racket/collects/math/private/functions/beta.rkt
Neil Toronto f2dc2027f6 Initial math library commit. The history for these changes is preserved
in the original GitHub fork:

  https://github.com/ntoronto/racket

Some things about this are known to be broken (most egregious is that the
array tests DO NOT RUN because of a problem in typed/rackunit), about half
has no coverage in the tests, and half has no documentation. Fixes and
docs are coming. This is committed now to allow others to find errors and
inconsistency in the things that appear to be working, and to give the
author a (rather incomplete) sense of closure.
2012-11-16 11:39:51 -07:00

152 lines
7.0 KiB
Racket

#lang typed/racket/base
(require "../../flonum.rkt"
"../../base.rkt"
"gamma.rkt"
"log-gamma.rkt"
"stirling-error.rkt"
"lanczos.rkt")
(provide flbeta fllog-beta beta log-beta)
(define: flbeta-hash : (HashTable (Pair Flonum Flonum) Flonum) (make-weak-hash))
(define: fllog-beta-hash : (HashTable (Pair Flonum Flonum) Flonum) (make-weak-hash))
(: flbeta-limits (Flonum Flonum -> Flonum))
;; Assumes a >= b (or one is +nan.0)
(define (flbeta-limits a b)
(cond [(or (a . < . 0.0) (b . < . 0.0)) +nan.0]
[(and (= a +inf.0) (= b 0.0)) +nan.0]
[(or (= a 0.0) (= b 0.0)) +inf.0]
[(or (= a +inf.0) (= b +inf.0)) 0.0]
[else +nan.0]))
(: flbeta (Flonum Flonum -> Flonum))
(define (flbeta a b)
(let ([a (flmax a b)]
[b (flmin a b)])
(cond [(not (and (b . fl> . 0.0) (a . fl< . +inf.0)))
(flbeta-limits a b)]
[(fl= a 1.0) (fl/ 1.0 b)]
[(fl= b 1.0) (fl/ 1.0 a)]
[(b . fl> . 540.0) 0.0]
;; Asymptotic expansion for small `b' and large `a', derived from Stirling's approximation
;; Domain where this has low error (<= 3 ulps) was found by experimentation (for the first
;; condition), and by solving for a^-b = small (for the second)
[(or (and (b . fl< . 1.0) (a . fl> . (fl* 1e16 b)))
(and (a . fl> . 1e17) (b . fl< . (fl/ 700.0 (fllog a)))))
(fl* (flgamma b) (flexpt a (- b)))]
;; Use direct implementation when it doesn't under-/overflow
[(and (b . fl>= . 1.0) (a . fl<= . 99.0) ((fl+ a b) . fl<= . 171.0))
(fl/ (fl* (flgamma a) (flgamma b)) (flgamma (fl+ a b)))]
[else
(hash-ref!
flbeta-hash (cons a b)
(λ ()
(define-values (a/b a/b-lo) (fast-fl//error a b))
(define-values (b/a b/a-lo) (fast-fl//error b a))
(cond
;; Use extended-precision implementation based on Stirling's series when it
;; won't under-/overflow
[(and (a/b . fl> . +max-subnormal.0) (a/b . fl< . +inf.0)
(b/a . fl> . +max-subnormal.0) (b/a . fl< . +inf.0))
(define-values (1+a/b 1+a/b-lo) (fast-fl+/error 1.0 a/b))
(define-values (1+b/a 1+b/a-lo) (fast-fl+/error 1.0 b/a))
(* (fl/ (fl* (flexp-stirling a) (flexp-stirling b))
(flexp-stirling (fl+ a b)))
(flsqrt (fl/ (* 2.0 pi (fl+ a b)) (fl* a b)))
(flexpt+ 1+a/b (fl+ 1+a/b-lo a/b-lo) (- b))
(flexpt+ 1+b/a (fl+ 1+b/a-lo b/a-lo) (- a)))]
[else
(* (fl/ (fl* (flexp-stirling a) (flexp-stirling b))
(flexp-stirling (fl+ a b)))
(flsqrt (fl/ (fl/ (* 2.0 pi (fl+ a b)) a) b))
(flexpt (fl/ (fl+ a b) b) (- b))
(flexpt (fl/ (fl+ b a) a) (- a)))])))])))
(: fllog-beta-stirling (Flonum Flonum -> Flonum))
