/* gc.c * Copyright 1984-2017 Cisco Systems, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "system.h" #include "sort.h" #ifndef WIN32 #include #endif /* WIN32 */ #include "popcount.h" #include /* GC Implementation ----------------- The copying, sweeping, and marking operations that depend on object's shape are mostly implemented in "mkgc.ss". That script generates "gc-ocd.inc" (for modes where object counting and backpointers are disabled) and "gc-oce.inc". The rest of the implementation here can still depend on representatoin details, though, especially for pairs, weak pairs, and ephemerons. GC Copying versus Marking ------------------------- Generations range from 0 to `S_G.max_nonstatic_generation` plus a static generation. After an object moves to the static generation, it doesn't move anymore. (In the case of code objects, relocations may be discarded when the code object moves into a static generation.) For the most part, collecting generations 0 through mgc (= max copied generation) to tg (= target generation) means copying objects from old segments into fresh segments at generation tg. Note that tg is either the same as or one larger than mgc. But objects might be marked [and swept] instead of copied [and swept] as triggered by two possibilities: one or more objects on the source segment are immobile (subsumes locked) or mgc == tg and the object is on a segment that hasn't been disovered as sparse by a precious marking (non-copying) pass. Segments with marked objects are promoted to generation tg. As a special case, locking on `space_new` does not mark all objects on that segment, because dirty-write handling cannot deal with `space_new`; only locked objects stay on the old segment in that case, and they have to be marked by looking at a list of locked objects. During a collection, the `old_space` flag is set on a segment if objects aree being copied out of it or marked on it; that is, `old_space` is set if the segment starts out in one of the generations 0 through mgc. If a segment is being marked instead of copied, the `use_marks` bit is also set; note that the bit will not be set for a `space_new` segment, and locked objects in that space will be specially marked. Marking an object means setting a bit in `marked_mask`, which is allocated as needed. Any segments that ends up with a non-NULL `marked_mask` is promoted to tg at the end of collection. If a marked object spans multiple segments, then `masked_mask` is created across all of the segments. It's possible for a segment to end up with `marked_mask` even though `use_marks` was not set: an marked object spanned into the segment, or it's `space_new` segment with locked objects; in that case, other objects will be copied out of the segment, because `use_marks` is how relocation decides whether to copy or mark. If an object is copied, then its first word is set to `forward_marker` and its second word is set to the new address. Obviously, that doesn't happen if an object is marked. So, to test whether an object has been reached: * the object must be in an `old_space` segment, otherwise it counts as reached because it's in a generation older than mcg; * the object either starts with `forward_marker` or its mark bit is set (and those arer mutually exclusive). Besides the one bit at the start of an object, extra bits for the object content may be set as well. Those extra bits tell the dirty-object sweeper which words in a previously marked page should be swept and which should be skipped, so the extra bits are only needed for impure objects in certain kinds of spaces. Only every alternate word needs to be marked that way, so half of the mark bits are usually irrelevant; the exception is that flonums can be between normal object-start positions, so those mark bits can matter, at least if we're preserving `eq?` on flonums (but the bits are not relevant to dirty-object sweeping, since flonums don't have pointer fields). It's ok to sweep an object multiple times (but to be be avoided if possible). Pending Ephemerons and Guardians -------------------------------- Ephemerons and guardians act as a kind of "and": an object stays reachable only if some other object (besdies the the ephemeron/guardian itself) is reachable or not. Instead of rechecking all guardians and ephemerons constantly, the collector queues pending guardians and ephemerons on the ssegment where the relevant object lives. If any object on that segment is discovered to be reachable (i.e., copied or marked), the guardian/ephemeron is put into a list of things to check again. */ /* locally defined functions */ static ptr copy PROTO((ptr pp, seginfo *si)); static void mark_object PROTO((ptr pp, seginfo *si)); static void sweep PROTO((ptr tc, ptr p)); static void sweep_in_old PROTO((ptr tc, ptr p)); static IBOOL object_directly_refers_to_self PROTO((ptr p)); static ptr copy_stack PROTO((ptr old, iptr *length, iptr clength)); static void resweep_weak_pairs PROTO((IGEN g, seginfo *oldweakspacesegments)); static void forward_or_bwp PROTO((ptr *pp, ptr p)); static void sweep_generation PROTO((ptr tc, IGEN g)); static void sweep_from_stack PROTO((ptr tc)); static void enlarge_sweep_stack PROTO(()); static uptr size_object PROTO((ptr p)); static iptr sweep_typed_object PROTO((ptr tc, ptr p)); static void sweep_symbol PROTO((ptr p)); static void sweep_port PROTO((ptr p)); static void sweep_thread PROTO((ptr p)); static void sweep_continuation PROTO((ptr p)); static void sweep_record PROTO((ptr x)); static IGEN sweep_dirty_record PROTO((ptr x, IGEN tg, IGEN youngest)); static IGEN sweep_dirty_port PROTO((ptr x, IGEN tg, IGEN youngest)); static IGEN sweep_dirty_symbol PROTO((ptr x, IGEN tg, IGEN youngest)); static void sweep_code_object PROTO((ptr tc, ptr co)); static void record_dirty_segment PROTO((IGEN from_g, IGEN to_g, seginfo *si)); static void sweep_dirty PROTO((void)); static void resweep_dirty_weak_pairs PROTO((void)); static void mark_typemod_data_object PROTO((ptr p, uptr len, seginfo *si)); static void add_pending_guardian PROTO((ptr gdn, ptr tconc)); static void add_trigger_guardians_to_recheck PROTO((ptr ls)); static void add_ephemeron_to_pending PROTO((ptr p)); static void add_trigger_ephemerons_to_pending PROTO((ptr p)); static void check_triggers PROTO((seginfo *si)); static void check_ephemeron PROTO((ptr pe)); static void check_pending_ephemerons PROTO(()); static int check_dirty_ephemeron PROTO((ptr pe, int tg, int youngest)); static void finish_pending_ephemerons PROTO((seginfo *si)); static void init_fully_marked_mask(); static void copy_and_clear_list_bits(seginfo *oldspacesegments, IGEN tg); #ifdef ENABLE_OBJECT_COUNTS static uptr total_size_so_far(); static uptr list_length PROTO((ptr ls)); #endif static uptr target_generation_space_so_far(); #ifdef ENABLE_MEASURE static void init_measure(IGEN min_gen, IGEN max_gen); static void finish_measure(); static void measure(ptr p); static IBOOL flush_measure_stack(); static void init_measure_mask(seginfo *si); static void init_counting_mask(seginfo *si); static void push_measure(ptr p); static void measure_add_stack_size(ptr stack, uptr size); static void add_ephemeron_to_pending_measure(ptr pe); static void add_trigger_ephemerons_to_pending_measure(ptr pe); static void check_ephemeron_measure(ptr pe); static void check_pending_measure_ephemerons(); #endif /* #define DEBUG */ /* initialized and used each gc cycle. any others should be defined in globals.h */ static IBOOL change; static IGEN target_generation; static IGEN max_copied_generation; static ptr sweep_loc[max_real_space+1]; static ptr orig_next_loc[max_real_space+1]; static ptr tlcs_to_rehash; static ptr conts_to_promote; static ptr recheck_guardians_ls; #ifdef ENABLE_OBJECT_COUNTS static int measure_all_enabled; static uptr count_root_bytes; #endif static ptr *sweep_stack_start, *sweep_stack, *sweep_stack_limit; static octet *fully_marked_mask; #define push_sweep(p) { \ if (sweep_stack == sweep_stack_limit) enlarge_sweep_stack(); \ *(sweep_stack++) = p; } #ifdef ENABLE_MEASURE static uptr measure_total; /* updated by `measure` */ static IGEN min_measure_generation, max_measure_generation; static ptr *measure_stack_start, *measure_stack, *measure_stack_limit; static ptr measured_seginfos; static ptr pending_measure_ephemerons; #endif #ifdef ENABLE_BACKREFERENCE static ptr sweep_from; # define BACKREFERENCES_ENABLED S_G.enable_object_backreferences # define SET_SWEEP_FROM(p) if (S_G.enable_object_backreferences) sweep_from = p # define