#lang typed/racket/base (require racket/flonum racket/performance-hint) (provide flonum->bit-field bit-field->flonum flonum->ordinal ordinal->flonum flstep flnext flprev flonums-between flulp) (: flonum->bit-field (Flonum -> Natural)) (define (flonum->bit-field x) (assert (integer-bytes->integer (real->floating-point-bytes x (ann 8 8)) #f) exact-nonnegative-integer?)) (: bit-field->flonum (Integer -> Flonum)) (define (bit-field->flonum i) (cond [(and (i . >= . 0) (i . <= . #xffffffffffffffff)) (floating-point-bytes->real (integer->integer-bytes i 8 #f))] [else (raise-argument-error 'bit-field->flonum "Integer in [0 .. #xffffffffffffffff]" i)])) (: flonum->ordinal (Flonum -> Integer)) (define (flonum->ordinal x) (cond [(x . fl< . 0.0) (- (flonum->bit-field (fl- 0.0 x)))] [else (flonum->bit-field (flabs x))])) ; abs for -0.0 (: ordinal->flonum (Integer -> Flonum)) (define (ordinal->flonum i) (cond [(and (i . >= . #x-7fffffffffffffff) (i . <= . #x7fffffffffffffff)) (cond [(i . < . 0) (fl- 0.0 (bit-field->flonum (- i)))] [else (bit-field->flonum i)])] [else (raise-argument-error 'ordinal->flonum "Integer in [#x-7fffffffffffffff .. #x7fffffffffffffff]" i)])) (define +inf-ordinal (flonum->ordinal +inf.0)) (define -inf-ordinal (flonum->ordinal -inf.0)) (: flstep (Flonum Integer -> Flonum)) (define (flstep x n) (cond [(not (and (x . fl>= . -inf.0) (x . fl<= . +inf.0))) +nan.0] [(and (fl= x +inf.0) (n . >= . 0)) +inf.0] [(and (fl= x -inf.0) (n . <= . 0)) -inf.0] [else (define i (+ n (flonum->ordinal x))) (cond [(i . < . -inf-ordinal) -inf.0] [(i . > . +inf-ordinal) +inf.0] [else (ordinal->flonum i)])])) (begin-encourage-inline (: flnext (Flonum -> Flonum)) (define (flnext x) (flstep x 1)) (: flprev (Flonum -> Flonum)) (define (flprev x) (flstep x -1)) (: flonums-between (Flonum Flonum -> Integer)) (define (flonums-between x y) (- (flonum->ordinal y) (flonum->ordinal x))) ) ; begin-encourage-inline (: flulp (Flonum -> (U Flonum-Nan Nonnegative-Flonum))) (define (flulp x) (let ([x (flabs x)]) (cond [(fl= x +inf.0) +nan.0] [(eqv? x +nan.0) +nan.0] [(fl= x 0.0) 0.0] [else (define ulp (flabs (fl- (flnext x) x))) (cond [(fl= ulp +inf.0) (flabs (fl- x (flprev x)))] [else ulp])])))