? who) (define (step n) (cond [(> n 3) (let* (; let* not really needed with mzscheme's l->r eval [j (quotient n 2)] [a (step j)] [b (step (- n j))]) (merge-sorted-lists! a b less?))] ;; the following two cases are just explicit treatment of sublists ;; of length 2 and 3, could remove both (and use the above case for ;; n>1) and it would still work, except a little slower [(= n 3) (let ([p lst] [p1 (cdr lst)] [p2 (cddr lst)]) (let ([x (car p)] [y (car p1)] [z (car p2)]) (set! lst (cdr p2)) (cond [(less? y x) ; y x (cond [(less? z y) ; z y x (set-car! p z) (set-car! p1 y) (set-car! p2 x)] [(less? z x) ; y z x (set-car! p y) (set-car! p1 z) (set-car! p2 x)] [else ; y x z (set-car! p y) (set-car! p1 x)])] [(less? z x) ; z x y (set-car! p z) (set-car! p1 x) (set-car! p2 y)] [(less? z y) ; x z y (set-car! p1 z) (set-car! p2 y)]) (set-cdr! p2 '()) p))] [(= n 2) (let ([x (car lst)] [y (cadr lst)] [p lst]) (set! lst (cddr lst)) (when (less? y x) (set-car! p y) (set-car! (cdr p) x)) (set-cdr! (cdr p) '()) p)] [(= n 1) (let ([p lst]) (set! lst (cdr lst)) (set-cdr! p '()) p)] [else '()])) (unless (list? lst) (raise-type-error who "proper list" lst)) (unless (procedure-arity-includes? less? 2) (raise-type-error who "procedure of arity 2" less?)) (let ([n (length lst)]) (cond [(<= n 1) lst] ;; check if the list is already sorted ;; (which can be a common case, eg, directory lists). [(let loop ([last (car lst)] [next (cdr lst)]) (or (null? next) (and (not (less? (car next) last)) (loop (car next) (cdr next))))) lst] [else (when copy? (set! lst (append lst '()))) (step n)]))) (define (sort! lst less?) (sort-internal lst less? #f 'sort!)) (define (sort lst less?) (sort-internal lst less? #t 'sort)) ;; deprecated! (define quicksort (polymorphic (lambda (l less-than) (unless (list? l) (raise-type-error 'quicksort "proper list" l)) (unless (procedure-arity-includes? less-than 2) (raise-type-error 'quicksort "procedure of arity 2" less-than)) (let* ([v (list->vector l)] [count (vector-length v)]) (let loop ([min 0][max count]) (if (< min (sub1 max)) (let ([pval (vector-ref v min)]) (let pivot-loop ([pivot min] [pos (add1 min)]) (if (< pos max) (let ([cval (vector-ref v pos)]) (if (less-than cval pval) (begin (vector-set! v pos (vector-ref v pivot)) (vector-set! v pivot cval) (pivot-loop (add1 pivot) (add1 pos))) (pivot-loop pivot (add1 pos)))) (if (= min pivot) (loop (add1 pivot) max) (begin (loop min pivot) (loop pivot max)))))))) (vector->list v))))) ;; deprecated! (define mergesort sort) (define remove (polymorphic (letrec ([rm (case-lambda [(item list) (rm item list equal?)] [(item list equal?) (let loop ([list list]) (cond [(null? list) ()] [(equal? item (car list)) (cdr list)] [else (cons (car list) (loop (cdr list)))]))])]) rm))) (define remq (polymorphic (lambda (item list) (remove item list eq?)))) (define remv (polymorphic (lambda (item list) (remove item list eqv?)))) (define remove* (polymorphic (case-lambda [(l r equal?) (cond [(null? r) null] [else (let ([first-r (car r)]) (let loop ([l-rest l]) (cond [(null? l-rest) (cons first-r (remove* l (cdr r) equal?))] [(equal? (car l-rest) first-r) (remove* l (cdr r) equal?)] [else (loop (cdr l-rest))])))])] [(l r) (remove* l r equal?)]))) (define remq* (polymorphic (lambda (l r) (remove* l r eq?)))) (define remv* (polymorphic (lambda (l r) (remove* l r eqv?)))) ;; fold : ((A B -> B) B (listof A) -> B) ;; fold : ((A1 ... An B -> B) B (listof A1) ... (listof An) -> B) ;; foldl builds "B" from the beginning of the list to the end of the ;; list and foldr builds the "B" from the end of the list to the ;; beginning of the list. (define mapadd (polymorphic (lambda (f l last) (letrec ((helper (lambda (l) (cond [(null? l) (list last)] [else (cons (f (car l)) (helper (cdr