racket/collects/tests/future/visualizer.rkt
Eli Barzilay af6be85ff5 Fix lots of indentation mistakes.
(Found by my ayatollah script...)
2013-03-14 10:55:47 -04:00

587 lines
28 KiB
Racket

#lang racket/base
(require rackunit
racket/list
racket/vector
future-visualizer/private/visualizer-drawing
future-visualizer/private/visualizer-data
future-visualizer/private/display
future-visualizer/private/graph-drawing)
(define (compile-trace-data logs)
(define tr (build-trace logs))
(define-values (finfo segs) (calc-segments tr))
(values tr
finfo
segs
(frame-info-timeline-ticks finfo)))
(define (check-in-bounds? segs finfo)
(for ([s (in-list segs)])
(check-false (negative? (segment-y s)))
(check-true (< (segment-y s) (frame-info-adjusted-height finfo)))))
;Display tests
(let ([vr (viewable-region 3 3 500 500)])
(for ([i (in-range 4 503)])
(check-true (in-viewable-region-horiz vr i)
(format "~a should be in ~a" i vr)))
(for ([i (in-range 0 2)])
(check-false (in-viewable-region-horiz vr i)
(format "~a should not be in ~a" i vr))
(for ([i (in-range 504 1000)])
(check-false (in-viewable-region-horiz vr i)
(format "~a should not be in ~a" i vr)))))
(let ([vr (viewable-region 0 0 732 685)])
(check-true (in-viewable-region-horiz vr 10))
(check-true (in-viewable-region-horiz vr 63.0))
(check-true (in-viewable-region-horiz vr 116.0))
(check-true (in-viewable-region-horiz vr 169.0))
(check-true (in-viewable-region-horiz vr 222)))
(let ([vr (viewable-region 0 0 732 685)]
[ticks (list (timeline-tick 222.0 #f 0.4999999999999982 #f)
(timeline-tick 169.0 #f 0.3999999999999986 #f)
(timeline-tick 116.0 #f 0.29999999999999893 #f)
(timeline-tick 63.0 #f 0.1999999999999993 #f)
(timeline-tick 10 #f 0.09999999999999964 #f))])
(define in-vr (filter (λ (t)
(in-viewable-region-horiz vr (timeline-tick-x t)))
ticks))
(check-equal? (length in-vr) 5))
;Trace compilation tests
(let* ([future-log (list (indexed-future-event 0 (future-event #f 0 'create 0 #f 0))
(indexed-future-event 1 (future-event 0 1 'start-work 1 #f #f))
(indexed-future-event 2 (future-event 0 1 'end-work 2 #f #f))
(indexed-future-event 3 (future-event 0 0 'complete 3 #f #f)))]
[organized (organize-output future-log 0 3)])
(check-equal? (vector-length organized) 2)
(let ([proc0log (vector-ref organized 0)]
[proc1log (vector-ref organized 1)])
(check-equal? (vector-length proc0log) 2)
(check-equal? (vector-length proc1log) 2)))
(let* ([future-log (list (indexed-future-event 0 (future-event #f 0 'create 0 #f 0))
(indexed-future-event 1 (future-event 0 1 'start-work 1 #f #f))
(indexed-future-event 2 (future-event 0 1 'end-work 2 #f #f))
(indexed-future-event 3 (future-event 0 0 'complete 3 #f #f)))]
[trace (build-trace future-log)]
[evts (trace-all-events trace)])
(check-equal? (length evts) 4)
(check-equal? (length (filter (λ (e) (event-next-future-event e)) evts)) 2)
(check-equal? (length (filter (λ (e) (event-next-targ-future-event e)) evts)) 1)
(check-equal? (length (filter (λ (e) (event-prev-targ-future-event e)) evts)) 1))
(let* ([future-log (list (indexed-future-event 0 (future-event 0 0 'create 0 #f 0))
(indexed-future-event 1 (future-event 1 0 'create 1 #f 1))
(indexed-future-event 2 (future-event 0 1 'start-work 2 #f #f))
(indexed-future-event 3 (future-event 1 2 'start-work 2 #f #f))
(indexed-future-event 4 (future-event 0 1 'end-work 4 #f #f))
(indexed-future-event 5 (future-event 0 0 'complete 5 #f #f))
(indexed-future-event 6 (future-event 1 2 'end-work 5 #f #f))
