racket/pkgs/racket-doc/scribblings/reference/syntax.scrbl

3072 lines
120 KiB
Racket

#lang scribble/doc
@(require "mz.rkt" scribble/bnf scribble/core
(for-label (only-in racket/require-transform
make-require-transformer
current-require-module-path)
racket/require-syntax
racket/require
(only-in racket/provide-transform
make-provide-transformer)
racket/keyword-transform
racket/provide-syntax
racket/provide
racket/package
racket/splicing
racket/runtime-path
racket/lazy-require
(only-in compiler/cm-accomplice
register-external-module)
racket/performance-hint
syntax/parse))
@(define require-eval (make-base-eval))
@(define syntax-eval
(lambda ()
(let ([the-eval (make-base-eval)])
(the-eval '(require (for-syntax racket/base)))
the-eval)))
@(define meta-in-eval (syntax-eval))
@(define cvt (racketfont "CVT"))
@(define unquote-id (racket unquote))
@(define unquote-splicing-id (racket unquote-splicing))
@(define-syntax-rule (equiv-to-block b)
(tabular #:style (make-style #f (list (make-table-columns
(list (make-style #f '(baseline))
(make-style #f '(baseline))))))
(list (list (para (hspace 2) " is equivalent to" (hspace 1))
(racketblock0 b)))))
@(define-syntax-rule (subeqivs [a0 b0] [a b] ...)
(tabular (map
list
(apply
append
(list (list (racketblock a0)
(equiv-to-block b0))
(list (para 'nbsp)
(racketblock a)
(equiv-to-block b))
...)))))
@title[#:tag "syntax" #:style 'toc]{Syntactic Forms}
This section describes the core syntax forms that appear in a fully
expanded expression, plus many closely related non-core forms.
See @secref["fully-expanded"] for the core grammar.
@local-table-of-contents[]
@subsubsub*section{Notation}
Each syntactic form is described by a BNF-like notation that describes
a combination of (syntax-wrapped) pairs, symbols, and other data (not
a sequence of characters). These grammatical specifications are shown
as in the following specification of a @racketkeywordfont{something}
form:
@specsubform[(@#,racketkeywordfont{something} id thing-expr ...)
#:contracts ([thing-expr number?])]
Within such specifications,
@itemize[
@item{@racket[...] indicates zero or more repetitions of the
preceding datum; more generally, @math{N} consecutive
@racket[...]s a row indicate a consecutive repetition of the
preceding @math{N} datums.}
@item{@racket[...+] indicates one or more repetitions of the
preceding datum.}
@item{Italic meta-identifiers play the role of non-terminals. Some
meta-identifier names imply syntactic constraints:
@itemize[
@item{A meta-identifier that ends in @racket[_id] stands for an
identifier.}
@item{A meta-identifier that ends in @racket[_keyword] stands
for a keyword.}
@item{A meta-identifier that ends with @racket[_expr] (such as
@racket[_thing-expr]) stands for a sub-form that is
expanded as an expression.}
@item{A meta-identifier that ends with @racket[_body] stands
for a sub-form that is expanded in an
internal-definition context (see
@secref["intdef-body"]).}
]}
@item{Contracts indicate constraints on sub-expression results. For
example, @racket[_thing-expr @#,elem{:} number?] indicates that
the expression @racket[_thing-expr] must produce a number.}]
@;------------------------------------------------------------------------
@section[#:tag "module"]{Modules: @racket[module], @racket[module*], ...}
@guideintro["module-syntax"]{@racket[module]}
@defform[(module id module-path form ...)]{
Declares a top-level module or a @tech{submodule}. For a top-level
module, if the @racket[current-module-declare-name] parameter is set,
the parameter value is used for the module name and @racket[id] is
ignored, otherwise @racket[(#,(racket quote) id)] is the name of the
declared module. For a @tech{submodule}, @racket[id] is the name of
the submodule to be used as an element within a @racket[submod] module
path.
@margin-note/ref{For a @racket[module]-like form that works in
definitions context other than the top level or a module body, see
@racket[define-package].}
The @racket[module-path] form must be as for @racket[require], and it
supplies the initial bindings for the body @racket[form]s. That is, it
is treated like a @racket[(require module-path)] prefix before the
@racket[form]s, except that the bindings introduced by
@racket[module-path] can be shadowed by definitions and
@racket[require]s in the module body @racket[form]s.
If a single @racket[form] is provided, then it is partially expanded
in a @tech{module-begin context}. If the expansion leads to
@racket[#%plain-module-begin], then the body of the
@racket[#%plain-module-begin] is the body of the module. If partial
expansion leads to any other primitive form, then the form is wrapped
with @racketidfont{#%module-begin} using the lexical context of the
module body; this identifier must be bound by the initial
@racket[module-path] import, and its expansion must produce a
@racket[#%plain-module-begin] to supply the module body. Finally, if
multiple @racket[form]s are provided, they are wrapped with
@racketidfont{#%module-begin}, as in the case where a single
@racket[form] does not expand to @racket[#%plain-module-begin].
After such wrapping, if any, and before any expansion, an
@indexed-racket['enclosing-module-name] property is attached to the
@racketidfont{#%module-begin} syntax object (see
@secref["stxprops"]); the property's value is a symbol
corresponding to @racket[id].
