racket/collects/math/private/distributions/impl/binomial-random.rkt
Neil Toronto 0936d8c20b Reworked distribution API, finally happy with it (as happy as I can be without being able to partially instantiate polymorphic parent struct types)
Added docs for math/distributions (about 75% finished)
Started docs for math/array (very incomplete)
2012-11-21 21:16:35 -07:00

104 lines
4.1 KiB
Racket
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#lang typed/racket/base
#|
Wolfgang Hormann. The Generation of Binomial Random Variates.
|#
(require "../../../base.rkt"
"../../../flonum.rkt"
"../../../vector.rkt"
"../../unsafe.rkt"
"normal-random.rkt")
(provide flbinomial-sample)
(: flbinomial-sample-small (Flonum Flonum Natural -> FlVector))
;; For n*min(p,1-p) <= 30
(define (flbinomial-sample-small n p m)
(let-values ([(p q s?) (cond [(p . fl< . 0.5) (values p (fl- 1.0 p) #f)]
[else (values (fl- 1.0 p) p #t)])])
(define q^n (flexpt q n))
(define r (fl/ p q))
(define g (fl* r (fl+ n 1.0)))
(build-flvector
m (λ (_)
(define k
(let: reject : Flonum ()
(let loop ([k 0.0] [f q^n] [u (random)])
(cond [(u . fl< . f) k]
[(k . fl> . 110.0) (reject)]
[else (let ([k (fl+ k 1.0)])
(loop k (fl* f (fl- (fl/ g k) r)) (fl- u f)))]))))
(if s? (fl- n k) k)))))
(: flbinomial-sample-hormann (Flonum Flonum Natural -> FlVector))
;; For n*min(p,1-p) >= 10
(define (flbinomial-sample-hormann n p j)
(let-values ([(p q s?) (cond [(p . fl< . 0.5) (values p (fl- 1.0 p) #f)]
[else (values (fl- 1.0 p) p #t)])])
(define σ (flsqrt (* n p q)))
(define m (flfloor (fl* (fl+ n 1.0) p)))
(define b (fl+ 1.15 (fl* 2.53 σ)))
(define a (+ -0.0873 (fl* 0.0248 b) (fl* 0.01 p)))
(define c (fl+ 0.5 (fl* n p)))
(define α (fl* σ (fl+ 2.83 (fl/ 5.1 b))))
(define vr (fl- 0.92 (fl/ 4.2 b)))
(build-flvector
j (λ (_)
(define k
(let: loop : Flonum ()
(define v (random))
(define u (fl- (random) 0.5))
(define us (fl- 0.5 (flabs u)))
(define k (flfloor (fl+ c (fl* u (fl+ b (fl/ (fl* 2.0 a) us))))))
(cond [(or (k . fl< . 0.0) (k . fl> . n)) (loop)]
[(and (us . fl>= . 0.07) (v . fl<= . vr)) k]
[else
(let ([v (fl* v (fl/ α (fl+ b (fl/ a (fl* us us)))))])
(define h (+ (fllog-factorial m)
(fllog-factorial (fl- n m))
(- (fllog-factorial k))
(- (fllog-factorial (fl- n k)))
(fl* (fl- k m) (fllog (fl/ p q)))))
(cond [((fllog v) . fl<= . h) k]
[else (loop)]))])))
(if s? (fl- n k) k)))))
(: flbinomial-sample-normal (Flonum Flonum Natural -> FlVector))
(define (flbinomial-sample-normal n p m)
(define q (fl- 1.0 p))
(define μ (fl- (fl* (fl+ n 1.0) p) 0.5))
(define σ (flsqrt (* (+ 1.0 n) p q)))
(define γ (fl/ (fl- q p) σ))
(build-flvector
m (λ (_)
(let loop ()
(define z (unsafe-flvector-ref (flnormal-sample 0.0 1.0 1) 0))
(define k (flround (fl+ μ (fl* σ (fl+ z (fl/ (fl* γ (fl- (fl* z z) 1.0)) 6.0))))))
(if (and (k . fl>= . 0.0) (k . fl<= . n)) k (loop))))))
(: flbinomial-normal-appx-error-bound (Flonum Flonum -> Flonum))
;; Returns a bound on the integrated difference between the normal and binomial cdfs
;; See the Berry-Esséen theorem
(define (flbinomial-normal-appx-error-bound n p)
(define q (fl- 1.0 p))
(fl/ (fl* 0.4784 (fl+ (fl* p p) (fl* q q))) (flsqrt (* n p q))))
(: flbinomial-sample (Flonum Flonum Integer -> FlVector))
(define (flbinomial-sample n p m)
(cond [(m . < . 0) (raise-argument-error 'flbinomial-sample "Natural" 2 n p m)]
[(or (not (integer? n)) (n . fl< . 0.0) (p . fl< . 0.0) (p . fl> . 1.0))
(build-flvector m (λ (_) +nan.0))]
[(or (fl= n 0.0) (fl= p 0.0))
(build-flvector m (λ (_) 0.0))]
[(fl= p 1.0)
(build-flvector m (λ (_) n))]
[(and (n . fl> . 1e8)
((flbinomial-normal-appx-error-bound n p) . fl< . (flexp -10.0)))
(flbinomial-sample-normal n p m)]
[((fl* n (flmin p (fl- 1.0 p))) . fl>= . 10.0)
(flbinomial-sample-hormann n p m)]
[else
(flbinomial-sample-small n p m)]))