racket/c/alloc.c
dybvig d0b405ac8b library-manager, numeric, and bytevector-compres improvements
- added invoke-library
    syntax.ss, primdata.ss,
    8.ms, root-experr*,
    libraries.stex, release_notes.stex
- updated the date
    release_notes.stex
- libraries contained within a whole program or library are now
  marked pending before their invoke code is run so that invoke
  cycles are reported as such rather than as attempts to invoke
  while still loading.
    compile.ss, syntax.ss, primdata.ss,
    7.ms, root-experr*
- the library manager now protects against unbound references
  from separately compiled libraries or programs to identifiers
  ostensibly but not actually exported by (invisible) libraries
  that exist only locally within a whole program.  this is done by
  marking the invisibility of the library in the library-info and
  propagating it to libdesc records; the latter is checked upon
  library import, visit, and invoke as well as by verify-loadability.
  the import and visit code of each invisible no longer complains
  about invisibility since it shouldn't be reachable.
    syntax.ss, compile.ss, expand-lang.ss,
    7.ms, 8.ms, root-experr*, patch*
- documented that compile-whole-xxx's linearization of the
  library initialization code based on static dependencies might
  not work for dynamic dependencies.
    system.stex
- optimized bignum right shifts so the code (1) doesn't look at
  shifted-off bigits if the bignum is positive, since it doesn't
  need to know in that case if any bits are set; (2) doesn't look
  at shifted-off bigits if the bignum is negative if it determines
  that at least one bit is set in the bits shifted off the low-order
  partially retained bigit; (3) quits looking, if it must look, for
  one bits as soon as it finds one; (4) looks from both ends under
  the assumption that set bits, if any, are most likely to be found
  toward the high or low end of the bignum rather than just in the
  middle; and (5) doesn't copy the retained bigits and then shift;
  rather shifts as it copies.  This leads to dramatic improvements
  when the shift count is large and often significant improvements
  otherwise.
    number.c,
    5_3.ms,
    release_notes.stex
- threaded tc argument through to all calls to S_bignum and
  S_trunc_rem so they don't have to call get_thread_context()
  when it might already have been called.
    alloc.c, number.c, fasl.c, print.c, prim5.c, externs.h
- added an expand-primitive handler to partially inline integer?.
    cpnanopass.ss
- added some special cases for basic arithmetic operations (+, -, *,
  /, quotient, remainder, and the div/div0/mod/mod0 operations) to
  avoid doing unnecessary work for large bignums when the result
  will be zero (e.g,. multiplying by 0), the same as one of the
  inputs (e.g., adding 0 or multiplying by 1), or the additive
  inverse of one of the inputs (e.g., subtracting from 0, dividing
  by -1).  This can have a major beneficial affect when operating
  on large bignums in the cases handled.  also converted some uses
  of / into integer/ where going through the former would just add
  overhead without the possibility of optimization.
    5_3.ss,
    number.c, externs.h, prim5.c,
    5_3.ms, root-experr, patch*,
    release_notes.stex
- added a queue to hold pending signals for which handlers have
  been registered via register-signal-handler so up to 63 (configurable
  in the source code) unhandled signals are buffered before the
  handler has to start dropping them.
    cmacros.ss, library.ss, prims.ss, primdata.ss,
    schsig.c, externs.h, prim5.c, thread.c, gc.c,
    unix.ms,
    system.stex, release_notes.stex
- bytevector-compress now selects the level of compression based
  on the compress-level parameter.  Prior to this it always used a
  default setting for compression.  the compress-level parameter
  can now take on the new minimum in addition to low, medium, high,
  and maximum.  minimum is presently treated the same as low
  except in the case of lz4 bytevector compression, where it
  results in the use of LZ4_compress_default rather than the
  slower but more effective LZ4_compress_HC.