WITH_TOP_BACKREFERENCE(v, e) SET_SWEEP_FROM(v); e; SET_SWEEP_FROM(Sfalse) # define SET_BACKREFERENCE(p) sweep_from = p; # define PUSH_BACKREFERENCE(p) ptr old_sweep_from = sweep_from; SET_SWEEP_FROM(p); # define POP_BACKREFERENCE() SET_SWEEP_FROM(old_sweep_from); # define ADD_BACKREFERENCE_FROM(p, from_p) \ { IGEN tg = target_generation; \ if ((S_G.enable_object_backreferences) && (target_generation < static_generation)) \ S_G.gcbackreference[tg] = S_cons_in(space_impure, tg, \ S_cons_in(space_impure, tg, p, from_p), \ S_G.gcbackreference[tg]); } # define ADD_BACKREFERENCE(p) ADD_BACKREFERENCE_FROM(p, sweep_from) #else # define BACKREFERENCES_ENABLED 0 # define WITH_TOP_BACKREFERENCE(v, e) e # define SET_BACKREFERENCE(p) # define PUSH_BACKREFERENCE(p) # define POP_BACKREFERENCE() # define ADD_BACKREFERENCE(p) # define ADD_BACKREFERENCE_FROM(p, from_p) #endif #if ptr_alignment == 2 # define record_full_marked_mask 0x55 # define record_high_marked_bit 0x40 # define mask_bits_to_list_bits_mask(m) ((m) | ((m) << 1)) #elif ptr_alignment == 1 # define record_full_marked_mask 0xFF # define record_high_marked_bit 0x80 # define mask_bits_to_list_bits_mask(m) (m) #endif #define segment_sufficiently_compact_bytes ((bytes_per_segment * 3) / 4) #define chunk_sufficiently_compact(nsegs) ((nsegs) >> 2) /* Values for a guardian entry's `pending` field when it's added to a seginfo's pending list: */ enum { GUARDIAN_PENDING_HOLD, GUARDIAN_PENDING_FINAL }; #ifdef ENABLE_OBJECT_COUNTS uptr list_length(ptr ls) { uptr i = 0; while (ls != Snil) { ls = Scdr(ls); i += 1; } return i; } #endif #define init_mask(dest, tg, init) { \ find_room_voidp(space_data, tg, ptr_align(segment_bitmap_bytes), dest); \ memset(dest, init, segment_bitmap_bytes); \ } #define marked(si, p) (si->marked_mask && (si->marked_mask[segment_bitmap_byte(p)] & segment_bitmap_bit(p))) static void init_fully_marked_mask() { init_mask(fully_marked_mask, target_generation, 0xFF); } #ifdef PRESERVE_FLONUM_EQ static void flonum_set_forwarded(ptr p, seginfo *si) { if (!si->forwarded_flonums) init_mask(si->forwarded_flonums, 0, 0); si->forwarded_flonums[segment_bitmap_byte(p)] |= segment_bitmap_bit(p); } static int flonum_is_forwarded_p(ptr p, seginfo *si) { if (!si->forwarded_flonums) return 0; else return si->forwarded_flonums[segment_bitmap_byte(p)] & segment_bitmap_bit(p); } # define FLONUM_FWDADDRESS(p) *(ptr*)TO_VOIDP(UNTYPE(p, type_flonum)) # define FORWARDEDP(p, si) ((TYPEBITS(p) == type_flonum) ? flonum_is_forwarded_p(p, si) : (FWDMARKER(p) == forward_marker)) # define GET_FWDADDRESS(p) ((TYPEBITS(p) == type_flonum) ? FLONUM_FWDADDRESS(p) : FWDADDRESS(p)) #else # define FORWARDEDP(p, si) (FWDMARKER(p) == forward_marker && TYPEBITS(p) != type_flonum) # define GET_FWDADDRESS(p) FWDADDRESS(p) #endif #ifdef ENABLE_OBJECT_COUNTS # define ELSE_MEASURE_NONOLDSPACE(p) \ else if (measure_all_enabled) \ push_measure(p); #else # define ELSE_MEASURE_NONOLDSPACE(p) /* empty */ #endif #define relocate(ppp) {\ ptr PP;\ PP = *ppp;\ relocate_help(ppp, PP)\ } /* optimization of: * relocate(ppp) * if (GENERATION(*ppp) < youngest) * youngest = GENERATION(*ppp); */ #define relocate_dirty(ppp,tg,youngest) {\ ptr PP = *ppp; seginfo *SI;\ if (!IMMEDIATE(PP) && (SI = MaybeSegInfo(ptr_get_segment(PP))) != NULL) {\ if (SI->old_space) {\ relocate_help_help(ppp, PP, SI)\ youngest = tg;\ } else {\ IGEN pg;\ if (youngest != tg && (pg = SI->generation) < youngest) {\ youngest = pg;\ }\ }\ }\ } #define relocate_help(ppp, pp) {\ seginfo *SI; \ if (!IMMEDIATE(pp) && (SI = MaybeSegInfo(ptr_get_segment(pp))) != NULL) { \ if (SI->old_space) \ relocate_help_help(ppp, pp, SI) \ ELSE_MEASURE_NONOLDSPACE(pp) \ } \ } #define relocate_help_help(ppp, pp, si) { \ if (FORWARDEDP(pp, si)) \ *ppp = GET_FWDADDRESS(pp); \ else if (!marked(si, pp)) \ mark_or_copy(*ppp, pp, si); \ } #define relocate_code(pp, si) { \ if (FWDMARKER(pp) == forward_marker) \ pp = GET_FWDADDRESS(pp); \ else if (si->old_space) { \ if (!marked(si, pp)) \ mark_or_copy(pp, pp, si); \ } ELSE_MEASURE_NONOLDSPACE(pp) \ } #define mark_or_copy(dest, p, si) { \ if (si->use_marks) \ mark_object(p, si); \ else \ dest = copy(p, si); \ } #ifdef ENABLE_OBJECT_COUNTS # define is_counting_root(si, p) (si->counting_mask && (si->counting_mask[segment_bitmap_byte(p)] & segment_bitmap_bit(p))) #endif FORCEINLINE void check_triggers(seginfo *si) { /* Registering ephemerons and guardians to recheck at the granularity of a segment means that the worst-case complexity of GC is quadratic in the number of objects that fit into a segment (but that only happens if the objects are ephemeron keys that are reachable just through a chain via the value field of the same ephemerons). */ if (si->has_triggers) { if (si->trigger_ephemerons) { add_trigger_ephemerons_to_pending(si->trigger_ephemerons); si->trigger_ephemerons = 0; } if (si->trigger_guardians) { add_trigger_guardians_to_recheck(si->trigger_guardians); si->trigger_guardians = 0; } si->has_triggers = 0; } } #ifndef ENABLE_OBJECT_COUNTS # include "gc-ocd.inc" #else # include "gc-oce.inc" #endif /* sweep_in_old() is like sweep(), but the goal is to sweep the object's content without copying the object itself, so we're sweep an object while it's still in old space. If an object refers back to itself, naively sweeping might copy the object while we're trying to sweep the old copy, which interacts badly with the words set to a forwarding marker and pointer. To handle that problem, sweep_in_old() is allowed to copy the object, since the object is going to get copied anyway. */ static void sweep_in_old(ptr tc, ptr p) { /* Detect all the cases when we need to give up on in-place sweeping: */ if (object_directly_refers_to_self(p)) { relocate(&p) return; } /* We've determined that `p` won't refer immediately back to itself, so it's ok to use sweep(). */ sweep(tc, p); } static void sweep_dirty_object_if_space_new(ptr p, IGEN tg) { seginfo *si = SegInfo(ptr_get_segment(p)); if (si->space == space_new) (void)sweep_dirty_object(p, tg, 0); } static ptr copy_stack(old, length, clength) ptr old; iptr *length, clength; { iptr n, m; ptr new; seginfo *si = SegInfo(ptr_get_segment(old)); /* Don't copy non-oldspace stacks, since we may be sweeping a continuation that is older than target_generation. Doing so would be a waste of work anyway. */ if (!si->old_space) return old; n = *length; if (si->use_marks) { if (!marked(si, old)) { mark_typemod_data_object(old, n, si); #ifdef ENABLE_OBJECT_COUNTS S_G.countof[target_generation][countof_stack] += 1; S_G.bytesof[target_generation][countof_stack] += n; #endif } return old; } /* reduce headroom created for excessively large frames (typically resulting from apply with long lists) */ if (n != clength && n > default_stack_size && n > (m = clength + one_shot_headroom)) { *length = n = m; } n = ptr_align(n); #ifdef ENABLE_OBJECT_COUNTS S_G.countof[target_generation][countof_stack] += 1; S_G.bytesof[target_generation][countof_stack] += n; #endif /* ENABLE_OBJECT_COUNTS */ find_room(space_data, target_generation, typemod, n, new); n = ptr_align(clength); /* warning: stack may have been left non-double-aligned by split_and_resize */ memcpy_aligned(TO_VOIDP(new), TO_VOIDP(old), n); /* also returning possibly updated value in *length */ return new; } #define NONSTATICINHEAP(si, x) (!IMMEDIATE(x) && (si = MaybeSegInfo(ptr_get_segment(x))) != NULL && si->generation != static_generation) #define ALWAYSTRUE(si, x) (si = SegInfo(ptr_get_segment(x)), 1) #define partition_guardians(LS, FILTER) { \ ptr ls; seginfo *si;\ for (ls = LS; ls != Snil; ls = next) { \ obj = GUARDIANOBJ(ls); \ next = GUARDIANNEXT(ls); \ \ if (FILTER(si, obj)) { \ if (!si->old_space || marked(si, obj)) { \ INITGUARDIANNEXT(ls) = pend_hold_ls; \ pend_hold_ls = ls; \ } else if (FORWARDEDP(obj, si)) { \ INITGUARDIANOBJ(ls) = GET_FWDADDRESS(obj); \ INITGUARDIANNEXT(ls) = pend_hold_ls; \ pend_hold_ls = ls; \ } else { \ seginfo *t_si; \ tconc = GUARDIANTCONC(ls); \ t_si = SegInfo(ptr_get_segment(tconc)); \ if (!t_si->old_space || marked(t_si, tconc)) { \ INITGUARDIANNEXT(ls) = final_ls; \ final_ls = ls; \ } else if (FWDMARKER(tconc) == forward_marker) { \ INITGUARDIANTCONC(ls) = FWDADDRESS(tconc); \ INITGUARDIANNEXT(ls) = final_ls; \ final_ls = ls; \ } else { \ INITGUARDIANNEXT(ls) = pend_final_ls; \ pend_final_ls = ls; \ } \ } \ } \ } \ } typedef struct count_root_t { ptr p; IBOOL weak; } count_root_t; ptr GCENTRY(ptr tc, IGEN mcg, IGEN tg, ptr count_roots_ls) { IGEN g; ISPC s; seginfo *oldspacesegments, *oldweakspacesegments, *si, *nextsi; ptr ls; bucket_pointer_list *buckets_to_rebuild; uptr pre_finalization_size, pre_phantom_bytes; #ifdef ENABLE_OBJECT_COUNTS ptr count_roots_counts = Snil; iptr count_roots_len; count_root_t *count_roots; #endif /* flush instruction cache: effectively clear_code_mod but safer */ for (ls = S_threads; ls != Snil; ls = Scdr(ls)) { ptr tc = (ptr)THREADTC(Scar(ls)); S_flush_instruction_cache(tc); } tlcs_to_rehash = Snil; conts_to_promote = Snil; for (ls = S_threads; ls != Snil; ls = Scdr(ls)) { ptr tc = (ptr)THREADTC(Scar(ls)); S_scan_dirty(TO_VOIDP(EAP(tc)), TO_VOIDP(REAL_EAP(tc))); EAP(tc) = REAL_EAP(tc) = AP(tc) = (ptr)0; } /* perform after ScanDirty */ if (S_checkheap) S_check_heap(0, mcg); #ifdef DEBUG (void)printf("mcg = %x; go? ", mcg); (void)fflush(stdout); (void)getc(stdin); #endif target_generation = tg; max_copied_generation = mcg; sweep_stack_start = sweep_stack = sweep_stack_limit = NULL; fully_marked_mask = NULL; /* set up generations to be copied */ for (s = 0; s <= max_real_space; s++) for (g = 0; g <= mcg; g++) { S_G.base_loc[s][g] = FIX(0); S_G.first_loc[s][g] = FIX(0); S_G.next_loc[s][g] = FIX(0); S_G.bytes_left[s][g] = 0; S_G.bytes_of_space[s][g] = 0; } /* reset phantom size in generations to be copied, even if counting is not otherwise enabled */ pre_phantom_bytes = 0; for (g = 0; g <= mcg; g++) { pre_phantom_bytes += S_G.bytesof[g][countof_phantom]; S_G.bytesof[g][countof_phantom] = 0; } pre_phantom_bytes += S_G.bytesof[tg][countof_phantom]; /* set up target generation sweep_loc and orig_next_loc pointers */ for (s = 0; s <= max_real_space; s++) orig_next_loc[s] = sweep_loc[s] = S_G.next_loc[s][tg]; /* mark segments from which objects are to be copied or marked */ oldspacesegments = oldweakspacesegments = (seginfo *)NULL; for (s = 0; s <= max_real_space; s += 1) { for (g = 0; g <= mcg; g += 1) { IBOOL maybe_mark = ((tg == S_G.min_mark_gen) && (g == tg)); for (si = S_G.occupied_segments[s][g]; si != NULL; si = nextsi) { nextsi = si->next; si->next = oldspacesegments; oldspacesegments = si; si->old_space = 1; if (si->must_mark || (maybe_mark && (!si->marked_mask || (si->marked_count >= segment_sufficiently_compact_bytes)) && (si->chunk->nused_segs >= chunk_sufficiently_compact(si->chunk->segs)))) { if (s != space_new) /* only lock-based marking is allowed on space_new */ si->use_marks = 1; /* update generation now, so that any updated dirty references will record the correct new generation; also used for a check in S_dirty_set */ si->generation = tg; } si->marked_mask = NULL; /* clear old mark bits, if any */ si->marked_count = 0; si->min_dirty_byte = 0; /* prevent registering as dirty while GCing */ } S_G.occupied_segments[s][g] = NULL; } if (s == space_weakpair) { /* prefix of oldweakspacesegments is for weak pairs */ oldweakspacesegments = oldspacesegments; } } #ifdef ENABLE_OBJECT_COUNTS /* clear object counts & bytes for copied generations; bump timestamp */ {INT i; for (g = 0; g <= mcg; g += 1) { for (i = 0; i < countof_types; i += 1) { S_G.countof[g][i] = 0; S_G.bytesof[g][i] = 0; } if (g == 0) { S_G.gctimestamp[g] += 1; } else { S_G.gctimestamp[g] = S_G.gctimestamp[0]; } } } #endif /* ENABLE_OBJECT_COUNTS */ /* Clear any backreference lists for copied generations */ for (g = 0; g <= mcg; g += 1) { S_G.gcbackreference[g] = Snil; } SET_BACKREFERENCE(Sfalse) /* #f => root */ /* Set mark bit for any locked object in `space_new`. Don't sweep until after handling counting roots. Note that the segment won't have `use_marks` set, so non-locked objects will be copied out. */ for (g = 0; g <= mcg; g += 1) { for (ls = S_G.locked_objects[g]; ls != Snil; ls = Scdr(ls)) { ptr p = Scar(ls); seginfo *si = SegInfo(ptr_get_segment(p)); if (si->space == space_new) { if (!si->marked_mask) init_mask(si->marked_mask, tg, 0); si->marked_mask[segment_bitmap_byte(p)] |= segment_bitmap_bit(p); } } } #ifdef ENABLE_OBJECT_COUNTS /* set flag on count_roots objects so they get copied to space_count_root */ if (count_roots_ls != Sfalse) { iptr i; count_roots_len = list_length(count_roots_ls); find_room_voidp(space_data, 0, ptr_align(count_roots_len*sizeof(count_root_t)), count_roots); for (ls = count_roots_ls, i = 0; ls != Snil; ls = Scdr(ls), i++) { ptr p = Scar(ls); if (IMMEDIATE(p)) { count_roots[i].p = p; count_roots[i].weak = 0; } else { seginfo *ls_si = SegInfo(ptr_get_segment(ls)); seginfo *si = SegInfo(ptr_get_segment(p)); if (!si->counting_mask) init_counting_mask(si); si->counting_mask[segment_bitmap_byte(p)] |= segment_bitmap_bit(p); count_roots[i].p = p; count_roots[i].weak = ((ls_si->space == space_weakpair) || (ls_si->space == space_ephemeron)); } } } else { count_roots_len = 0; count_roots = NULL; } #endif #ifdef ENABLE_OBJECT_COUNTS /* sweep count_roots in order and accumulate counts */ if (count_roots_len > 0) { ptr prev = 0; uptr prev_total = total_size_so_far(); iptr i; # ifdef ENABLE_MEASURE init_measure(tg+1, static_generation); # endif for (i = 0; i < count_roots_len; i++) { uptr total; ptr p = count_roots[i].p; if (IMMEDIATE(p)) { /* nothing to do */ } else { seginfo *si = SegInfo(ptr_get_segment(p)); si->counting_mask[segment_bitmap_byte(p)] -= segment_bitmap_bit(p); if (!si->old_space || FORWARDEDP(p, si) || marked(si, p) || !count_roots[i].weak) { /* reached or older; sweep transitively */ relocate(&p) sweep(tc, p); ADD_BACKREFERENCE(p) sweep_generation(tc, tg); # ifdef ENABLE_MEASURE while (flush_measure_stack()) { sweep_generation(tc, tg); } # endif /* now count this object's size, if we have deferred it before */ si = SegInfo(ptr_get_segment(p)); if ((si->space == space_count_pure) || (si->space == space_count_impure)) count_root_bytes -= size_object(p); } } total = total_size_so_far(); p = S_cons_in(space_new, 0, FIX(total-prev_total), Snil); if (prev != 0) Scdr(prev) = p; else count_roots_counts = p; prev = p; prev_total = total; } # ifdef ENABLE_MEASURE finish_measure(); # endif /* clear `counting_mask`s */ for (i = 0; i < count_roots_len; i++) { ptr p = count_roots[i].p; if (!IMMEDIATE(p)) { seginfo *si = SegInfo(ptr_get_segment(p)); si->counting_mask = NULL; } } } #endif /* sweep older locked and unlocked objects that are on `space_new` segments, because we can't find dirty writes there */ for (g = mcg + 1; g <= static_generation; INCRGEN(g)) { for (ls = S_G.locked_objects[g]; ls != Snil; ls = Scdr(ls)) sweep_dirty_object_if_space_new(Scar(ls), tg); for (ls = S_G.unlocked_objects[g]; ls != Snil; ls = Scdr(ls)) sweep_dirty_object_if_space_new(Scar(ls), tg); } /* Gather and mark all younger locked objects. Any object on a `space_new` segment is already marked, but still needs to be swept. */ { ptr locked_objects = ((tg > mcg) ? S_G.locked_objects[tg] : Snil); for (g = 0; g <= mcg; g += 1) { for (ls = S_G.locked_objects[g]; ls != Snil; ls = Scdr(ls)) { ptr p = Scar(ls); seginfo *si = SegInfo(ptr_get_segment(p)); if (si->space == space_new) { /* Retract the mark bit and mark properly, so anything that needs to happen with marking will happen. */ if (!marked(si, p)) S_error_abort("space_new locked object should have a mark bit set"); si->marked_mask[segment_bitmap_byte(p)] -= segment_bitmap_bit(p); mark_object(p, si); } /* non-`space_new` objects will be swept via new pair */ locked_objects = S_cons_in(space_impure, tg, p, locked_objects); #ifdef ENABLE_OBJECT_COUNTS S_G.countof[tg][countof_pair] += 1; S_G.countof[tg][countof_locked] += 1; S_G.bytesof[target_generation][countof_locked] += size_object(p); #endif /* ENABLE_OBJECT_COUNTS */ } S_G.locked_objects[g] = Snil; S_G.unlocked_objects[g] = Snil; } S_G.locked_objects[tg] = locked_objects; } /* sweep non-oldspace threads, since any thread may have an active stack */ for (ls = S_threads; ls != Snil; ls = Scdr(ls)) { ptr thread; /* someone may have their paws on the list */ if (FWDMARKER(ls) == forward_marker) ls = FWDADDRESS(ls); thread = Scar(ls); if (!OLDSPACE(thread)) sweep_thread(thread); } relocate(&S_threads) /* relocate nonempty oldspace symbols and set up list of buckets to rebuild later */ buckets_to_rebuild = NULL; for (g = 0; g <= mcg; g += 1) { bucket_list *bl, *blnext; bucket *b; bucket_pointer_list *bpl; bucket **oblist_cell; ptr sym; iptr idx; for (bl = S_G.buckets_of_generation[g]; bl != NULL; bl = blnext) { blnext = bl->cdr; b = bl->car; /* mark this bucket old for the rebuilding loop */ b->next = TO_VOIDP((uptr)TO_PTR(b->next) | 1); sym = b->sym; idx = UNFIX(SYMHASH(sym)) % S_G.oblist_length; oblist_cell = &S_G.oblist[idx]; if (!