(indexed-future-event 7 (future-event 1 0 'complete 7 #f #f)))]
[organized (organize-output future-log 0 7)])
(check-equal? (vector-length organized) 3)
(let ([proc0log (vector-ref organized 0)]
[proc1log (vector-ref organized 1)]
[proc2log (vector-ref organized 2)])
(check-equal? (vector-length proc0log) 4)
(check-equal? (vector-length proc1log) 2)
(check-equal? (vector-length proc2log) 2)
(for ([msg (in-vector (vector-map indexed-future-event-fevent proc0log))])
(check-equal? (future-event-process-id msg) 0))
(for ([msg (in-vector (vector-map indexed-future-event-fevent proc1log))])
(check-equal? (future-event-process-id msg) 1))
(for ([msg (in-vector (vector-map indexed-future-event-fevent proc2log))])
(check-equal? (future-event-process-id msg) 2))))
;Drawing calculation tests
(let* ([future-log (list (indexed-future-event 0 (future-event #f 0 'create 0 #f 0))
(indexed-future-event 1 (future-event 0 1 'start-work 1 #f #f))
(indexed-future-event 2 (future-event 0 1 'end-work 2 #f #f))
(indexed-future-event 3 (future-event 0 0 'complete 3 #f #f)))]
[trace (build-trace future-log)])
(let-values ([(finfo segments) (calc-segments trace)])
(check-in-bounds? segments finfo)
(check-equal? (length segments) 4)
(check-equal? (length (filter (λ (s) (segment-next-future-seg s)) segments)) 2)
(check-equal? (length (filter (λ (s) (segment-next-targ-future-seg s)) segments)) 1)
(check-equal? (length (filter (λ (s) (segment-prev-targ-future-seg s)) segments)) 1)))
;Future=42
(let* ([future-log (list (indexed-future-event 0 (future-event #f 0 'create 0.05 #f 42))
(indexed-future-event 1 (future-event 42 1 'start-work 0.07 #f #f))
(indexed-future-event 2 (future-event 42 1 'end-work 0.3 #f #f))
(indexed-future-event 3 (future-event 42 0 'complete 1.2 #f #f)))]
[tr (build-trace future-log)])
(define-values (finfo segs) (calc-segments tr))
(check-in-bounds? segs finfo)
(define ticks (frame-info-timeline-ticks finfo))
(check-equal? (length ticks) 11))
(define (sanity-check-ticks ticks)
(define ticks-in-ascending-time-order (reverse ticks))
(let loop ([cur (car ticks-in-ascending-time-order)]
[rest (cdr ticks-in-ascending-time-order)])
(unless (null? rest)
(define next (car rest))
(check-true (>= (timeline-tick-x next) (timeline-tick-x cur))
(format "Tick at time ~a [x:~a] had x-coord less than previous tick: ~a [x:~a]"
(exact->inexact (timeline-tick-rel-time next))
(timeline-tick-x next)
(exact->inexact (timeline-tick-rel-time cur))
(timeline-tick-x cur)))
(loop next
(cdr rest)))))
;;do-seg-check : trace segment timeline-tick (a a -> bool) string -> void
(define (do-seg-check tr seg tick op adjective)
(define evt (segment-event seg))
(check-true (op (segment-x seg) (timeline-tick-x tick))
(format "Event at time ~a [x:~a] (~a) should be ~a tick at time ~a [x:~a]"
(relative-time tr (event-start-time evt))
(segment-x seg)
(event-type evt)
adjective
(exact->inexact (timeline-tick-rel-time tick))
(timeline-tick-x tick))))
;;check-seg-layout : trace (listof segment) (listof timeline-tick) -> void
(define (check-seg-layout tr segs ticks)
(for ([seg (in-list segs)])
(define evt-rel-time (relative-time tr (event-start-time (segment-event seg))))
(for ([tick (in-list ticks)])
(define ttime (timeline-tick-rel-time tick))
(cond
[(< evt-rel-time ttime)
(do-seg-check tr seg tick <= "before")]
[(= evt-rel-time ttime)
(do-seg-check tr seg tick = "equal to")]
[(> evt-rel-time ttime)