    cmacros,ss, back.ss,
    compress_io.c, new_io.c, externs.h,
    bytevector.ms, mats/Mf-base, root-experr*
    io.stex, objects.stex, release_notes.stex

original commit: 72d90e4c67849908da900d0b6249a1dedb5f8c7f
2020-02-21 13:48:47 -08:00

863 lines
23 KiB
C

/* alloc.c
* Copyright 1984-2017 Cisco Systems, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "system.h"
/* locally defined functions */
static void maybe_fire_collector PROTO((void));
void S_alloc_init() {
ISPC s; IGEN g; UINT i;
if (S_boot_time) {
/* reset the allocation tables */
for (s = 0; s <= max_real_space; s++) {
for (g = 0; g <= static_generation; g++) {
S_G.base_loc[s][g] = FIX(0);
S_G.first_loc[s][g] = FIX(0);
S_G.next_loc[s][g] = FIX(0);
S_G.bytes_left[s][g] = 0;
S_G.bytes_of_space[s][g] = 0;
}
}
/* initialize the dirty-segment lists. */
for (i = 0; i < DIRTY_SEGMENT_LISTS; i += 1) {
S_G.dirty_segments[i] = NULL;
}
S_G.collect_trip_bytes = default_collect_trip_bytes;
/* set to final value in prim.c when known */
S_protect(&S_G.nonprocedure_code);
S_G.nonprocedure_code = FIX(0);
S_protect(&S_G.null_vector);
find_room(space_new, 0, type_typed_object, size_vector(0), S_G.null_vector);
VECTTYPE(S_G.null_vector) = (0 << vector_length_offset) | type_vector;
S_protect(&S_G.null_fxvector);
find_room(space_new, 0, type_typed_object, size_fxvector(0), S_G.null_fxvector);
FXVECTOR_TYPE(S_G.null_fxvector) = (0 << fxvector_length_offset) | type_fxvector;
S_protect(&S_G.null_bytevector);
find_room(space_new, 0, type_typed_object, size_bytevector(0), S_G.null_bytevector);
BYTEVECTOR_TYPE(S_G.null_bytevector) = (0 << bytevector_length_offset) | type_bytevector;
S_protect(&S_G.null_string);
find_room(space_new, 0, type_typed_object, size_string(0), S_G.null_string);
STRTYPE(S_G.null_string) = (0 << string_length_offset) | type_string;
}
}
void S_protect(p) ptr *p; {
if (S_G.protect_next > max_protected)
S_error_abort("max_protected constant too small");
*p = snil;
S_G.protected[S_G.protect_next++] = p;
}
/* S_reset_scheme_stack is always called with mutex */
void S_reset_scheme_stack(tc, n) ptr tc; iptr n; {
ptr *x; iptr m;
/* we allow less than one_shot_headroom here for no truly justifyable
reason */
n = ptr_align(n + (one_shot_headroom >> 1));
x = &STACKCACHE(tc);
for (;;) {
if (*x == snil) {
if (n < default_stack_size) n = default_stack_size;
/* stacks are untyped objects */
find_room(space_new, 0, typemod, n, SCHEMESTACK(tc));
break;
}
if ((m = CACHEDSTACKSIZE(*x)) >= n) {
n = m;
SCHEMESTACK(tc) = *x;
/* if we decide to leave KEEPSMALLPUPPIES undefined permanently, we should
rewrite this code to remove the indirect on x */
/* #define KEEPSMALLPUPPIES */
#ifdef KEEPSMALLPUPPIES
*x = CACHEDSTACKLINK(*x);
#else
STACKCACHE(tc) = CACHEDSTACKLINK(*x);
#endif
break;
}
x = &CACHEDSTACKLINK(*x);
}
SCHEMESTACKSIZE(tc) = n;
ESP(tc) = (ptr)((uptr)SCHEMESTACK(tc) + n - stack_slop);
SFP(tc) = (ptr)SCHEMESTACK(tc);
}
ptr S_compute_bytes_allocated(xg, xs) ptr xg; ptr xs; {
ptr tc = get_thread_context();
ISPC s, smax, smin; IGEN g, gmax, gmin;
uptr n;
gmin = (IGEN)UNFIX(xg);
if (gmin < 0) {
gmin = 0;
gmax = static_generation;
} else if (gmin == S_G.new_max_nonstatic_generation) {
/* include virtual inhabitents too */
gmax = S_G.max_nonstatic_generation;
} else {
gmax = gmin;
}
smin = (ISPC)(UNFIX(xs));
smax = smin < 0 ? max_real_space : smin;