((uptr)TO_PTR(*oblist_cell) & 1)) { /* mark this bucket in the set */ *oblist_cell = TO_VOIDP((uptr)TO_PTR(*oblist_cell) | 1); /* repurpose the bucket list element for the list of buckets to rebuild later */ /* idiot_checks verifies these have the same size */ bpl = (bucket_pointer_list *)bl; bpl->car = oblist_cell; bpl->cdr = buckets_to_rebuild; buckets_to_rebuild = bpl; } if (FWDMARKER(sym) != forward_marker && /* coordinate with alloc.c */ (SYMVAL(sym) != sunbound || SYMPLIST(sym) != Snil || SYMSPLIST(sym) != Snil)) { seginfo *sym_si = SegInfo(ptr_get_segment(sym)); if (!marked(sym_si, sym)) mark_or_copy(sym, sym, sym_si); } } S_G.buckets_of_generation[g] = NULL; } /* relocate the protected C pointers */ {uptr i; for (i = 0; i < S_G.protect_next; i++) relocate(S_G.protected[i]) } /* sweep areas marked dirty by assignments into older generations */ sweep_dirty(); sweep_generation(tc, tg); pre_finalization_size = target_generation_space_so_far(); /* handle guardians */ { ptr hold_ls, pend_hold_ls, final_ls, pend_final_ls, maybe_final_ordered_ls; ptr obj, rep, tconc, next; IBOOL do_ordered = 0; /* move each entry in guardian lists into one of: * pend_hold_ls if obj accessible * final_ls if obj not accessible and tconc accessible * pend_final_ls if obj not accessible and tconc not accessible * When a pend_hold_ls or pend_final_ls entry is tconc is * determined to be accessible, then it moves to hold_ls or * final_ls. When an entry in pend_hold_ls or pend_final_ls can't * be moved to final_ls or hold_ls, the entry moves into a * seginfo's trigger list (to avoid quadratic-time processing of * guardians). When the trigger fires, the entry is added to * recheck_guardians_ls, which is sorted back into pend_hold_ls * and pend_final_ls for another iteration. * Ordered and unordered guardian entries start out together; * when final_ls is processed, ordered entries are delayed by * moving them into maybe_final_ordered_ls, which is split back * into final_ls and pend_hold_ls after all unordered entries * have been handled. */ pend_hold_ls = final_ls = pend_final_ls = maybe_final_ordered_ls = Snil; recheck_guardians_ls = Snil; for (ls = S_threads; ls != Snil; ls = Scdr(ls)) { ptr tc = (ptr)THREADTC(Scar(ls)); partition_guardians(GUARDIANENTRIES(tc), NONSTATICINHEAP); GUARDIANENTRIES(tc) = Snil; } for (g = 0; g <= mcg; g += 1) { partition_guardians(S_G.guardians[g], ALWAYSTRUE); S_G.guardians[g] = Snil; } /* invariants after partition_guardians: * for entry in pend_hold_ls, obj is !OLDSPACE * for entry in final_ls, obj is OLDSPACE * for entry in final_ls, tconc is !OLDSPACE * for entry in pend_final_ls, obj and tconc are OLDSPACE */ hold_ls = S_G.guardians[tg]; while (1) { IBOOL relocate_rep = final_ls != Snil; /* relocate & add the final objects to their tconcs */ ls = final_ls; final_ls = Snil; for (; ls != Snil; ls = next) { ptr old_end, new_end; next = GUARDIANNEXT(ls); rep = GUARDIANREP(ls); /* ftype_guardian_rep is a marker for reference-counted ftype pointer */ if (rep == ftype_guardian_rep) { int b; uptr *addr; rep = GUARDIANOBJ(ls); if (FWDMARKER(rep) == forward_marker) rep = FWDADDRESS(rep); /* Caution: Building in assumption about shape of an ftype pointer */ addr = TO_VOIDP(RECORDINSTIT(rep, 0)); LOCKED_DECR(addr, b); if (!b) continue; } if (!do_ordered && (GUARDIANORDERED(ls) == Strue)) { /* Sweep from the representative, but don't copy the representative itself; if the object stays uncopied by the end, then the entry is really final, and we copy the representative only at that point; crucially, the representative can't itself be a tconc, so we won't discover any new tconcs at that point. */ ptr obj = GUARDIANOBJ(ls); seginfo *o_si = SegInfo(ptr_get_segment(obj)); if (FORWARDEDP(obj, o_si) || marked(o_si, obj)) { /* Object is reachable, so we might as well move this one to the hold list --- via pend_hold_ls, which leads to a copy to move to hold_ls */ INITGUARDIANNEXT(ls) = pend_hold_ls; pend_hold_ls = ls; } else { seginfo *si; if (!IMMEDIATE(rep) && (si = MaybeSegInfo(ptr_get_segment(rep))) != NULL && si->old_space) { PUSH_BACKREFERENCE(rep) sweep_in_old(tc, rep); POP_BACKREFERENCE() } INITGUARDIANNEXT(ls) = maybe_final_ordered_ls; maybe_final_ordered_ls = ls; } } else { /* if tconc was old it's been forwarded */ tconc = GUARDIANTCONC(ls); WITH_TOP_BACKREFERENCE(tconc, relocate(&rep)); old_end = Scdr(tconc); /* allocate new_end in tg, in case `tconc` is on a marked segment */ new_end = S_cons_in(space_impure, tg, FIX(0), FIX(0)); #ifdef ENABLE_OBJECT_COUNTS S_G.countof[tg][countof_pair] += 1; #endif /* ENABLE_OBJECT_COUNTS */ SETCAR(old_end,rep); SETCDR(old_end,new_end); SETCDR(tconc,new_end); } } /* discard static pend_hold_ls entries */ if (tg != static_generation) { /* copy each entry in pend_hold_ls into hold_ls if tconc accessible */ ls = pend_hold_ls; pend_hold_ls = Snil; for ( ; ls != Snil; ls = next) { ptr p; seginfo *t_si; tconc = GUARDIANTCONC(ls); next = GUARDIANNEXT(ls); t_si = SegInfo(ptr_get_segment(tconc)); if (t_si->old_space && !marked(t_si, tconc)) { if (FWDMARKER(tconc) == forward_marker) tconc = FWDADDRESS(tconc); else { INITGUARDIANPENDING(ls) = FIX(GUARDIAN_PENDING_HOLD); add_pending_guardian(ls, tconc); continue; } } rep = GUARDIANREP(ls); WITH_TOP_BACKREFERENCE(tconc, relocate(&rep)); relocate_rep = 1; #ifdef ENABLE_OBJECT_COUNTS S_G.countof[tg][countof_guardian] += 1; #endif /* ENABLE_OBJECT_COUNTS */ /* In backreference mode, we rely on sweep of the guardian entry not registering any backreferences. Otherwise, bogus pair pointers would get created. */ find_room(space_pure, tg, typemod, size_guardian_entry, p); INITGUARDIANOBJ(p) = GUARDIANOBJ(ls); INITGUARDIANREP(p) = rep; INITGUARDIANTCONC(p) = tconc; INITGUARDIANNEXT(p) = hold_ls; INITGUARDIANORDERED(p) = GUARDIANORDERED(ls); INITGUARDIANPENDING(p) = FIX(0); hold_ls = p; } } if (!relocate_rep && !do_ordered && maybe_final_ordered_ls != Snil) { /* Switch to finishing up ordered. Move all maybe-final ordered entries to final_ls and pend_hold_ls */ do_ordered = relocate_rep = 1; ls = maybe_final_ordered_ls; maybe_final_ordered_ls = Snil; for (; ls != Snil; ls = next) { ptr obj = GUARDIANOBJ(ls); seginfo *o_si = SegInfo(ptr_get_segment(obj)); next = GUARDIANNEXT(ls); if (FORWARDEDP(obj, o_si) || marked(o_si, obj)) { /* Will defintely move to hold_ls, but the entry must be copied to move from pend_hold_ls to hold_ls: */ INITGUARDIANNEXT(ls) = pend_hold_ls; pend_hold_ls = ls; } else { INITGUARDIANNEXT(ls) = final_ls; final_ls = ls; } } } if (!relocate_rep) break; sweep_generation(tc, tg); ls = recheck_guardians_ls; recheck_guardians_ls = Snil; for ( ; ls != Snil; ls = next) { next = GUARDIANNEXT(ls); if (GUARDIANPENDING(ls) == FIX(GUARDIAN_PENDING_HOLD)) { INITGUARDIANNEXT(ls) = pend_hold_ls; pend_hold_ls = ls; } else { INITGUARDIANNEXT(ls) = pend_final_ls; pend_final_ls = ls; } } /* move each entry in pend_final_ls into one of: * final_ls if tconc forwarded or marked * pend_final_ls if tconc not forwarded or marked * where the output pend_final_ls coresponds to pending in a segment */ ls = pend_final_ls; pend_final_ls = Snil; for ( ; ls != Snil; ls = next) { tconc = GUARDIANTCONC(ls); next = GUARDIANNEXT(ls); if (FWDMARKER(tconc) == forward_marker) { INITGUARDIANTCONC(ls) = FWDADDRESS(tconc); INITGUARDIANNEXT(ls) = final_ls; final_ls = ls; } else { seginfo *t_si = SegInfo(ptr_get_segment(tconc)); if (marked(t_si, tconc)) { INITGUARDIANNEXT(ls) = final_ls; final_ls = ls; } else { INITGUARDIANPENDING(ls) = FIX(GUARDIAN_PENDING_FINAL); add_pending_guardian(ls, tconc); } } } } S_G.guardians[tg] = hold_ls; } S_G.bytes_finalized = target_generation_space_so_far() - pre_finalization_size; S_adjustmembytes(S_G.bytesof[tg][countof_phantom] - pre_phantom_bytes); /* handle weak pairs */ resweep_dirty_weak_pairs(); resweep_weak_pairs(tg, oldweakspacesegments); /* still-pending ephemerons all go to bwp */ finish_pending_ephemerons(oldspacesegments); /* post-gc oblist handling. rebuild old buckets in the target generation, pruning unforwarded symbols */ { bucket_list *bl, *blnext; bucket *b, *bnext; bucket_pointer_list *bpl; bucket **pb; ptr sym; seginfo *si; bl = tg == static_generation ? NULL : S_G.buckets_of_generation[tg]; for (bpl = buckets_to_rebuild; bpl != NULL; bpl = bpl->cdr) { pb = bpl->car; for (b = TO_VOIDP((uptr)TO_PTR(*pb) - 1); b != NULL && ((uptr)TO_PTR(b->next) & 1); b = bnext) { bnext = TO_VOIDP((uptr)TO_PTR(b->next) - 1); sym = b->sym; si = SegInfo(ptr_get_segment(sym)); if (marked(si, sym) || (FWDMARKER(sym) == forward_marker && ((sym = FWDADDRESS(sym)) || 1))) { find_room_voidp(space_data, tg, ptr_align(sizeof(bucket)), b); #ifdef