racket/collects/math/private/flonum/flonum-more-functions.rkt
Neil Toronto f2dc2027f6 Initial math library commit. The history for these changes is preserved
in the original GitHub fork:

  https://github.com/ntoronto/racket

Some things about this are known to be broken (most egregious is that the
array tests DO NOT RUN because of a problem in typed/rackunit), about half
has no coverage in the tests, and half has no documentation. Fixes and
docs are coming. This is committed now to allow others to find errors and
inconsistency in the things that appear to be working, and to give the
author a (rather incomplete) sense of closure.
2012-11-16 11:39:51 -07:00

190 lines
6.3 KiB
Racket

#lang typed/racket/base
(require racket/performance-hint
"flonum-functions.rkt"
"flonum-constants.rkt"
"flonum-exp.rkt"
"flonum-log.rkt"
"flonum-syntax.rkt")
(provide flsqrt1pm1
flsinh flcosh fltanh
flasinh flacosh flatanh
make-flexp/base flexpt+ flexpt1p)
;; ---------------------------------------------------------------------------------------------------
;; sqrt(1+x)-1
(: flsqrt1pm1 (Float -> Float))
(define (flsqrt1pm1 x)
(cond [((flabs x) . fl> . 0.75)
(fl- (flsqrt (fl+ 1.0 x)) 1.0)]
[else
(flexpm1 (fl* 0.5 (fllog1p x)))]))
;; ---------------------------------------------------------------------------------------------------
;; Hyperbolic sine
(: flsinh (Float -> Float))
(define (flsinh x)
(cond [(x . fl< . 0.0)
;; Odd function
(- (flsinh (- x)))]
[(x . fl< . (flexpt 2.0 -26.0))
;; sinh(x) ~ x
x]
[(x . fl< . 18.5)
;; sinh(x) = (exp(2*x) - 1) / (2*exp(x))
(define y (flexpm1 x))
(fl* 0.5 (fl+ y (fl/ y (fl+ y 1.0))))]
[(x . fl< . (fllog +max.0))
;; sinh(x) ~ exp(x) / 2
(fl* 0.5 (flexp x))]
[else
;; sinh(x) ~ exp(x) / 2 = (exp(x/2) / 2) * exp(x/2)
(define y (flexp (fl* 0.5 x)))
(fl* (fl* 0.5 y) y)]))
;; ---------------------------------------------------------------------------------------------------
;; Hyperbolic cosine
(: flcosh (Float -> Float))
(define (flcosh x)
;; cosh(x) = cosh(-x)
(let ([x (flabs x)])
(cond [(x . fl< . (flexpt 2.0 -26.0))
;; cosh(x) ~ 1
1.0]
[(x . fl< . (fl* 0.5 (fllog 2.0)))
;; cosh(x) = 1 + (exp(x) - 1)^2 / (2*exp(x))
(define y (flexpm1 x))
(fl+ 1.0 (fl/ (fl* y y) (fl* 2.0 (fl+ 1.0 y))))]
[(x . fl< . 18.5)
;; cosh(x) = (exp(x) + 1/exp(x)) / 2
(define y (flexp x))
(fl+ (fl* 0.5 y) (fl/ 0.5 y))]
[(x . fl< . (fllog +max.0))
;; cosh(x) ~ exp(x) / 2
(fl* 0.5 (flexp x))]
[else
;; cosh(x) ~ exp(x) / 2 = (exp(x/2) / 2) * exp(x/2)
(define y (flexp (fl* 0.5 x)))
(fl* (fl* 0.5 y) y)])))
;; ---------------------------------------------------------------------------------------------------
;; Hyperbolic tangent
(: fltanh (Float -> Float))
(define (fltanh x)
(cond [(x . fl< . 0.0)
;; tanh(x) = -tanh(-x)
(- (fltanh (- x)))]
[(x . fl< . 1e-16)
;; tanh(x) ~ x + x^2
(fl* x (fl+ 1.0 x))]
[(x . fl< . 0.5)
;; tanh(x) = (exp(2*x) - 1) / (exp(2*x) + 1)
(define y (flexpm1 (fl* -2.0 x)))
(- (fl/ y (fl+ 2.0 y)))]
[(x . fl< . 19.5)
;; tanh(x) = (exp(2*x) - 1) / (exp(2*x) + 1)
(define y (flexp (fl* 2.0 x)))