smin = smin < 0 ? 0 : smin;
n = 0;
g = gmin;
while (g <= gmax) {
for (s = smin; s <= smax; s++) {
/* add in bytes previously recorded */
n += S_G.bytes_of_space[s][g];
/* add in bytes in active segments */
if (S_G.next_loc[s][g] != FIX(0))
n += (char *)S_G.next_loc[s][g] - (char *)S_G.base_loc[s][g];
}
if (g == S_G.max_nonstatic_generation)
g = static_generation;
else
g += 1;
}
/* subtract off bytes not allocated */
if (gmin == 0 && smin <= space_new && space_new <= smax)
n -= (uptr)REAL_EAP(tc) - (uptr)AP(tc);
return Sunsigned(n);
}
static void maybe_fire_collector() {
ISPC s;
uptr bytes, fudge;
bytes = 0;
for (s = 0; s <= max_real_space; s += 1) {
/* bytes already accounted for */
bytes += S_G.bytes_of_space[s][0];
/* bytes in current block of segments */
if (S_G.next_loc[s][0] != FIX(0))
bytes += (char *)S_G.next_loc[s][0] - (char *)S_G.base_loc[s][0];
}
/* arbitrary fudge factor to account for space we may not be using yet
arbitrary because:
- we assume each thread has not yet used half it's allocation area
- we assume each thread has not yet used half its stack
- some threads' stacks may not be as much as the default size
*/
fudge = (default_stack_size / 2) + S_nthreads * (bytes_per_segment / 2);
bytes = bytes > fudge ? bytes - fudge : 0;
if (bytes >= S_G.collect_trip_bytes)
S_fire_collector();
}
/* find_more_room
* S_find_more_room is called from the macro find_room when
* the current segment is too full to fit the allocation.
*
* A forward_marker followed by a pointer to
* the newly obtained segment is placed at next_loc to show
* gc where the end of this segment is and where the next
* segment of this type resides. Allocation occurs from the
* beginning of the newly obtained segment. The need for the
* eos marker explains the (2 * ptr_bytes) byte factor in
* S_find_more_room.
*/
/* S_find_more_room is always called with mutex */
ptr S_find_more_room(s, g, n, old) ISPC s; IGEN g; iptr n; ptr old; {
iptr nsegs, seg;
ptr new;
S_pants_down += 1;
nsegs = (uptr)(n + 2 * ptr_bytes + bytes_per_segment - 1) >> segment_offset_bits;
/* block requests to minimize fragmentation and improve cache locality */
if (s == space_code && nsegs < 16) nsegs = 16;
seg = S_find_segments(s, g, nsegs);
new = build_ptr(seg, 0);
if (old == FIX(0)) {
/* first object of this space */
S_G.first_loc[s][g] = new;
} else {
/* increment bytes_allocated by the closed-off partial segment */
S_G.bytes_of_space[s][g] += (char *)old - (char *)S_G.base_loc[s][g];
/* lay down an end-of-segment marker */
*(ptr*)old = forward_marker;
*((ptr*)old + 1) = new;
}
/* base address of current block of segments to track amount of allocation */
S_G.base_loc[s][g] = new;
S_G.next_loc[s][g] = (ptr)((uptr)new + n);
S_G.bytes_left[s][g] = (nsegs * bytes_per_segment - n) - 2 * ptr_bytes;
if (g == 0) maybe_fire_collector();
S_pants_down -= 1;
return new;
}
/* S_reset_allocation_pointer is always called with mutex */
/* We always allocate exactly one segment for the allocation area, since
we can get into hot water with formerly locked objects, specifically
symbols and impure records, that cross segment boundaries. This allows
us to maintain the invariant that no object crosses a segment boundary
unless it starts on a segment boundary (and is thus at least one
segment long). NB. This invariant does not apply to code objects
since we grab large blocks of segments for them.