ENABLE_OBJECT_COUNTS S_G.countof[tg][countof_oblist] += 1; S_G.bytesof[tg][countof_oblist] += sizeof(bucket); #endif /* ENABLE_OBJECT_COUNTS */ b->sym = sym; *pb = b; pb = &b->next; if (tg != static_generation) { blnext = bl; find_room_voidp(space_data, tg, ptr_align(sizeof(bucket_list)), bl); #ifdef ENABLE_OBJECT_COUNTS S_G.countof[tg][countof_oblist] += 1; S_G.bytesof[tg][countof_oblist] += sizeof(bucket_list); #endif /* ENABLE_OBJECT_COUNTS */ bl->cdr = blnext; bl->car = b; } } else { S_G.oblist_count -= 1; } } *pb = b; } if (tg != static_generation) S_G.buckets_of_generation[tg] = bl; } /* rebuild rtds_with_counts lists, dropping otherwise inaccessible rtds */ { IGEN g; ptr ls, p, newls = tg == mcg ? Snil : S_G.rtds_with_counts[tg]; seginfo *si; int count = 0; for (g = 0; g <= mcg; g += 1) { for (ls = S_G.rtds_with_counts[g], S_G.rtds_with_counts[g] = Snil; ls != Snil; ls = Scdr(ls)) { count++; p = Scar(ls); si = SegInfo(ptr_get_segment(p)); if (!si->old_space || marked(si, p)) { newls = S_cons_in(space_impure, tg, p, newls); S_G.countof[tg][countof_pair] += 1; } else if (FWDMARKER(p) == forward_marker) { newls = S_cons_in(space_impure, tg, FWDADDRESS(p), newls); S_G.countof[tg][countof_pair] += 1; } } } S_G.rtds_with_counts[tg] = newls; } #ifndef WIN32 /* rebuild child_process list, reaping any that have died and refusing to promote into the static generation. */ { ptr old_ls, new_ls; IGEN gtmp, cpgen; cpgen = tg == static_generation ? S_G.max_nonstatic_generation : tg; new_ls = cpgen <= mcg ? Snil : S_child_processes[cpgen]; for (gtmp = 0; gtmp <= mcg; gtmp += 1) { for (old_ls = S_child_processes[gtmp]; old_ls != Snil; old_ls = Scdr(old_ls)) { INT pid = UNFIX(Scar(old_ls)), status, retpid; retpid = waitpid(pid, &status, WNOHANG); if (retpid == 0 || (retpid == pid && !(WIFEXITED(status) || WIFSIGNALED(status)))) { new_ls = S_cons_in(space_impure, cpgen, FIX(pid), new_ls); #ifdef ENABLE_OBJECT_COUNTS S_G.countof[cpgen][countof_pair] += 1; #endif /* ENABLE_OBJECT_COUNTS */ } } S_child_processes[gtmp] = Snil; } S_child_processes[cpgen] = new_ls; } #endif /* WIN32 */ copy_and_clear_list_bits(oldspacesegments, tg); /* move copied old space segments to empty space, and promote marked old space segments to the target generation */ for (si = oldspacesegments; si != NULL; si = nextsi) { nextsi = si->next; si->old_space = 0; si->use_marks = 0; if (si->marked_mask != NULL) { si->min_dirty_byte = 0xff; if (si->space != space_data) { int d; for (d = 0; d < cards_per_segment; d += sizeof(ptr)) { iptr *dp = (iptr *)(si->dirty_bytes + d); /* fill sizeof(iptr) bytes at a time with 0xff */ *dp = -1; } } si->generation = tg; if (tg == static_generation) S_G.number_of_nonstatic_segments -= 1; s = si->space; si->next = S_G.occupied_segments[s][tg]; S_G.occupied_segments[s][tg] = si; S_G.bytes_of_space[s][tg] += si->marked_count; si->trigger_guardians = 0; #ifdef PRESERVE_FLONUM_EQ si->forwarded_flonums = 0; #endif } else { chunkinfo *chunk = si->chunk; if (si->generation != static_generation) S_G.number_of_nonstatic_segments -= 1; S_G.number_of_empty_segments += 1; si->space = space_empty; si->next = chunk->unused_segs; chunk->unused_segs = si; #ifdef WIPECLEAN memset((void *)build_ptr(si->number,0), 0xc7, bytes_per_segment); #endif if ((chunk->nused_segs -= 1) == 0) { if (chunk->bytes != (minimum_segment_request + 1) * bytes_per_segment) { /* release oversize chunks back to the O/S immediately to avoid allocating * small stuff into them and thereby invite fragmentation */ S_free_chunk(chunk); } else { S_move_to_chunk_list(chunk, &S_chunks[PARTIAL_CHUNK_POOLS]); } } else { S_move_to_chunk_list(chunk, &S_chunks[PARTIAL_CHUNK_POOLS-1]); } } } if (mcg >= S_G.min_free_gen) S_free_chunks(); S_flush_instruction_cache(tc); if (S_checkheap) S_check_heap(1, mcg); /* post-collection rehashing of tlcs. must come after any use of relocate. logically comes after gc is entirely complete */ while (tlcs_to_rehash != Snil) { ptr b, next; uptr old_idx, new_idx; ptr tlc = Scar(tlcs_to_rehash); ptr ht = TLCHT(tlc); ptr vec = PTRFIELD(ht,eq_hashtable_vec_disp); uptr veclen = Svector_length(vec); ptr key = Scar(TLCKEYVAL(tlc)); /* scan to end of bucket to find the index */ for (b = TLCNEXT(tlc); !Sfixnump(b); b = TLCNEXT(b)); old_idx = UNFIX(b); if (key == Sbwp_object && PTRFIELD(ht,eq_hashtable_subtype_disp) != FIX(eq_hashtable_subtype_normal)) { /* remove tlc */ b = Svector_ref(vec, old_idx); if (b == tlc) { SETVECTIT(vec, old_idx, TLCNEXT(b)); } else { for (;;) { next = TLCNEXT(b); if (next == tlc) break; b = next; } SETTLCNEXT(b,TLCNEXT(next)); } INITTLCNEXT(tlc) = Sfalse; INITPTRFIELD(ht,eq_hashtable_size_disp) = FIX(UNFIX(PTRFIELD(ht,eq_hashtable_size_disp)) - 1); } else if ((new_idx = ((uptr)key >> primary_type_bits) & (veclen - 1)) != old_idx) { /* remove tlc from old bucket */ b = Svector_ref(vec, old_idx); if (b == tlc) { SETVECTIT(vec, old_idx, TLCNEXT(b)); } else { for (;;) { next = TLCNEXT(b); if (next == tlc) break; b = next; } SETTLCNEXT(b,TLCNEXT(next)); } /* and add to new bucket */ SETTLCNEXT(tlc, Svector_ref(vec, new_idx)); SETVECTIT(vec, new_idx, tlc); } tlcs_to_rehash = Scdr(tlcs_to_rehash); } /* Promote opportunistic 1-shot continuations, because we can no longer cached one and we can no longer reliably fuse the stack back. */ while (conts_to_promote != Snil) { S_promote_to_multishot(CONTLINK(Scar(conts_to_promote))); conts_to_promote = Scdr(conts_to_promote); } S_resize_oblist(); /* tell profile_release_counters to look for bwp'd counters at least through tg */ if (S_G.prcgeneration < tg) S_G.prcgeneration = tg; if (sweep_stack_start != sweep_stack) S_error_abort("gc: sweep stack ended non-empty"); if (count_roots_ls != Sfalse) { #ifdef ENABLE_OBJECT_COUNTS return count_roots_counts; #else return Snil; #endif } else return Svoid; } #define sweep_space(s, body)\ slp = &sweep_loc[s];\ nlp = &S_G.next_loc[s][g];\ if (*slp == 0) *slp = S_G.first_loc[s][g];\ pp = TO_VOIDP(*slp);\ while (pp != (nl = TO_VOIDP(*nlp)))\ do\ if ((p = *pp) == forward_marker)\ pp = TO_VOIDP(*(pp + 1)); \ else\ body\ while (pp != nl);\ *slp = TO_PTR(pp); static void resweep_weak_pairs(g, oldweakspacesegments) IGEN g; seginfo *oldweakspacesegments; { ptr *slp, *nlp; ptr *pp, p, *nl; seginfo *si; sweep_loc[space_weakpair] = S_G.first_loc[space_weakpair][g]; sweep_space(space_weakpair, { forward_or_bwp(pp, p); pp += 2; }) for (si = oldweakspacesegments; si != NULL; si = si->next) { if (si->space != space_weakpair) break; if (si->marked_mask) { uptr i; for (i = 0; i < segment_bitmap_bytes; i++) { int mask = si->marked_mask[i]; if (mask != 0) { /* Assuming 4 pairs per 8 words */ pp = TO_VOIDP(build_ptr(si->number, (i << (log2_ptr_bytes+3)))); if (mask & 0x1) forward_or_bwp(pp, *pp); pp += 2; if (mask & 0x4) forward_or_bwp(pp, *pp); pp += 2; if (mask & 0x10) forward_or_bwp(pp, *pp); pp += 2; if (mask & 0x40) forward_or_bwp(pp, *pp); } } } } } static void forward_or_bwp(pp, p) ptr *pp; ptr p; { seginfo *si; /* adapted from relocate */ if (!IMMEDIATE(p) && (si = MaybeSegInfo(ptr_get_segment(p))) != NULL && si->old_space && !marked(si, p)) { if (FORWARDEDP(p, si)) { *pp = GET_FWDADDRESS(p); } else { *pp = Sbwp_object; } } } static void sweep_generation(tc, g) ptr tc; IGEN g; { ptr *slp, *nlp; ptr *pp, p, *nl; do { change = 0; sweep_from_stack(tc); sweep_space(space_impure, { SET_BACKREFERENCE(TYPE(TO_PTR(pp), type_pair)) /* only pairs put here in backreference mode */ relocate_help(pp, p) p = *(pp += 1); relocate_help(pp, p) pp += 1; }) SET_BACKREFERENCE(Sfalse) sweep_space(space_symbol, { p = TYPE(TO_PTR(pp), type_symbol); sweep_symbol(p); pp += size_symbol / sizeof(ptr); }) sweep_space(space_port, { p = TYPE(TO_PTR(pp), type_typed_object); sweep_port(p); pp += size_port / sizeof(ptr); }) sweep_space(space_weakpair, { SET_BACKREFERENCE(TYPE(TO_PTR(pp), type_pair)) p = *(pp += 1); relocate_help(pp, p) pp += 1; }) SET_BACKREFERENCE(Sfalse) sweep_space(space_ephemeron, { p = TYPE(TO_PTR(pp), type_pair); add_ephemeron_to_pending(p); pp += size_ephemeron / sizeof(ptr); }) sweep_space(space_pure, { SET_BACKREFERENCE(TYPE(TO_PTR(pp), type_pair)) /* only pairs put here in backreference mode */ relocate_help(pp, p) p = *(pp += 1); relocate_help(pp, p) pp += 1; }) SET_BACKREFERENCE(Sfalse) sweep_space(space_continuation, { p = TYPE(TO_PTR(pp), type_closure); sweep_continuation(p); pp += size_continuation / sizeof(ptr); }) sweep_space(space_pure_typed_object, { p = TYPE(TO_PTR(pp), type_typed_object); pp = TO_VOIDP(((uptr)TO_PTR(pp) + sweep_typed_object(tc, p))); }) sweep_space(space_code, { p = TYPE(TO_PTR(pp), type_typed_object); sweep_code_object(tc, p); pp += size_code(CODELEN(p)) / sizeof(ptr); }) sweep_space(space_impure_record, { p = TYPE(TO_PTR(pp), type_typed_object); sweep_record(p); pp = TO_VOIDP((iptr)TO_PTR(pp) + size_record_inst(UNFIX(RECORDDESCSIZE(RECORDINSTTYPE(p))))); }) /* space used only as needed for backreferences: */ sweep_space(space_impure_typed_object, { p = TYPE(TO_PTR(pp), type_typed_object); pp = TO_VOIDP((uptr)TO_PTR(pp) + sweep_typed_object(tc, p)); }) /* space used only as needed for backreferences: */ sweep_space(space_closure, { p = TYPE(TO_PTR(pp), type_closure); sweep(tc, p); pp = TO_VOIDP((uptr)TO_PTR(pp) + size_object(p)); }) /* don't sweep from space_count_pure or space_count_impure */ /* Waiting until sweeping doesn't trigger a change reduces the chance that an ephemeron must be reigistered as a segment-specific trigger or gets triggered for recheck, but it doesn't change the worst-case complexity. */ if (!change) check_pending_ephemerons(); } while (change); } void enlarge_sweep_stack() { uptr sz = ptr_bytes * (sweep_stack_limit - sweep_stack_start); uptr new_sz = 2 * ((sz == 0) ? 