l)))])))) (helper l))))) (define foldl (polymorphic (letrec ((fold-one (lambda (f init l) (letrec ((helper (lambda (init l) (cond [(null? l) init] [else (helper (f (car l) init) (cdr l))])))) (helper init l)))) (fold-n (lambda (f init l) (cond [(ormap null? l) (if (andmap null? l) init (error 'foldl "received non-equal length input lists"))] [else (fold-n f (apply f (mapadd car l init)) (map cdr l))])))) (case-lambda [(f init l) (fold-one f init l)] [(f init l . ls) (fold-n f init (cons l ls))])))) (define foldr (polymorphic (letrec ((fold-one (lambda (f init l) (letrec ((helper (lambda (init l) (cond [(null? l) init] [else (f (car l) (helper init (cdr l)))])))) (helper init l)))) (fold-n (lambda (f init l) (cond [(ormap null? l) (if (andmap null? l) init (error 'foldr "received non-equal length input lists"))] [else (apply f (mapadd car l (fold-n f init (map cdr l))))])))) (case-lambda [(f init l) (fold-one f init l)] [(f init l . ls) (fold-n f init (cons l ls))])))) (define make-find (lambda (name whole-list?) (polymorphic (lambda (f list) (unless (and (procedure? f) (procedure-arity-includes? f 1)) (raise-type-error name "procedure (arity 1)" f)) (let loop ([l list]) (cond [(null? l) #f] [(not (pair? l)) (raise (make-exn:fail:contract (format "~a: second argument must be a (proper) list; given ~e" name list) (current-continuation-marks)))] [else (let ([a (car l)]) (if whole-list? (if (f a) l (loop (cdr l))) (if (pair? a) (if (f (car a)) a (loop (cdr l))) (raise-mismatch-error name "found a non-pair in the list: " a))))])))))) (define assf (let ([a (make-find 'assf #f)]) (polymorphic (lambda (f l) (a f l))))) (define memf (let ([a (make-find 'memf #t)]) (polymorphic (lambda (f l) (a f l))))) (define filter (polymorphic (lambda (f list) (unless (and (procedure? f) (procedure-arity-includes? f 1)) (raise-type-error 'filter "procedure (arity 1)" f)) ;; We use the reverse! trick because it's too easy to ;; overflow the internal stack using natural recursion. ;; It's too bad that our Scheme system is so bad, but ;; until someone fixes it... (let loop ([l list][result null]) (cond [(null? l) (reverse! result)] [(pair? l) (loop (cdr l) (if (f (car l)) (cons (car l) result) result))] [else (raise-mismatch-error 'filter "expects a proper list: " list)]))))) (define first (polymorphic (lambda (x) (unless (pair? x) (raise-type-error 'first "non-empty list" x)) (car x)))) (define set-first! (polymorphic (lambda (x v) (unless (pair? x) (raise-type-error 'set-first! "non-empty list" x)) (set-car! x v)))) (define (lget name npos) (lambda (x) (let loop ([l x][pos npos]) (cond [(and (= pos 1) (pair? l)) (car l)] [(pair? l) (loop (cdr l) (sub1 pos))] [else (raise-type-error name (format "list with ~a or more items" npos) x)])))) ;; Gives the function a name: (define-syntax (mk-lget stx) (syntax-case stx () [(_ name pos) (syntax (polymorphic (let ([g (lget 'name pos)]) (lambda (x) (g x)))))])) (define second (mk-lget second 2)) (define third (mk-lget third 3)) (define fourth (mk-lget fourth 4)) (define fifth (mk-lget fifth 5)) (define sixth (mk-lget sixth 6)) (define seventh (mk-lget seventh 7)) (define eighth (mk-lget eighth 8)) (define rest (polymorphic (lambda (x) (unless (pair? x) (raise-type-error 'rest "non-empty list" x)) (cdr x)))) (define set-rest! (polymorphic (lambda (x v) (unless (pair? x) (raise-type-error 'set-rest! "non-empty list" x)) (unless (or (null? v) (pair? v)) (raise-type-error 'set-rest! "second argument must be a list" v)) (set-cdr! x v)))) (define last-pair (polymorphic (lambda (l) (if (pair? l) (let loop ((l l) (x (cdr l))) (if (pair? x) (loop x (cdr x)) l)) (raise-type-error 'last-pair "pair" l))))) (define cons? (lambda (x) (pair? x))) (define empty? (lambda (x) (null? x))) (define empty '()))