*/
void S_reset_allocation_pointer(tc) ptr tc; {
iptr seg;
S_pants_down += 1;
seg = S_find_segments(space_new, 0, 1);
/* NB: if allocate_segments didn't already ensure we don't use the last segment
of memory, we'd have to reject it here so cp2-alloc can avoid a carry check for
small allocation requests, using something like this:
if (seg == (((uptr)1 << (ptr_bits - segment_offset_bits)) - 1))
seg = S_find_segments(space_new, 0, 1);
*/
S_G.bytes_of_space[space_new][0] += bytes_per_segment;
maybe_fire_collector();
AP(tc) = build_ptr(seg, 0);
REAL_EAP(tc) = EAP(tc) = (ptr)((uptr)AP(tc) + bytes_per_segment);
S_pants_down -= 1;
}
FORCEINLINE void mark_segment_dirty(seginfo *si, IGEN from_g) {
IGEN to_g = si->min_dirty_byte;
if (to_g != 0) {
seginfo **pointer_to_first, *oldfirst;
if (to_g != 0xff) {
seginfo *next = si->dirty_next, **prev = si->dirty_prev;
/* presently on some other list, so remove */
*prev = next;
if (next != NULL) next->dirty_prev = prev;
}
oldfirst = *(pointer_to_first = &DirtySegments(from_g, 0));
*pointer_to_first = si;
si->dirty_prev = pointer_to_first;
si->dirty_next = oldfirst;
if (oldfirst != NULL) oldfirst->dirty_prev = &si->dirty_next;
si->min_dirty_byte = 0;
}
}
void S_dirty_set(ptr *loc, ptr x) {
*loc = x;
if (!Sfixnump(x)) {
seginfo *si = SegInfo(addr_get_segment(loc));
IGEN from_g = si->generation;
if (from_g != 0) {
si->dirty_bytes[((uptr)loc >> card_offset_bits) & ((1 << segment_card_offset_bits) - 1)] = 0;
mark_segment_dirty(si, from_g);
}
}
}
/* scan remembered set from P to ENDP, transfering to dirty vector */
void S_scan_dirty(ptr **p, ptr **endp) {
uptr this, last;
last = 0;
while (p < endp) {
ptr *loc = *p;
/* whether building s directory or running UXLB code, the most
common situations are that *loc is a fixnum, this == last, or loc
is in generation 0. the generated code no longer adds elements
to the remembered set if the RHS val is a fixnum. the other
checks we do here. we don't bother looking for *loc being an
immediate or outside the heap, nor for the generation of *loc
being the same or older than the generation of loc, since these
don't seem to weed out many dirty writes, and we don't want to
waste time here on fruitless memory reads and comparisions */
if ((this = (uptr)loc >> card_offset_bits) != last) {
seginfo *si = SegInfo(addr_get_segment(loc));
IGEN from_g = si->generation;
if (from_g != 0) {
si->dirty_bytes[((uptr)loc >> card_offset_bits) & ((1 << segment_card_offset_bits) - 1)] = 0;
if (this >> segment_card_offset_bits != last >> segment_card_offset_bits) mark_segment_dirty(si, from_g);
}
last = this;
}
p += 1;
}
}
/* S_scan_remembered_set is called from generated machine code when there
* is insufficient room for a remembered set addition.