256 : sz); ptr new_sweep_stack; find_room(space_data, 0, typemod, ptr_align(new_sz), new_sweep_stack); if (sz != 0) memcpy(TO_VOIDP(new_sweep_stack), TO_VOIDP(sweep_stack_start), sz); sweep_stack_start = TO_VOIDP(new_sweep_stack); sweep_stack_limit = TO_VOIDP((uptr)new_sweep_stack + new_sz); sweep_stack = TO_VOIDP((uptr)new_sweep_stack + sz); } void sweep_from_stack(tc) ptr tc; { if (sweep_stack > sweep_stack_start) { change = 1; while (sweep_stack > sweep_stack_start) sweep(tc, *(--sweep_stack)); } } static iptr sweep_typed_object(tc, p) ptr tc; ptr p; { ptr tf = TYPEFIELD(p); if (TYPEP(tf, mask_record, type_record)) { sweep_record(p); return size_record_inst(UNFIX(RECORDDESCSIZE(RECORDINSTTYPE(p)))); } else if (TYPEP(tf, mask_thread, type_thread)) { sweep_thread(p); return size_thread; } else { /* We get here only if backreference mode pushed other typed objects into a typed space or if an object is a counting root */ sweep(tc, p); return size_object(p); } } typedef struct _weakseginfo { seginfo *si; IGEN youngest[cards_per_segment]; struct _weakseginfo *next; } weakseginfo; static weakseginfo *weaksegments_to_resweep; static void record_dirty_segment(IGEN from_g, IGEN to_g, seginfo *si) { if (si->min_dirty_byte != 0xff) { S_error_abort("record_dirty(gc): unexpected mutation while sweeping"); } if (to_g < from_g) { seginfo *oldfirst = DirtySegments(from_g, to_g); DirtySegments(from_g, to_g) = si; si->dirty_prev = &DirtySegments(from_g, to_g); si->dirty_next = oldfirst; if (oldfirst != NULL) oldfirst->dirty_prev = &si->dirty_next; si->min_dirty_byte = to_g; } } static void sweep_dirty(void) { IGEN tg, mcg, youngest, min_youngest; ptr *pp, *ppend, *nl; uptr seg, d; ISPC s; IGEN from_g, to_g; seginfo *dirty_si, *nextsi; PUSH_BACKREFERENCE(Snil) /* '() => from unspecified old object */ tg = target_generation; mcg = max_copied_generation; weaksegments_to_resweep = NULL; /* clear dirty segment lists for copied generations */ for (from_g = 1; from_g <= mcg; from_g += 1) { for (to_g = 0; to_g < from_g; to_g += 1) { DirtySegments(from_g, to_g) = NULL; } } /* NB: could have problems if a card is moved from some current or to-be-swept (from_g, to_g) to some previously swept list due to a dirty_set while we sweep. believe this can't happen as of 6/14/2013. if it can, it might be sufficient to process the lists in reverse order. */ for (from_g = mcg + 1; from_g <= static_generation; INCRGEN(from_g)) { for (to_g = 0; to_g <= mcg; to_g += 1) { for (dirty_si = DirtySegments(from_g, to_g), DirtySegments(from_g, to_g) = NULL; dirty_si != NULL; dirty_si = nextsi) { nextsi = dirty_si->dirty_next; seg = dirty_si->number; s = dirty_si->space; /* reset min dirty byte so we can detect if byte is set while card is swept */ dirty_si->min_dirty_byte = 0xff; if (dirty_si->space == space_new) { /* Must be a space that has only locked objects, which we sweeep every time */ continue; } min_youngest = 0xff; nl = from_g == tg ? TO_VOIDP(orig_next_loc[s]) : TO_VOIDP(S_G.next_loc[s][from_g]); ppend = TO_VOIDP(build_ptr(seg, 0)); if (s == space_weakpair) { weakseginfo *next = weaksegments_to_resweep; find_room_voidp(space_data, 0, ptr_align(sizeof(weakseginfo)), weaksegments_to_resweep); weaksegments_to_resweep->si = dirty_si; weaksegments_to_resweep->next = next; } d = 0; while (d < cards_per_segment) { uptr dend = d + sizeof(iptr); iptr *dp = (iptr *)(dirty_si->dirty_bytes + d); /* check sizeof(iptr) bytes at a time for 0xff */ if (*dp == -1) { pp = ppend; ppend += bytes_per_card; if (pp <= nl && nl < ppend) ppend = nl; d = dend; } else { while (d < dend) { pp = ppend; ppend += bytes_per_card / sizeof(ptr); if (pp <= nl && nl < ppend) ppend = nl; if (dirty_si->dirty_bytes[d] <= mcg) { /* assume we won't find any wrong-way pointers */ youngest = 0xff; if ((s == space_impure) || (s == space_immobile_impure) || (s == space_impure_typed_object) || (s == space_count_impure) || (s == space_closure)) { while (pp < ppend && *pp != forward_marker) { /* handle two pointers at a time */ if (!dirty_si->marked_mask || marked(dirty_si, TO_PTR(pp))) { relocate_dirty(pp,tg,youngest) pp += 1; relocate_dirty(pp,tg,youngest) pp += 1; } else pp += 2; } } else if (s == space_symbol) { /* old symbols cannot overlap segment boundaries since any object that spans multiple segments begins at the start of a segment, and symbols are much smaller (we assume) than the segment size. */ pp = (ptr *)TO_VOIDP(build_ptr(seg,0)) + ((pp - (ptr *)TO_VOIDP(build_ptr(seg,0))) / (size_symbol / sizeof(ptr))) * (size_symbol / sizeof(ptr)); while (pp < ppend && *pp != forward_marker) { /* might overshoot card by part of a symbol. no harm. */ ptr p = TYPE(TO_PTR(pp), type_symbol); if (!dirty_si->marked_mask || marked(dirty_si, p)) youngest = sweep_dirty_symbol(p, tg, youngest); pp += size_symbol / sizeof(ptr); } } else if (s == space_port) { /* old ports cannot overlap segment boundaries since any object that spans multiple segments begins at the start of a segment, and ports are much smaller (we assume) than the segment size. */ pp = (ptr *)TO_VOIDP(build_ptr(seg,0)) + ((pp - (ptr *)TO_VOIDP(build_ptr(seg,0))) / (size_port / sizeof(ptr))) * (size_port / sizeof(ptr)); while (pp < ppend && *pp != forward_marker) { /* might overshoot card by part of a port. no harm. */ ptr p = TYPE(TO_PTR(pp), type_typed_object); if (!dirty_si->marked_mask || marked(dirty_si, p)) youngest = sweep_dirty_port(p, tg, youngest); pp += size_port / sizeof(ptr); } } else if (s == space_impure_record) { /* abandon hope all ye who enter here */ ptr p; if (dirty_si->marked_mask) { /* To get to the start of a record, move backward as long as bytes are marked and segment space+generation+marked is the same. */ uptr byte = segment_bitmap_byte(TO_PTR(pp)); uptr bit = segment_bitmap_bit(TO_PTR(pp)); uptr at_seg = seg; seginfo *si = dirty_si; while (si->marked_mask[byte] & (bit >> ptr_alignment)) bit >>= ptr_alignment; if (bit == 1) { /* try previous byte(s) */ while (1) { if (byte == 0) { seginfo *prev_si = MaybeSegInfo(at_seg-1); if (prev_si && (prev_si->space == si->space) && (prev_si->generation == si->generation) && prev_si->marked_mask /* object can only continue from the previous segment if that segment is fully marked (including last words) */ && (prev_si->marked_mask[segment_bitmap_bytes-1] == record_full_marked_mask)) { /* maybe the object continues from the previous segment, although we don't really know... */ at_seg -= 1; si = prev_si; byte = segment_bitmap_bytes-1; } else { /* object does not continue from the previous segment */ break; } } else { if (si->marked_mask[byte-1] == record_full_marked_mask) { /* next byte is full, so keep looking */ byte--; } else if (si->marked_mask[byte-1] & record_high_marked_bit) { /* next byte continues, but is not full, so we can start there */ if (at_seg != seg) { /* in fact, we can start at the beginning of the next segment, because that segment's first object cannot start on this segment */ at_seg++; byte = 0; si = SegInfo(at_seg); } else { byte--; bit = record_high_marked_bit; /* find bit contiguous with highest bit */ while (si->marked_mask[byte] & (bit >> ptr_alignment)) bit >>= ptr_alignment; } break; } else { /* next byte is empty, so don't go there */ break; } } } } /* `bit` and `byte` refer to a non-0 mark bit that must be the start of an object */ p = build_ptr(at_seg, (byte << (log2_ptr_bytes+3))); while (bit > ptr_alignment) { p = (ptr)((uptr)p + byte_alignment); bit >>= ptr_alignment; } p = TYPE(p, type_typed_object); /* now sweep, but watch out for unmarked holes in the dirty region */ while ((ptr *)TO_VOIDP(UNTYPE(p, type_typed_object)) < ppend) { seginfo *si = SegInfo(ptr_get_segment(p)); if (!marked(si, p)) { /* skip unmarked words */ p = (ptr)((uptr)p + byte_alignment); } else { /* quit on end of segment */ if (FWDMARKER(p) == forward_marker) break; youngest = sweep_dirty_record(p, tg, youngest); p = (ptr)((iptr)p + size_record_inst(UNFIX(RECORDDESCSIZE( RECORDINSTTYPE(p))))); } } } else { uptr j; ptr pnext; seginfo *si; /* synchronize on first record that overlaps the dirty area, then relocate any mutable pointers in that record and those that follow within the dirty area. */ /* find first segment of group of like segments */ j = seg - 1; while ((si = MaybeSegInfo(j)) != NULL && si->space == s && si->generation == from_g && !si->marked_mask) j -= 1; j += 1; /* now find first record in segment seg */ /* we count on following fact: if an object spans two or more segments, then it starts at the beginning of a segment */ for (;;) { p = TYPE(build_ptr(j,0),type_typed_object); pnext = (ptr)((iptr)p + size_record_inst(UNFIX(RECORDDESCSIZE(RECORDINSTTYPE(p))))); if (ptr_get_segment(pnext) >= seg) break; j = ptr_get_segment(pnext) + 1; } /* now find first within dirty area */ while ((ptr *)TO_VOIDP(UNTYPE(pnext, type_typed_object)) <= pp) { p = pnext; pnext = (ptr)((iptr)p + size_record_inst(UNFIX(RECORDDESCSIZE(RECORDINSTTYPE(p))))); } /* now sweep */ while ((ptr *)TO_VOIDP(UNTYPE(p, type_typed_object)) < ppend) { /* quit on end of segment */ if (FWDMARKER(p) == forward_marker) break; youngest = sweep_dirty_record(p, tg, youngest); p = (ptr)((iptr)p + size_record_inst(UNFIX(RECORDDESCSIZE( RECORDINSTTYPE(p))))); } } } else if (s == space_weakpair) { while (pp < ppend && *pp != forward_marker) { /* skip car field and handle cdr field */ if (!dirty_si->marked_mask || marked(dirty_si, TO_PTR(pp))) { pp += 1; relocate_dirty(pp, tg, youngest) pp += 1; } else pp += 2; } } else if (s == space_ephemeron) { while (pp < ppend && *pp != forward_marker) { ptr p = TYPE(TO_PTR(pp), type_pair); if (!dirty_si->marked_mask || marked(dirty_si, p)) youngest = check_dirty_ephemeron(p, tg, youngest); pp += size_ephemeron / sizeof(ptr); } } else { S_error_abort("sweep_dirty(gc): unexpected space"); } if (s == space_weakpair) { weaksegments_to_resweep->youngest[d] = youngest; } else { dirty_si->dirty_bytes[d] = youngest < from_g ? youngest : 0xff; } if (youngest < min_youngest) min_youngest = youngest; } else { if (dirty_si->dirty_bytes[d] < min_youngest) min_youngest = dirty_si->dirty_bytes[d]; } d += 1; } } } if (s != space_weakpair) { record_dirty_segment(from_g, min_youngest, dirty_si); } } } } POP_BACKREFERENCE() } static void resweep_dirty_weak_pairs() { weakseginfo *ls; ptr *pp, *ppend, *nl, p; IGEN from_g, min_youngest, youngest, tg, mcg, pg; uptr d; tg = target_generation; mcg = max_copied_generation; for (ls = weaksegments_to_resweep; ls != NULL; ls = ls->next) { seginfo *dirty_si = ls->si; from_g = dirty_si->generation; nl = from_g == tg ? TO_VOIDP(orig_next_loc[space_weakpair]) : TO_VOIDP(S_G.next_loc[space_weakpair][from_g]); ppend = TO_VOIDP(build_ptr(dirty_si->number, 0)); min_youngest = 0xff; d = 0; while (d < cards_per_segment) { uptr dend = d + sizeof(iptr); iptr *dp = (iptr *)(dirty_si->dirty_bytes + d); /* check sizeof(iptr) bytes at a time for 0xff */ if (*dp == -1) { d = dend; ppend += bytes_per_card; } else { while (d < dend) { pp = ppend; ppend += bytes_per_card / sizeof(ptr); if (pp <= nl && nl < ppend) ppend = nl; if (dirty_si->dirty_bytes[d] <= mcg) { youngest = ls->youngest[d]; while (pp < ppend) { p = *pp; seginfo *si; /* handle car field */ if (!IMMEDIATE(p) && (si = MaybeSegInfo(ptr_get_segment(p))) != NULL) { if (si->old_space) { if (marked(si, p)) { youngest = tg; } else if (FORWARDEDP(p, si)) { *pp = FWDADDRESS(p); youngest = tg; } else { *pp = Sbwp_object; } } else { if (youngest != tg && (pg = si->generation) < youngest) youngest = pg; } } /* skip cdr field */ pp += 2; } dirty_si->dirty_bytes[d] = youngest < from_g ? youngest : 0xff; if (youngest < min_youngest) min_youngest = youngest; } else { if (dirty_si->dirty_bytes[d] < min_youngest) min_youngest = dirty_si->dirty_bytes[d]; } d += 1; } } } record_dirty_segment(from_g, min_youngest, dirty_si); } } static void add_pending_guardian(ptr gdn, ptr tconc) { seginfo *si = SegInfo(ptr_get_segment(tconc)); INITGUARDIANNEXT(gdn) = si->trigger_guardians; si->trigger_guardians = gdn; si->has_triggers = 1; } static void add_trigger_guardians_to_recheck(ptr ls) { ptr last = ls, next = GUARDIANNEXT(ls); while (next != 0) { last = next; next = GUARDIANNEXT(next); } INITGUARDIANNEXT(last) = recheck_guardians_ls; recheck_guardians_ls = ls; } static ptr pending_ephemerons = 0; /* Ephemerons that we haven't looked at, chained through `next`. */ static void ephemeron_remove(ptr pe) { ptr next = EPHEMERONNEXT(pe); *((ptr *)TO_VOIDP(EPHEMERONPREVREF(pe))) = next; if (next) EPHEMERONPREVREF(next) = EPHEMERONPREVREF(pe); EPHEMERONPREVREF(pe) = 0; EPHEMERONNEXT(pe) = 0; } static void ephemeron_add(ptr *first, ptr pe) { ptr last_pe = pe, next_pe = EPHEMERONNEXT(pe), next; while (next_pe != 0) { last_pe = next_pe; next_pe = EPHEMERONNEXT(next_pe); } next = *first; *first = pe; EPHEMERONPREVREF(pe) = TO_PTR(first); EPHEMERONNEXT(last_pe) = next; if (next) EPHEMERONPREVREF(next) = TO_PTR(&EPHEMERONNEXT(last_pe)); } static void add_ephemeron_to_pending(ptr pe) { /* We could call check_ephemeron directly here, but the indirection through `pending_ephemerons` can dramatically decrease the number of times that we have to trigger re-checking, especially since check_pending_pehemerons() is run only after all other sweep opportunities are exhausted. */ if (EPHEMERONPREVREF(pe)) ephemeron_remove(pe); ephemeron_add(&pending_ephemerons, pe); } static void add_trigger_ephemerons_to_pending(ptr pe) { ephemeron_add(&pending_ephemerons, pe); } static void check_ephemeron(ptr pe) { ptr p; seginfo *si; PUSH_BACKREFERENCE(pe); EPHEMERONNEXT(pe) = 0; EPHEMERONPREVREF(pe) = 0; p = Scar(pe); if (!IMMEDIATE(p) && (si = MaybeSegInfo(ptr_get_segment(p))) != NULL && si->old_space) { if (marked(si, p)) { relocate(&INITCDR(pe)) } else if (FORWARDEDP(p, si)) { INITCAR(pe) = FWDADDRESS(p); relocate(&INITCDR(pe)) } else { /* Not reached, so far; install as trigger */ ephemeron_add(&si->trigger_ephemerons, pe); si->has_triggers = 1; } } else { relocate(&INITCDR(pe)) } POP_BACKREFERENCE(); } static void check_pending_ephemerons() { ptr pe, next_pe; pe = pending_ephemerons; pending_ephemerons = 0; while (pe != 0) { next_pe = EPHEMERONNEXT(pe); check_ephemeron(pe); pe = next_pe; } } /* Like check_ephemeron(), but for a dirty, old-generation ephemeron (that was not yet added to the pending list), so we can be less pessimistic than setting `youngest` to the target generation: */ static int check_dirty_ephemeron(ptr pe, int tg, int youngest) { ptr p; seginfo *si; PUSH_BACKREFERENCE(pe); p = Scar(pe); if (!IMMEDIATE(p) && (si = MaybeSegInfo(ptr_get_segment(p))) != NULL) { if (si->old_space) { if (marked(si, p)) { relocate(&INITCDR(pe)) youngest = tg; } else if (FORWARDEDP(p, si)) { INITCAR(pe) = GET_FWDADDRESS(p); relocate(&INITCDR(pe)) youngest = tg; } else { /* Not reached, so far; add to pending list */ add_ephemeron_to_pending(pe); /* Make the consistent (but pessimistic w.r.t. to wrong-way pointers) assumption that the key will stay live and move to the target generation. That assumption covers the value part, too, since it can't end up younger than the target generation. */ youngest = tg; } } else { int pg; if ((pg = si->generation) < youngest) youngest = pg; relocate_dirty(&INITCDR(pe), tg, youngest) } } else { /* Non-collectable key means that the value determines `youngest`: */ relocate_dirty(&INITCDR(pe), tg, youngest) } POP_BACKREFERENCE() return youngest; } static void finish_pending_ephemerons(seginfo *si) { /* Any ephemeron still in a trigger list is an ephemeron whose key was not reached. */ if (pending_ephemerons != 0) S_error_abort("clear_trigger_ephemerons(gc): non-empty pending list"); for (; si != NULL; si = si->next) { if (si->trigger_ephemerons) { ptr pe, next_pe; for (pe = si->trigger_ephemerons; pe != 0; pe = next_pe) { INITCAR(pe) = Sbwp_object; INITCDR(pe) = Sbwp_object; next_pe = EPHEMERONNEXT(pe); EPHEMERONPREVREF(pe) = 0; EPHEMERONNEXT(pe) = 0; } si->trigger_ephemerons = 0; } } } #ifdef ENABLE_OBJECT_COUNTS static uptr total_size_so_far() { IGEN g; int i; uptr total = 0; for (g = 0; g <= static_generation; g += 1) { for (i = 0; i < countof_types; i += 1) { uptr bytes; bytes = S_G.bytesof[g][i]; if (bytes == 0) bytes = S_G.countof[g][i] * S_G.countof_size[i]; total += bytes; } } return total - count_root_bytes; } #endif static uptr target_generation_space_so_far() { IGEN g = target_generation; ISPC s; uptr sz = S_G.bytesof[g][countof_phantom]; for (s = 0; s <= max_real_space; s++) { sz += S_G.bytes_of_space[s][g]; if (S_G.next_loc[s][g] != FIX(0)) sz += (uptr)S_G.next_loc[s][g] - (uptr)S_G.base_loc[s][g]; } return sz; } void copy_and_clear_list_bits(seginfo *oldspacesegments, IGEN tg) { seginfo *si; int i; /* Update bits that are used by `list-assuming-immutable?