(do-seg-check tr seg tick >= "after")]))))
(let* ([future-log (list (indexed-future-event 0 (future-event #f 0 'create 0.05 #f 42))
(indexed-future-event 1 (future-event 42 1 'start-work 0.09 #f #f))
(indexed-future-event 2 (future-event 42 1 'suspend 1.1 #f #f))
(indexed-future-event 3 (future-event 42 1 'resume 1.101 #f #f))
(indexed-future-event 4 (future-event 42 1 'suspend 1.102 #f #f))
(indexed-future-event 5 (future-event 42 1 'resume 1.103 #f #f))
(indexed-future-event 6 (future-event 42 1 'start-work 1.104 #f #f))
(indexed-future-event 7 (future-event 42 1 'complete 1.41 #f #f))
(indexed-future-event 8 (future-event 42 1 'end-work 1.42 #f #f))
(indexed-future-event 9 (future-event 42 0 'result 1.43 #f #f)))]
[tr (build-trace future-log)])
(define-values (finfo segs) (calc-segments tr))
(check-in-bounds? segs finfo)
(define ticks (frame-info-timeline-ticks finfo))
(check-seg-layout tr segs ticks))
(let* ([future-log (list (indexed-future-event 0 (future-event #f 0 'create 0 #f 0))
(indexed-future-event 1 (future-event 0 1 'start-work 1 #f #f))
(indexed-future-event 2 (future-event 0 1 'end-work 2 #f #f))
(indexed-future-event 3 (future-event 0 0 'complete 3 #f #f)))]
[trace (build-trace future-log)])
(check-equal? (trace-start-time trace) 0)
(check-equal? (trace-end-time trace) 3)
(check-equal? (length (trace-proc-timelines trace)) 2)
(check-equal? (trace-real-time trace) 3)
(check-equal? (trace-num-futures trace) 1)
(check-equal? (trace-num-blocks trace) 0)
(check-equal? (trace-num-syncs trace) 0)
(let ([proc0tl (list-ref (trace-proc-timelines trace) 0)]
[proc1tl (list-ref (trace-proc-timelines trace) 1)])
(check-equal? (process-timeline-start-time proc0tl) 0)
(check-equal? (process-timeline-end-time proc0tl) 3)
(check-equal? (process-timeline-start-time proc1tl) 1)
(check-equal? (process-timeline-end-time proc1tl) 2)
(let ([proc0segs (process-timeline-events proc0tl)]
[proc1segs (process-timeline-events proc1tl)])
(check-equal? (length proc0segs) 2)
(check-equal? (length proc1segs) 2)
(check-equal? (event-timeline-position (list-ref proc0segs 0)) 'start)
(check-equal? (event-timeline-position (list-ref proc0segs 1)) 'end))))
;Viewable region tests
(define (make-seg-at x y w h)
(segment #f x y w h #f #f #f #f #f #f #f #f #f))
;;make-segs-with-times : (listof (or float (float . float))) -> (listof segment)
(define (make-segs-with-times . times)
(for/list ([t (in-list times)] [i (in-naturals)])
(if (pair? t)
(make-seg-with-time i (car t) #:end-time (cdr t))
(make-seg-with-time i t))))
;;make-seg-with-time : fixnum float [float] -> segment
(define (make-seg-with-time index real-start-time #:end-time [real-end-time real-start-time])
(segment (event index
real-start-time
real-end-time
0 0 0 0 0 0 0 0 0 0 0 0 0 #f #f)
0 0 0 0 #f #f #f #f #f #f #f #f #f))
(let ([vregion (viewable-region 20 30 100 100)]
[seg1 (make-seg-at 0 5 10 10)]
[seg2 (make-seg-at 20 30 5 5)]
[seg3 (make-seg-at 150 35 5 5)])
(check-false ((seg-in-vregion vregion) seg1))
(check-true ((seg-in-vregion vregion) seg2))
(check-false ((seg-in-vregion vregion) seg3)))
;segs-equal-or-later
(let ([segs (make-segs-with-times 0.1
0.3
1.2
(cons 1.4 1.9)
2.4
2.8
3.1)])
(check-equal? (length (segs-equal-or-later 0.1 segs)) 7)
(check-equal? (length (segs-equal-or-later 0.3 segs)) 6)
(check-equal? (length (segs-equal-or-later 1.2 segs)) 5)
(check-equal? (length (segs-equal-or-later 1.4 segs)) 4)
(check-equal? (length (segs-equal-or-later 2.4 segs)) 3)