*/
void S_scan_remembered_set() {
ptr tc = get_thread_context();
uptr ap, eap, real_eap;
tc_mutex_acquire()
ap = (uptr)AP(tc);
eap = (uptr)EAP(tc);
real_eap = (uptr)REAL_EAP(tc);
S_scan_dirty((ptr **)eap, (ptr **)real_eap);
eap = real_eap;
if (eap - ap > alloc_waste_maximum) {
AP(tc) = (ptr)ap;
EAP(tc) = (ptr)eap;
} else {
S_G.bytes_of_space[space_new][0] -= eap - ap;
S_reset_allocation_pointer(tc);
}
tc_mutex_release()
}
/* S_get_more_room is called from genereated machine code when there is
* insufficient room for an allocation. ap has already been incremented
* by the size of the object and xp is a (typed) pointer to the value of
* ap before the allocation attempt. xp must be set to a new object of
* the appropriate type and size.
*/
void S_get_more_room() {
ptr tc = get_thread_context();
ptr xp; uptr ap, type, size;
xp = XP(tc);
if ((type = TYPEBITS(xp)) == 0) type = typemod;
ap = (uptr)UNTYPE(xp, type);
size = (uptr)((iptr)AP(tc) - (iptr)ap);
XP(tc) = S_get_more_room_help(tc, ap, type, size);
}
ptr S_get_more_room_help(ptr tc, uptr ap, uptr type, uptr size) {
ptr x; uptr eap, real_eap;
eap = (uptr)EAP(tc);
real_eap = (uptr)REAL_EAP(tc);
tc_mutex_acquire()
S_scan_dirty((ptr **)eap, (ptr **)real_eap);
eap = real_eap;
if (eap - ap >= size) {
x = TYPE(ap, type);
ap += size;
if (eap - ap > alloc_waste_maximum) {
AP(tc) = (ptr)ap;
EAP(tc) = (ptr)eap;
} else {
S_G.bytes_of_space[space_new][0] -= eap - ap;
S_reset_allocation_pointer(tc);
}
} else if (eap - ap > alloc_waste_maximum) {
AP(tc) = (ptr)ap;
EAP(tc) = (ptr)eap;
find_room(space_new, 0, type, size, x);
} else {
S_G.bytes_of_space[space_new][0] -= eap - ap;
S_reset_allocation_pointer(tc);
ap = (uptr)AP(tc);
if (size + alloc_waste_maximum <= (uptr)EAP(tc) - ap) {
x = TYPE(ap, type);
AP(tc) = (ptr)(ap + size);
} else {
find_room(space_new, 0, type, size, x);
}
}
tc_mutex_release()
return x;
}
/* S_cons_in is always called with mutex */
ptr S_cons_in(s, g, car, cdr) ISPC s; IGEN g; ptr car, cdr; {
ptr p;
find_room(s, g, type_pair, size_pair, p);
INITCAR(p) = car;
INITCDR(p) = cdr;
return p;
}
ptr Scons(car, cdr) ptr car, cdr; {
ptr tc = get_thread_context();
ptr p;
thread_find_room(tc, type_pair, size_pair, p);
INITCAR(p) = car;
INITCDR(p) = cdr;
return p;
}
ptr Sbox(ref) ptr ref; {
ptr tc = get_thread_context();
ptr p;
thread_find_room(tc, type_typed_object, size_box, p);
BOXTYPE(p) = type_box;
INITBOXREF(p) = ref;
return p;
}
ptr S_symbol(name) ptr name; {
ptr tc = get_thread_context();
ptr p;
thread_find_room(tc, type_symbol, size_symbol, p);
/* changes here should be reflected in the oblist collection code in gc.c */
INITSYMVAL(p) = sunbound;
INITSYMCODE(p,S_G.nonprocedure_code);
INITSYMPLIST(p) = snil;
INITSYMSPLIST(p) = snil;
INITSYMNAME(p) = name;
INITSYMHASH(p) = Sfalse;
return p;
}
ptr S_rational(n, d) ptr n, d; {