`. */ for (si = oldspacesegments; si != NULL; si = si->next) { if (si->list_bits) { if ((si->generation == 0) && !si->marked_mask) { /* drop generation-0 bits, because probably the relevant pairs were short-lived, and it's ok to recompute them if needed */ } else { if (si->marked_mask) { /* Besides marking or copying `si->list_bits`, clear bits where there's no corresponding mark bit, so we don't try to check forwarding in a future GC */ seginfo *bits_si = SegInfo(ptr_get_segment(TO_PTR(si->list_bits))); if (bits_si->old_space) { if (bits_si->use_marks) { if (!bits_si->marked_mask) init_mask(bits_si->marked_mask, tg, 0); bits_si->marked_mask[segment_bitmap_byte(TO_PTR(si->list_bits))] |= segment_bitmap_bit(TO_PTR(si->list_bits)); } else { octet *copied_bits; find_room_voidp(space_data, tg, ptr_align(segment_bitmap_bytes), copied_bits); memcpy_aligned(copied_bits, si->list_bits, segment_bitmap_bytes); si->list_bits = copied_bits; } } for (i = 0; i < segment_bitmap_bytes; i++) { int m = si->marked_mask[i]; si->list_bits[i] &= mask_bits_to_list_bits_mask(m); } } if (si->use_marks) { /* No forwarding possible from this segment */ } else { /* For forwarded pointers, copy over list bits */ for (i = 0; i < segment_bitmap_bytes; i++) { if (si->list_bits[i]) { int bitpos; for (bitpos = 0; bitpos < 8; bitpos += ptr_alignment) { int bits = si->list_bits[i] & (list_bits_mask << bitpos); if (bits != 0) { ptr p = build_ptr(si->number, ((i << (log2_ptr_bytes+3)) + (bitpos << log2_ptr_bytes))); if (FWDMARKER(p) == forward_marker) { ptr new_p = FWDADDRESS(p); seginfo *new_si = SegInfo(ptr_get_segment(new_p)); if (!new_si->list_bits) init_mask(new_si->list_bits, tg, 0); bits >>= bitpos; new_si->list_bits[segment_bitmap_byte(new_p)] |= segment_bitmap_bits(new_p, bits); } } } } } } } } } } /* **************************************** */ #ifdef ENABLE_MEASURE static void init_measure(IGEN min_gen, IGEN max_gen) { uptr init_stack_len = 1024; min_measure_generation = min_gen; max_measure_generation = max_gen; find_room_voidp(space_data, 0, init_stack_len, measure_stack_start); measure_stack = TO_VOIDP(measure_stack_start); measure_stack_limit = TO_VOIDP((uptr)TO_PTR(measure_stack_start) + init_stack_len); measured_seginfos = Snil; measure_all_enabled = 1; } static void finish_measure() { ptr ls; for (ls = measured_seginfos; ls != Snil; ls = Scdr(ls)) { ptr pe, next_pe; seginfo *si = TO_VOIDP(Scar(ls)); si->measured_mask = NULL; for (pe = si->trigger_ephemerons; pe != 0; pe = next_pe) { next_pe = EPHEMERONNEXT(pe); EPHEMERONPREVREF(pe) = 0; EPHEMERONNEXT(pe) = 0; } si->trigger_ephemerons = 0; } measure_all_enabled = 0; } static void init_counting_mask(seginfo *si) { init_mask(si->counting_mask, 0, 0); } static void init_measure_mask(seginfo *si) { init_mask(si->measured_mask, 0, 0); measured_seginfos = S_cons_in(space_new, 0, TO_PTR(si), measured_seginfos); } #define measure_unreached(si, p) \ (!si->measured_mask \ || !(si->measured_mask[segment_bitmap_byte(p)] & segment_bitmap_bit(p))) #define measure_mask_set(mm, si, p) \ mm[segment_bitmap_byte(p)] |= segment_bitmap_bit(p) #define measure_mask_unset(mm, si, p) \ mm[segment_bitmap_byte(p)] -= segment_bitmap_bit(p) static void push_measure(ptr p) { seginfo *si = MaybeSegInfo(ptr_get_segment(p)); if (!si) return; if (si->old_space) { /* We must be in a GC--measure fusion, so switch back to GC */ relocate_help_help(&p, p, si) return; } if (si->generation > max_measure_generation) return; else if (si->generation < min_measure_generation) { /* this only happens in fusion mode, too; si must be a new segment */ return; } else { uptr byte = segment_bitmap_byte(p); uptr bit = segment_bitmap_bit(p); if (!si->measured_mask) init_measure_mask(si); else if (si->measured_mask[byte] & bit) return; si->measured_mask[byte] |= bit; } if (si->trigger_ephemerons) { add_trigger_ephemerons_to_pending_measure(si->trigger_ephemerons); si->trigger_ephemerons = 0; } if (measure_stack == measure_stack_limit) { uptr sz = ptr_bytes * (measure_stack_limit - measure_stack_start); uptr new_sz = 2*sz; ptr *new_measure_stack; find_room_voidp(space_data, 0, ptr_align(new_sz), new_measure_stack); memcpy(new_measure_stack, measure_stack_start, sz); measure_stack_start = new_measure_stack; measure_stack_limit = TO_VOIDP((uptr)TO_PTR(new_measure_stack) + new_sz); measure_stack = TO_VOIDP((uptr)TO_PTR(new_measure_stack) + sz); } *(measure_stack++) = p; } static void measure_add_stack_size(ptr stack, uptr size) { seginfo *si = SegInfo(ptr_get_segment(stack)); if (!(si->old_space) && (si->generation <= max_measure_generation) && (si->generation >= min_measure_generation)) measure_total += size; } static void add_ephemeron_to_pending_measure(ptr pe) { /* If we're in hybrid mode and the key in `pe` is in the old space, then we need to use the regular pending list instead of the measure-specific one */ seginfo *si; ptr p = Scar(pe); if (!IMMEDIATE(p) && (si = MaybeSegInfo(ptr_get_segment(p))) != NULL && si->old_space) add_ephemeron_to_pending(pe); else { if (EPHEMERONPREVREF(pe)) S_error_abort("add_ephemeron_to_pending_measure: ephemeron is in some list"); ephemeron_add(&pending_measure_ephemerons, pe); } } static void add_trigger_ephemerons_to_pending_measure(ptr pe) { ephemeron_add(&pending_measure_ephemerons, pe); } static void check_ephemeron_measure(ptr pe) { ptr p; seginfo *si; EPHEMERONPREVREF(pe) = 0; EPHEMERONNEXT(pe) = 0; p = Scar(pe); if (!IMMEDIATE(p) && (si = MaybeSegInfo(ptr_get_segment(p))) != NULL && (si->generation <= max_measure_generation) && (si->generation >= min_measure_generation) && (!(si->old_space) || !FORWARDEDP(p, si)) && (measure_unreached(si, p) || (si->counting_mask && (si->counting_mask[segment_bitmap_byte(p)] & segment_bitmap_bit(p))))) { /* Not reached, so far; install as trigger */ ephemeron_add(&si->trigger_ephemerons, pe); if (!si->measured_mask) init_measure_mask(si); /* so triggers are cleared at end */ return; } p = Scdr(pe); if (!IMMEDIATE(p)) push_measure(p); } static void check_pending_measure_ephemerons() { ptr pe, next_pe; pe = pending_measure_ephemerons; pending_measure_ephemerons = 0; while (pe != 0) { next_pe = EPHEMERONNEXT(pe); check_ephemeron_measure(pe); pe = next_pe; } } void gc_measure_one(ptr p) { seginfo *si = SegInfo(ptr_get_segment(p)); if (si->trigger_ephemerons) { add_trigger_ephemerons_to_pending_measure(si->trigger_ephemerons); si->trigger_ephemerons = 0; } measure(p); (void)flush_measure_stack(); } IBOOL flush_measure_stack() { if ((measure_stack <= measure_stack_start) && !pending_measure_ephemerons) return 0; while (1) { while (measure_stack > measure_stack_start) measure(*(--measure_stack)); if (!pending_measure_ephemerons) break; check_pending_measure_ephemerons(); } return 1; } ptr S_count_size_increments(ptr ls, IGEN generation) { ptr l, totals = Snil, totals_prev = 0; tc_mutex_acquire(); init_measure(0, generation); for (l = ls; l != Snil; l = Scdr(l)) { ptr p = Scar(l); if (!IMMEDIATE(p)) { seginfo *si = si = SegInfo(ptr_get_segment(p)); if (!si->measured_mask) init_measure_mask(si); measure_mask_set(si->measured_mask, si, p); if (!si->counting_mask) init_counting_mask(si); measure_mask_set(si->counting_mask, si, p); } } for (l = ls; l != Snil; l = Scdr(l)) { ptr p = Scar(l); measure_total = 0; if (!IMMEDIATE(p)) { seginfo *si = si = SegInfo(ptr_get_segment(p)); measure_mask_unset(si->counting_mask, si, p); gc_measure_one(p); } p = Scons(FIX(measure_total), Snil); if (totals_prev) Scdr(totals_prev) = p; else totals = p; totals_prev = p; } for (l = ls; l != Snil; l = Scdr(l)) { ptr p = Scar(l); if (!IMMEDIATE(p)) { seginfo *si = si = SegInfo(ptr_get_segment(p)); si->counting_mask = NULL; } } finish_measure(); tc_mutex_release(); return totals; } #endif