(define (fllog-beta-stirling a b)
(define t
(let ([t (flstirling (fl+ a b))])
(cond [(t . < . +inf.0) t]
[else (/ #i1/24 (+ (* 0.5 a) (* 0.5 b)))])))
(+ (fl- (fl+ (flstirling a) (flstirling b)) t)
(* 0.5 (- (+ (fllog (* 2.0 pi)) (fllog+ a b)) (fllog a) (fllog b)))
(* a (- (fllog a) (fllog+ a b)))
(* b (- (fllog b) (fllog+ a b)))))
(: fllog-beta (Flonum Flonum -> Flonum))
(define (fllog-beta a b)
(let ([a (flmax a b)]
[b (flmin a b)])
(cond [(not (and (b . fl> . 0.0) (a . fl< . +inf.0)))
(fllog (flbeta-limits a b))]
[(fl= a 1.0) (- (fllog b))]
[(fl= b 1.0) (- (fllog a))]
[else
(define y-est (fl+ (fllog-gamma b) (fl* (- b) (fllog a))))
(cond
;; If an overestimate of (fllog-beta a b) is small enough but not too small, or large
;; enough and rational, then (fllog (flbeta a b)) has low error
;; The "too small" value log(1e-220) was determined experimentally
[(or (and (y-est . > . (fllog 1e-220)) (y-est . < . (fllog #i1/8)))
(and (y-est . > . (fllog 8.0)) (y-est . < . (fllog +max.0))))
(fllog (flbeta a b))]
[(y-est . > . (flexp 1.0)) (fllog-beta-stirling a b)]
[else
(hash-ref!
fllog-beta-hash (cons a b)
(λ ()
(define-values (a/b a/b-lo) (fast-fl//error a b))
(define-values (b/a b/a-lo) (fast-fl//error b a))
(cond
;; Use extended-precision implementation based on Stirling's series when it won't
;; under-/overflow
[(and (a/b . fl> . +max-subnormal.0) (a/b . fl< . +inf.0)
(b/a . fl> . +max-subnormal.0) (b/a . fl< . +inf.0)
(a/b-lo . fl> . +max-subnormal.0) (a/b-lo . fl< . +inf.0)
(b/a-lo . fl> . +max-subnormal.0) (b/a-lo . fl< . +inf.0))
(define-values (1+a/b 1+a/b-lo) (fast-fl+/error 1.0 a/b))
(define-values (1+b/a 1+b/a-lo) (fast-fl+/error 1.0 b/a))
(define t
(let ([t (* 0.5 (fllog (fl/ (* 2.0 pi (fl+ a b)) (fl* a b))))])
(cond [(and (t . > . -inf.0) (t . < . +inf.0)) t]
[else (* 0.5 (- (+ (fllog (* 2.0 pi)) (fllog+ a b))
(+ (fllog a) (fllog b))))])))
(+ t (fl- (fl+ (flstirling a) (flstirling b))
(flstirling (fl+ a b)))
(* (- b) (fllog+ 1+a/b (fl+ 1+a/b-lo a/b-lo)))
(* (- a) (fllog+ 1+b/a (fl+ 1+b/a-lo b/a-lo))))]
[else
(fllog-beta-stirling a b)])))])])))
;; ===================================================================================================
(: log-beta (case-> (One One -> Zero)
(Flonum Flonum -> Flonum)
(Real Real -> (U Zero Flonum))))
(define (log-beta a b)
(cond [(and (exact? a) (a . <= . 0))
(raise-argument-error 'log-beta "positive Real" 0 a b)]
[(and (exact? b) (b . <= . 0))
(raise-argument-error 'log-beta "positive Real" 1 a b)]
[(eqv? a 1)
(if (eqv? b 1) 0 (fllog-beta (fl a) (fl b)))]
[else
(fllog-beta (fl a) (fl b))]))
(: beta (case-> (Positive-Integer Positive-Integer -> Exact-Rational)
(Flonum Flonum -> Flonum)
(Real Real -> (U Exact-Rational Flonum))))
(define (beta a b)
(cond [(and (exact? a) (a . <= . 0))
(raise-argument-error 'beta "positive Real" 0 a b)]
[(and (exact? b) (b . <= . 0))
(raise-argument-error 'beta "positive Real" 1 a b)]
[(exact-integer? a)
(if (exact-integer? b)
(/ (* (gamma a) (gamma b)) (gamma (+ a b)))
(flbeta (fl a) (fl b)))]
[else
(flbeta (fl a) (fl b))]))