if (d == FIX(1)) return n;
else {
ptr tc = get_thread_context();
ptr p;
thread_find_room(tc, type_typed_object, size_ratnum, p);
RATTYPE(p) = type_ratnum;
RATNUM(p) = n;
RATDEN(p) = d;
return p;
}
}
ptr S_tlc(ptr keyval, ptr ht, ptr next) {
ptr tc = get_thread_context();
ptr p;
thread_find_room(tc, type_typed_object, size_tlc, p);
TLCTYPE(p) = type_tlc;
INITTLCKEYVAL(p) = keyval;
INITTLCHT(p) = ht;
INITTLCNEXT(p) = next;
return p;
}
/* S_vector_in is always called with mutex */
ptr S_vector_in(s, g, n) ISPC s; IGEN g; iptr n; {
ptr p; iptr d;
if (n == 0) return S_G.null_vector;
if ((uptr)n >= maximum_vector_length)
S_error("", "invalid vector size request");
d = size_vector(n);
/* S_vector_in always called with mutex */
find_room(s, g, type_typed_object, d, p);
VECTTYPE(p) = (n << vector_length_offset) | type_vector;
return p;
}
ptr S_vector(n) iptr n; {
ptr tc;
ptr p; iptr d;
if (n == 0) return S_G.null_vector;
if ((uptr)n >= maximum_vector_length)
S_error("", "invalid vector size request");
tc = get_thread_context();
d = size_vector(n);
thread_find_room(tc, type_typed_object, d, p);
VECTTYPE(p) = (n << vector_length_offset) | type_vector;
return p;
}
ptr S_fxvector(n) iptr n; {
ptr tc;
ptr p; iptr d;
if (n == 0) return S_G.null_fxvector;
if ((uptr)n > (uptr)maximum_fxvector_length)
S_error("", "invalid fxvector size request");
tc = get_thread_context();
d = size_fxvector(n);
thread_find_room(tc, type_typed_object, d, p);
FXVECTOR_TYPE(p) = (n << fxvector_length_offset) | type_fxvector;
return p;
}
ptr S_bytevector(n) iptr n; {
ptr tc;
ptr p; iptr d;
if (n == 0) return S_G.null_bytevector;
if ((uptr)n > (uptr)maximum_bytevector_length)
S_error("", "invalid bytevector size request");
tc = get_thread_context();
d = size_bytevector(n);
thread_find_room(tc, type_typed_object, d, p);
BYTEVECTOR_TYPE(p) = (n << bytevector_length_offset) | type_bytevector;
return p;
}
ptr S_null_immutable_vector() {
ptr v;
find_room(space_new, 0, type_typed_object, size_vector(0), v);
VECTTYPE(v) = (0 << vector_length_offset) | type_vector | vector_immutable_flag;
return v;
}
ptr S_null_immutable_fxvector() {
ptr v;
find_room(space_new, 0, type_typed_object, size_fxvector(0), v);
VECTTYPE(v) = (0 << fxvector_length_offset) | type_fxvector | fxvector_immutable_flag;
return v;
}
ptr S_null_immutable_bytevector() {
ptr v;
find_room(space_new, 0, type_typed_object, size_bytevector(0), v);
VECTTYPE(v) = (0 << bytevector_length_offset) | type_bytevector | bytevector_immutable_flag;
return v;
}
ptr S_null_immutable_string() {
ptr v;
find_room(space_new, 0, type_typed_object, size_string(0), v);
VECTTYPE(v) = (0 << string_length_offset) | type_string | string_immutable_flag;
return v;
}
ptr S_record(n) iptr n; {
ptr tc = get_thread_context();
ptr p;
thread_find_room(tc, type_typed_object, n, p);