(check-equal? (length (segs-equal-or-later 2.8 segs)) 2)
(check-equal? (length (segs-equal-or-later 3.1 segs)) 1)
(check-equal? (length (segs-equal-or-later 4.0 segs)) 0))
;Tick drawing
(let ([l (list (indexed-future-event 0 (future-event #f 0 'create 10.0 #f 0))
(indexed-future-event 1 (future-event 0 0 'start-work 11.0 #f #f))
(indexed-future-event 2 (future-event 0 0 'end-work 20.0 #f #f)))])
(define-values (tr finfo segs ticks) (compile-trace-data l))
;Number of ticks can vary, but cannot exceed (total trace time / tick interval)
(check-true (<= (length ticks) 100))
(check-equal? (length (calc-ticks segs 1000 tr)) 99))
(let ([l (list (indexed-future-event 0 '#s(future-event #f 0 create 1334778395768.733 #f 3))
(indexed-future-event 1 '#s(future-event 3 2 start-work 1334778395768.771 #f #f))
(indexed-future-event 2 '#s(future-event 3 2 complete 1334778395864.648 #f #f))
(indexed-future-event 3 '#s(future-event 3 2 end-work 1334778395864.652 #f #f)))])
(define-values (tr finfo segs ticks) (compile-trace-data l))
(define last-evt (indexed-future-event-fevent (list-ref l 3)))
(define first-evt (indexed-future-event-fevent (list-ref l 0)))
(define total-time (- (future-event-time last-evt) (future-event-time first-evt)))
(check-true (<= (length ticks) (inexact->exact (floor (* 10 total-time))))))
(define mand-first
(list (indexed-future-event 0 '#s(future-event #f 0 create 1334779294212.415 #f 1))
(indexed-future-event 1 '#s(future-event 1 1 start-work 1334779294212.495 #f #f))
(indexed-future-event 2 '#s(future-event 1 1 sync 1334779294212.501 #f #f))
(indexed-future-event 3 (future-event 1 0 'sync 1334779294221.128 'allocate_memory #f))
(indexed-future-event 4 '#s(future-event 1 0 result 1334779294221.138 #f #f))
(indexed-future-event 5 '#s(future-event 1 1 result 1334779294221.15 #f #f))))
(let-values ([(tr finfo segs ticks) (compile-trace-data mand-first)])
(check-seg-layout tr segs ticks))
(define single-block-log
(list
(indexed-future-event 0 '#s(future-event #f 0 create 1339469018856.55 #f 1))
(indexed-future-event 1 '#s(future-event 1 1 start-work 1339469018856.617 #f 0))
(indexed-future-event 2 '#s(future-event 1 1 block 1339469018856.621 #f 0))
(indexed-future-event 3 '#s(future-event 1 1 suspend 1339469018856.891 #f 0))
(indexed-future-event 4 '#s(future-event 1 1 end-work 1339469018856.891 #f 0))
(indexed-future-event 5 '#s(future-event 1 0 block 1339469019057.609 printf 0))
(indexed-future-event 6 '#s(future-event 1 0 result 1339469019057.783 #f 0))
(indexed-future-event 7 '#s(future-event 1 2 start-work 1339469019057.796 #f 0))
(indexed-future-event 8 '#s(future-event 1 2 complete 1339469019057.799 #f 0))
(indexed-future-event 9 '#s(future-event 1 2 end-work 1339469019057.801 #f 0))))
(let ([tr (build-trace single-block-log)])
(check-equal? (length (hash-keys (trace-block-counts tr))) 1)
(check-equal? (length (hash-keys (trace-sync-counts tr))) 0)
(check-equal? (length (hash-keys (trace-future-rtcalls tr))) 1))
(define gci (gc-info #f 0 0 0 0 0 0 0 4.0 6.0))
(check-true (gc-event? gci))
(check-true (gc-event? (indexed-future-event 0 gci)))
(define gc-log1
(list
(indexed-future-event 0 (future-event #f 0 'create 10.0 #f 1))
(indexed-future-event 1 (gc-info #f 0 0 0 0 0 0 0 4.0 6.0))
(indexed-future-event 2 (future-event 1 1 'start-work 11.0 #f 0))
(indexed-future-event 3 (future-event 1 1 'complete 14.0 #f 0))
(indexed-future-event 4 (future-event 1 1 'end-work 15.0 #f 0))))