(fl/ (fl- y 1.0) (fl+ y 1.0))]
[(x . fl<= . +inf.0)
;; tanh(x) ~ 1
1.0]
[else +nan.0]))
;; ---------------------------------------------------------------------------------------------------
;; Inverse hyperbolic sine
(: flasinh (Float -> Float))
(define (flasinh x)
(cond [(x . fl< . 0.0) (- (flasinh (- x)))]
[(x . fl< . 2e-8) x]
[(x . fl< . 0.00018)
;; Taylor series order 3
(fl* x (fl+ 1.0 (fl* (fl* #i-1/6 x) x)))]
[(x . fl< . 1.0)
;; Standard definition, rearranged to preserve digits
(fllog1p (fl+ x (flsqrt1pm1 (fl* x x))))]
[(x . fl< . 3e3)
;; Standard definition
(fllog (fl+ x (flsqrt (fl+ (fl* x x) 1.0))))]
[(x . fl< . 1e307)
;; Laurent series in 1/x at 0+ order from -1 to 1
(fl+ (fllog (fl* x 2.0)) (fl/ 1.0 (fl* (fl* 4.0 x) x)))]
[else
;; Laurent series, rearranged to not overflow
(fl+ (fllog x) (fllog 2.0))]))
;; ---------------------------------------------------------------------------------------------------
;; Inverse hyperbolic cosine
(: flacosh (Float -> Float))
(define (flacosh x)
(cond [(x . fl< . 1.0) +nan.0]
[(x . fl< . 1.5)
;; Standard definition, rearranged to preserve digits when x is near 1.0
(define y (fl- x 1.0))
(fllog1p (fl+ y (flsqrt (fl+ (fl* y y) (fl* 2.0 y)))))]
[(x . fl< . 1e8)
;; Standard definition
(fllog (fl+ x (flsqrt (fl- (fl* x x) 1.0))))]
[(x . fl< . 1e307)
;; Laurent series in 1/x at 0+ order from -1 to 0
(fllog (fl* x 2.0))]
[else
;; Laurent series, rearranged to avoid overflow
(fl+ (fllog x) (fllog 2.0))]))
;; ---------------------------------------------------------------------------------------------------
;; Inverse hyperbolic tangent
(: flatanh (Float -> Float))
(define (flatanh x)
(cond [(x . fl< . 0.0) (- (flatanh (- x)))]
[(x . fl< . 1e-8) x]
[(x . fl< . 0.00015)
;; Taylor series order 2
(fl+ x (fl* (fl* (fl* #i1/3 x) x) x))]
[(x . fl< . 0.5)
;; Standard definition, rearranged to preserve digits when x is near 0.0
(fl* 0.5 (fl- (fllog1p x) (fllog1p (- x))))]
[(x . fl< . 1.0)
;; Standard definition
(fl* 0.5 (fllog (fl/ (fl+ 1.0 x) (fl- 1.0 x))))]
[(x . fl= . 1.0) +inf.0]
[else +nan.0]))
;; ---------------------------------------------------------------------------------------------------
;; Exponential with high-precision bases
(begin-encourage-inline
(: make-flexp/base (Positive-Exact-Rational -> (Flonum -> Flonum)))
(define (make-flexp/base b)
(define b-hi (fl b))
(define b-lo (fl (- (/ (inexact->exact b-hi) b) 1)))
(cond [(fl= b-lo 0.0) (λ: ([x : Flonum]) (flexpt b-hi x))]
[else
(λ: ([x : Flonum])
(fl/ (flexpt b-hi x)
(flexp (fl* x (fllog1p b-lo)))))]))
(: flexpt+ (Flonum Flonum Flonum -> Flonum))
(define (flexpt+ a b y)
(define-values (x-hi x-lo) (fast-fl+/error a b))
(fl/ (flexpt x-hi y)
(flexp (fl* y (fllog1p (- (/ x-lo x-hi)))))))
(: flexpt1p (Flonum Flonum -> Flonum))
(define (flexpt1p x y)
(cond [(and (x . > . -0.5) (x . < . +inf.0))
(define-values (a-hi a-lo) (fast-fl+/error 1.0 x))
(fl/ (flexpt a-hi y)
(flexp (fl* y (fllog1p (- (/ a-lo a-hi))))))]
[else (flexpt (+ 1.0 x) y)]))
) ; begin-encourage-inline