return p;
}
ptr S_closure(cod, n) ptr cod; iptr n; {
ptr tc = get_thread_context();
ptr p; iptr d;
d = size_closure(n);
thread_find_room(tc, type_closure, d, p);
CLOSENTRY(p) = cod;
return p;
}
/* S_mkcontinuation is always called with mutex */
ptr S_mkcontinuation(s, g, nuate, stack, length, clength, link, ret, winders)
ISPC s; IGEN g; ptr nuate; ptr stack; iptr length; iptr clength; ptr link;
ptr ret; ptr winders; {
ptr p;
find_room(s, g, type_closure, size_continuation, p);
CLOSENTRY(p) = nuate;
CONTSTACK(p) = stack;
CONTLENGTH(p) = length;
CONTCLENGTH(p) = clength;
CONTLINK(p) = link;
CONTRET(p) = ret;
CONTWINDERS(p) = winders;
return p;
}
ptr Sflonum(x) double x; {
ptr tc = get_thread_context();
ptr p;
thread_find_room(tc, type_flonum, size_flonum, p);
FLODAT(p) = x;
return p;
}
ptr S_inexactnum(rp, ip) double rp, ip; {
ptr tc = get_thread_context();
ptr p;
thread_find_room(tc, type_typed_object, size_inexactnum, p);
INEXACTNUM_TYPE(p) = type_inexactnum;
INEXACTNUM_REAL_PART(p) = rp;
INEXACTNUM_IMAG_PART(p) = ip;
return p;
}
/* S_thread is always called with mutex */
ptr S_thread(xtc) ptr xtc; {
ptr p;
/* don't use thread_find_room since we may be building the current thread */
find_room(space_new, 0, type_typed_object, size_thread, p);
TYPEFIELD(p) = (ptr)type_thread;
THREADTC(p) = (uptr)xtc;
return p;
}
ptr S_exactnum(a, b) ptr a, b; {
ptr tc = get_thread_context();
ptr p;
thread_find_room(tc, type_typed_object, size_exactnum, p);
EXACTNUM_TYPE(p) = type_exactnum;
EXACTNUM_REAL_PART(p) = a;
EXACTNUM_IMAG_PART(p) = b;
return p;
}
/* S_string returns a new string of length n. If s is not NULL, it is
* copied into the new string. If n < 0, then s must be non-NULL,
* and the length of s (by strlen) determines the length of the string */
ptr S_string(s, n) const char *s; iptr n; {
ptr tc;
ptr p; iptr d;
iptr i;
if (n < 0) n = strlen(s);
if (n == 0) return S_G.null_string;
if ((uptr)n > (uptr)maximum_string_length)
S_error("", "invalid string size request");
tc = get_thread_context();
d = size_string(n);
thread_find_room(tc, type_typed_object, d, p);
STRTYPE(p) = (n << string_length_offset) | type_string;
/* fill the string with valid characters */
i = 0;
/* first copy input string, if any */
if (s != (char *)NULL) {
while (i != n && *s != 0) {
Sstring_set(p, i, *s++);
i += 1;
}
}
/* fill remaining slots with nul */
while (i != n) {
Sstring_set(p, i, 0);
i += 1;
}
return p;
}
ptr Sstring_utf8(s, n) const char *s; iptr n; {
const char* u8;
iptr cc, d, i, n8;
ptr p, tc;
if (n < 0) n = strlen(s);
if (n == 0) return S_G.null_string;
/* determine code point count cc */
u8 = s;
n8 = n;
cc = 0;
while (n8 > 0) {
unsigned char b1 = *(const unsigned char*)u8++;
n8--;
cc++;
if ((b1 & 0x80) == 0)
;
else if ((b1 & 0x40) == 0)
;
else if ((b1 & 0x20) == 0) {
if ((n8 >= 1) && ((*u8 & 0xc0) == 0x80)) {