(let ([tr (build-trace gc-log1)])
(check-true (not (findf gc-event? (trace-all-events tr))))
(check-equal? (trace-num-gcs tr) 0)
(check-equal? (process-timeline-proc-id (trace-gc-timeline tr)) 'gc)
(check-equal? (length (process-timeline-events (trace-gc-timeline tr))) 0))
(define gc-log2
(list
(indexed-future-event 0 (future-event #f 0 'create 10.0 #f 1))
(indexed-future-event 1 (gc-info #f 0 0 0 0 0 0 0 14.0 19.0))
(indexed-future-event 2 (future-event 1 1 'start-work 11.0 #f 0))
(indexed-future-event 3 (future-event 1 1 'complete 20.0 #f 0))
(indexed-future-event 4 (future-event 1 1 'end-work 21.0 #f 0))))
(let ([tr (build-trace gc-log2)])
(check-equal? (length (filter gc-event? (trace-all-events tr))) 1)
(check-equal? (process-timeline-proc-id (trace-gc-timeline tr)) 'gc)
(check-equal? (length (process-timeline-events (trace-gc-timeline tr))) 1)
(check-equal? (trace-num-gcs tr) 1))
(define gc-log3
(list
(indexed-future-event 0 (future-event #f 0 'create 10.0 #f 1))
(indexed-future-event 1 (future-event 1 1 'start-work 11.0 #f 0))
(indexed-future-event 2 (gc-info #f 0 0 0 0 0 0 0 14.0 15.0))
(indexed-future-event 3 (gc-info #f 0 0 0 0 0 0 0 15.0 19.5))
(indexed-future-event 4 (future-event 1 1 'complete 20.0 #f 0))
(indexed-future-event 5 (future-event 1 1 'end-work 21.0 #f 0))))
(let-values ([(tr finfo segs ticks) (compile-trace-data gc-log3)])
(check-in-bounds? segs finfo)
(check-equal? (length (filter gc-event? (trace-all-events tr))) 2)
(check-equal? (trace-num-gcs tr) 2)
(check-equal? (length (trace-proc-timelines tr)) 2)
(check-equal? (process-timeline-proc-id (trace-gc-timeline tr)) 'gc)
(check-equal? (length (process-timeline-events (trace-gc-timeline tr))) 2)
(let ([gc-segs (filter (λ (s) (gc-event? (segment-event s))) segs)])
(check-equal? (length gc-segs) 2)
(for ([gs (in-list gc-segs)])
(check-true (= (segment-height gs) (frame-info-adjusted-height finfo)))
(check-true (> (segment-width gs) 10))
(check-true (= (segment-y gs) 0)))))
(check-true (work-event? (future-event #f 0 'start-work 1.0 #f 0)))
(check-true (work-event? (future-event #f 0 'start-0-work 2.0 #f 0)))
(check-false (work-event? (future-event #f 0 'end-work 1.0 #f 0)))
;Graph drawing tests
(let* ([nodea (drawable-node (node 'a '()) 5 5 10 0 0 '() 10)]
[center (drawable-node-center nodea)])
(check-equal? (point-x center) 10.0)
(check-equal? (point-y center) 10.0))
(define test-padding 5)
(define test-width 10)
(define (tree root-data . children)
(node root-data children))
(define (get-node data layout)
(first (filter (λ (dn) (equal? (node-data (drawable-node-node dn)) data)) (graph-layout-nodes layout))))
#|
a
|
b
|#
(define tree0 (tree 'a (tree 'b)))
(let* ([layout (draw-tree tree0 #:node-width test-width #:padding test-padding)]
[dnode-a (get-node 'a layout)]
[dnode-b (get-node 'b layout)])
(check-equal? (graph-layout-width layout) (+ (* test-padding 2) test-width))
(check-equal? (graph-layout-height layout) (+ (* test-padding 3) (* test-width 2)))
(check-equal? (drawable-node-x dnode-a) test-padding)
(check-equal? (drawable-node-y dnode-a) test-padding)
(check-equal? (drawable-node-x dnode-b) test-padding)
(check-equal? (drawable-node-y dnode-b) (+ test-padding test-width test-padding)))
(let ([atree (build-attr-tree tree0 0)])
(check-equal? (attributed-node-num-leaves atree) 1))
#|
a
/ \
b c
|#
(define tree1 (tree 'a
(tree 'b)
(tree 'c)))
(define layout (draw-tree tree1 #:node-width test-width #:padding test-padding))
(for ([dnode (in-list (graph-layout-nodes layout))])
(check-equal? (drawable-node-width dnode) test-width))
(define dnode-a (get-node 'a layout))
(define dnode-b (get-node 'b layout))
(define dnode-c (get-node 'c layout))
(define slot-one-pos (+ test-padding test-width test-padding))
(define square-sz (+ (* test-padding 3) (* test-width 2)))
(check-equal? (graph-layout-width layout) square-sz)
(check-equal? (graph-layout-height layout) square-sz)
(check-equal? (drawable-node-x dnode-b) test-padding)
(check-equal? (drawable-node-y dnode-b) slot-one-pos)
(check-equal? (drawable-node-x dnode-c) slot-one-pos)
(check-equal? (drawable-node-y dnode-c) slot-one-pos)
(check-equal? (drawable-node-x dnode-a) (/ 25 2))
(check-equal? (drawable-node-y dnode-a) test-padding)
(check-equal? (length (drawable-node-children dnode-a)) 2)
(let ([atree (build-attr-tree tree1 0)])
(check-equal? (attributed-node-num-leaves atree) 2))
#|
a
/ \
b d
| / \
c e f
|
g
|#
(define tree2 (tree 'a
(tree 'b
(tree 'c))
(tree 'd
(tree 'e)
(tree 'f
(tree 'g)))))
(let* ([layout (draw-tree tree2 #:node-width test-width #:padding test-padding)]
[nodes (graph-layout-nodes layout)]
[dnode-a (get-node 'a layout)]
[dnode-b (get-node 'b layout)]
[dnode-c (get-node 'c layout)]
[dnode-d (get-node 'd layout)]
[dnode-e (get-node 'e layout)]
[dnode-f (get-node 'f layout)]
[dnode-g (get-node 'g layout)])
(check-equal? (node-data (drawable-node-node dnode-a)) 'a)
(check-equal? (node-data (drawable-node-node dnode-b)) 'b)
(check-equal? (node-data (drawable-node-node dnode-c)) 'c)
(check-equal? (node-data (drawable-node-node dnode-d)) 'd)
(check-equal? (node-data (drawable-node-node dnode-e)) 'e)
(check-equal? (node-data (drawable-node-node dnode-f)) 'f)
(check-equal? (node-data (drawable-node-node dnode-g)) 'g)
(check-equal? (graph-layout-width layout) 50)
(check-equal? (graph-layout-height layout) 65)
(check-equal? (drawable-node-x dnode-a) (/ 65 4))
(check-equal? (drawable-node-y dnode-a) test-padding)
(check-equal? (drawable-node-x dnode-b) test-padding)
(check-equal? (drawable-node-y dnode-b) (+ (* 2 test-padding) test-width))
(check-equal? (drawable-node-x dnode-c) test-padding)
(check-equal? (drawable-node-y dnode-c) (+ (drawable-node-y dnode-b) test-width test-padding))
(check-equal? (drawable-node-x dnode-e) (+ (* 2 test-padding) test-width))
(check-equal? (drawable-node-y dnode-e) (+ (drawable-node-y dnode-d) test-width test-padding))
(check-equal? (drawable-node-x dnode-f) (+ (drawable-node-x dnode-e) test-width test-padding))
(check-equal? (drawable-node-y dnode-f) (drawable-node-y dnode-e))
(check-equal? (drawable-node-x dnode-g) (drawable-node-x dnode-f))
(check-equal? (drawable-node-y dnode-g) (+ (drawable-node-y dnode-f) test-width test-padding)))
(let ([atree (build-attr-tree tree2 0)])
(check-equal? (attributed-node-num-leaves atree) 3))
#|
a
/|\
b c e
|
d
|#
(define tree3 (tree 'a
(tree 'b)
(tree 'c
(tree 'd))
(tree 'e)))
(let* ([layout (draw-tree tree3 #:node-width test-width #:padding test-padding)]
[nodes (graph-layout-nodes layout)]
[dnode-a (get-node 'a layout)]
[dnode-b (get-node 'b layout)]
[dnode-c (get-node 'c layout)]
[dnode-d (get-node 'd layout)]
[dnode-e (get-node 'e layout)])
(check-equal? (graph-layout-width layout) 50)
(check-equal? (graph-layout-height layout) 50)
(check-equal? (drawable-node-x dnode-a) 20)
(check-equal? (drawable-node-y dnode-a) 5)
(check-equal? (drawable-node-x dnode-b) test-padding)