u8++;
n8--;
}
} else if ((b1 & 0x10) == 0) {
if ((n8 >= 1) && ((*u8 & 0xc0) == 0x80)) {
u8++;
n8--;
if ((n8 >= 1) && ((*u8 & 0xc0) == 0x80)) {
u8++;
n8--;
}
}
} else if ((b1 & 0x08) == 0) {
if ((n8 >= 1) && ((*u8 & 0xc0) == 0x80)) {
u8++;
n8--;
if ((n8 >= 1) && ((*u8 & 0xc0) == 0x80)) {
u8++;
n8--;
if ((n8 >= 1) && ((*u8 & 0xc0) == 0x80)) {
u8++;
n8--;
}
}
}
}
}
if ((uptr)cc > (uptr)maximum_string_length)
S_error("", "invalid string size request");
tc = get_thread_context();
d = size_string(cc);
thread_find_room(tc, type_typed_object, d, p);
STRTYPE(p) = (cc << string_length_offset) | type_string;
/* fill the string */
u8 = s;
n8 = n;
i = 0;
while (n8 > 0) {
unsigned char b1 = *u8++;
int c = 0xfffd;
n8--;
if ((b1 & 0x80) == 0)
c = b1;
else if ((b1 & 0x40) == 0)
;
else if ((b1 & 0x20) == 0) {
unsigned char b2;
if ((n8 >= 1) && (((b2 = *u8) & 0xc0) == 0x80)) {
int x = ((b1 & 0x1f) << 6) | (b2 & 0x3f);
u8++;
n8--;
if (x >= 0x80)
c = x;
}
} else if ((b1 & 0x10) == 0) {
unsigned char b2;
if ((n8 >= 1) && (((b2 = *u8) & 0xc0) == 0x80)) {
unsigned char b3;
u8++;
n8--;
if ((n8 >= 1) && (((b3 = *u8) & 0xc0) == 0x80)) {
int x = ((b1 & 0x0f) << 12) | ((b2 & 0x3f) << 6) | (b3 & 0x3f);
u8++;
n8--;
if ((x >= 0x800) && ((x < 0xd800) || (x > 0xdfff)))
c = x;
}
}
} else if ((b1 & 0x08) == 0) {
unsigned char b2;
if ((n8 >= 1) && (((b2 = *u8) & 0xc0) == 0x80)) {
unsigned char b3;
u8++;
n8--;
if ((n8 >= 1) && (((b3 = *u8) & 0xc0) == 0x80)) {
unsigned char b4;
u8++;
n8--;
if ((n8 >= 1) && (((b4 = *u8) & 0xc0) == 0x80)) {
int x = ((b1 & 0x07) << 18) | ((b2 & 0x3f) << 12) | ((b3 & 0x3f) << 6) | (b4 & 0x3f);
u8++;
n8--;
if ((x >= 0x10000) && (x <= 0x10ffff))
c = x;
}
}
}
}
Sstring_set(p, i++, c);
}
return p;
}
ptr S_bignum(tc, n, sign) ptr tc; iptr n; IBOOL sign; {
ptr p; iptr d;
if ((uptr)n > (uptr)maximum_bignum_length)
S_error("", "invalid bignum size request");
d = size_bignum(n);
thread_find_room(tc, type_typed_object, d, p);
BIGTYPE(p) = (uptr)n << bignum_length_offset | sign << bignum_sign_offset | type_bignum;
return p;
}
/* S_code is always called with mutex */
ptr S_code(tc, type, n) ptr tc; iptr type, n; {
ptr p; iptr d;
d = size_code(n);
find_room(space_code, 0, type_typed_object, d, p);
CODETYPE(p) = type;
CODELEN(p) = n;
/* we record the code modification here, even though we haven't
even started modifying the code yet, since we always create
and fill the code object within a critical section. */
S_record_code_mod(tc, (uptr)&CODEIT(p,0), (uptr)n);
return p;
}
ptr S_relocation_table(n) iptr n; {
ptr tc = get_thread_context();
ptr p; iptr d;
d = size_reloc_table(n);
thread_find_room(tc, typemod, d, p);
RELOCSIZE(p) = n;
return p;
}
ptr S_weak_cons(ptr car, ptr cdr) {
ptr p;
tc_mutex_acquire();
p = S_cons_in(space_weakpair, 0, car, cdr);
tc_mutex_release();
return p;
}