(check-equal? (drawable-node-y dnode-b) (+ (* 2 test-padding) test-width))
(check-equal? (drawable-node-x dnode-c) (+ (* 2 test-padding) test-width))
(check-equal? (drawable-node-y dnode-c) (drawable-node-y dnode-b))
(check-equal? (drawable-node-x dnode-e) (+ (* 3 test-padding) (* 2 test-width)))
(check-equal? (drawable-node-y dnode-e) (drawable-node-y dnode-c))
(check-equal? (drawable-node-x dnode-d) (drawable-node-x dnode-c))
(check-equal? (drawable-node-y dnode-d) (+ (drawable-node-y dnode-c) test-padding test-width)))
(let ([atree (build-attr-tree tree3 0)])
(check-equal? (attributed-node-num-leaves atree) 3))
#|
a
/ | | \
b c f g
/ \
d e
|#
(define tree4 (tree 'a
(tree 'b)
(tree 'c
(tree 'd)
(tree 'e))
(tree 'f)
(tree 'g)))
(let* ([layout (draw-tree tree4 #:node-width test-width #:padding test-padding)]
[nodes (graph-layout-nodes layout)]
[dnode-a (get-node 'a layout)]
[dnode-b (get-node 'b layout)]
[dnode-c (get-node 'c layout)]
[dnode-d (get-node 'd layout)]
[dnode-e (get-node 'e layout)]
[dnode-f (get-node 'f layout)]
[dnode-g (get-node 'g layout)])
(check-equal? (graph-layout-width layout) 80)
(check-equal? (graph-layout-height layout) 50)
(check-equal? (drawable-node-x dnode-b) test-padding)
(check-equal? (drawable-node-y dnode-b) (+ (drawable-node-y dnode-a) test-width test-padding))
(check-equal? (drawable-node-y dnode-c) (drawable-node-y dnode-b))
(check-equal? (drawable-node-x dnode-d) (+ (drawable-node-x dnode-b) test-width test-padding))
(check-equal? (drawable-node-y dnode-d) (+ (drawable-node-y dnode-c) test-width test-padding))
(check-equal? (drawable-node-x dnode-e) (+ (drawable-node-x dnode-d) test-width test-padding))
(check-equal? (drawable-node-y dnode-e) (drawable-node-y dnode-d))
(check-equal? (drawable-node-x dnode-f) (+ (drawable-node-x dnode-e) test-width test-padding))
(check-equal? (drawable-node-y dnode-f) (drawable-node-y dnode-c))
(check-equal? (drawable-node-x dnode-g) (+ (drawable-node-x dnode-f) test-width test-padding)))
(let ([atree (build-attr-tree tree4 0)])
(check-equal? (attributed-node-num-leaves atree) 5))
#|
Layered-tree-draw example from Di Battista
a
/ \
b g
| / \
c h k
| / \
d i j
/ \
e f
|#
(define tree5 (tree 'a
(tree 'b
(tree 'c
(tree 'd
(tree 'e)
(tree 'f))))
(tree 'g
(tree 'h
(tree 'i)
(tree 'j))
(tree 'k))))
(let* ([layout (draw-tree tree5 #:node-width test-width #:padding test-padding)]
[nodes (graph-layout-nodes layout)]
[dnode-a (get-node 'a layout)]
[dnode-b (get-node 'b layout)]
[dnode-c (get-node 'c layout)]
[dnode-d (get-node 'd layout)]
[dnode-e (get-node 'e layout)]
[dnode-f (get-node 'f layout)]
[dnode-g (get-node 'g layout)]
[dnode-h (get-node 'h layout)]
[dnode-i (get-node 'i layout)]
[dnode-j (get-node 'j layout)]
[dnode-k (get-node 'k layout)])
(check-equal? (graph-layout-width layout) 80)
(check-equal? (graph-layout-height layout) 80)
(check-equal? (drawable-node-x dnode-e) test-padding)
(check-equal? (drawable-node-y dnode-e) 65)
(check-equal? (drawable-node-x dnode-f) (+ (drawable-node-x dnode-e) test-width test-padding))
(check-equal? (drawable-node-x dnode-i) (+ (drawable-node-x dnode-f) test-width test-padding))
(check-equal? (drawable-node-x dnode-j) (+ (drawable-node-x dnode-i) test-width test-padding))
(check-equal? (drawable-node-x dnode-k) (+ (drawable-node-x dnode-j) test-width test-padding)))
(let ([atree (build-attr-tree tree5 0)])
(check-equal? (attributed-node-num-leaves atree) 5))