Each @racket[form] is partially expanded (see
@secref["partial-expansion"]) in a @tech{module context}. Further
action depends on the shape of the form:
@itemize[
@item{If it is a @racket[begin] form, the sub-forms are flattened
out into the module's body and immediately processed in place of the
@racket[begin].}
@item{If it is a @racket[define-syntaxes] form, then the right-hand side is
evaluated (in @tech{phase} 1), and the binding is immediately
installed for further partial expansion within the
module. Evaluation of the right-hand side is @racket[parameterize]d
to set @racket[current-namespace] as in @racket[let-syntax].}
@item{If it is a @racket[begin-for-syntax] form, then the body is
expanded (in @tech{phase} 1) and evaluated. Expansion within a
@racket[begin-for-syntax] form proceeds with the same
partial-expansion process as for a @racket[module] body, but in a
higher @tech{phase}, and saving all @racket[#%provide] forms for all
phases until the end of the @racket[module]'s expansion. Evaluation
of the body is @racket[parameterize]d to set
@racket[current-namespace] as in @racket[let-syntax].}
@item{If the form is a @racket[#%require] form, bindings are introduced
immediately, and the imported modules are @tech{instantiate}d or
@tech{visit}ed as appropriate.}
@item{If the form is a @racket[#%provide] form, then it is recorded for
processing after the rest of the body.}
@item{If the form is a @racket[define-values] form, then the binding
is installed immediately, but the right-hand expression is not
expanded further.}
@item{If the form is a @racket[module] form, then it is immediately
expanded and declared for the extent of the current top-level
enclosing module's expansion.}
@item{If the form is a @racket[module*] form, then it is not
expanded further.}
@item{Similarly, if the form is an expression, it is
not expanded further.}
]
After all @racket[form]s have been partially expanded this way, then
the remaining expression forms (including those on the right-hand side
of a definition) are expanded in an expression context. After all
expression forms, @racket[#%provide] forms are processed in the order
in which they appear (independent of @tech{phase}) in the expanded
module. Finally, all @racket[module*] forms are expanded in order, so
that each becomes available for use by subsequent @racket[module*]
forms; the enclosing module itself is also available for use by
@racket[module*] @tech{submodules}.
The scope of all imported identifiers covers the entire module body,
except for nested @racket[module] and @racket[module*] forms (assuming
a non-@racket[#f] @racket[module-path] in the latter case).
The scope of any identifier defined within the module body similarly
covers the entire module body except for such nested @racket[module]
and @racket[module*] forms.
The ordering of syntax definitions does not affect the scope of the
syntax names; a transformer for @racket[A] can produce expressions
containing @racket[B], while the transformer for @racket[B] produces
expressions containing @racket[A], regardless of the order of
declarations for @racket[A] and @racket[B]. However, a syntactic form
that produces syntax definitions must be defined before it is used.
No identifier can be imported or defined more than once at any
@tech{phase level} within a single module, except that a definition
via @racket[define-values] or @racket[define-syntaxes] can shadow a
preceding import via @racket[#%require]; unless the shadowed import is
from the module's initial @racket[module-path], a warning is logged
to the initial logger.
Every exported identifier must be imported or
defined. No expression can refer to a @tech{top-level variable}.
A @racket[module*] form in which the enclosing module's bindings are visible
(i.e., a nested @racket[module*] with @racket[#f] instead of a @racket[module-path])
can define or import bindings that @tech{shadow} the enclosing module's bindings.
The evaluation of a @racket[module] form does not evaluate the
expressions in the body of the module. Evaluation merely declares a
module, whose full name depends both on @racket[id] or
@racket[(current-module-declare-name)].
A module body is executed only when the module is explicitly
@techlink{instantiate}d via @racket[require] or
@racket[dynamic-require]. On invocation, imported modules are
instantiated in the order in which they are @racket[require]d
into the module (although earlier instantiations or transitive
@racket[require]s can trigger the instantiation of a module before
its order within a given module). Then, expressions and definitions
are evaluated in order as they appear within the module. Each
evaluation of an expression or definition is wrapped with a
continuation prompt (see @racket[call-with-continuation-prompt]) for
the default @tech{prompt tag} and using a prompt handler that re-aborts
and propagates its argument to the next enclosing prompt. Each evaluation
of a definition is followed, outside of the prompt, by a check that
each of the definition's variables has a value; if the portion of the
prompt-delimited continuation that installs values is skipped, then
the @exnraise[exn:fail:contract:variable?].
Accessing a @tech{module-level variable} before it is defined signals
a run-time error, just like accessing an undefined global variable.
If a module (in its fully expanded form) does not contain a
@racket[set!] for an identifier that defined within the module, then
the identifier is a @defterm{constant} after it is defined; its value
cannot be changed afterward, not even through reflective
mechanisms. The @racket[compile-enforce-module-constants] parameter,
however, can be used to disable enforcement of constants.
When a @tech{syntax object} representing a @racket[module] form has a
@indexed-racket['module-language] @tech{syntax property} attached, and
when the property value is a vector of three elements where the first
is a module path (in the sense of @racket[module-path?]) and the
second is a symbol, then the property value is preserved in the
corresponding compiled and/or declared module. The third component of
the vector should be printable and @racket[read]able, so that it can
be preserved in marshaled bytecode. The @racketmodname[racket/base]
and @racketmodname[racket] languages attach
@racket['#(racket/language-info get-info #f)] to a @racket[module]
form. See also @racket[module-compiled-language-info],
@racket[module->language-info], and
@racketmodname[racket/language-info].
See also @secref["module-eval-model"] and @secref["mod-parse"].
@examples[#:eval (syntax-eval) #:once
(module duck racket/base
(provide num-eggs quack)
(define num-eggs 2)
(define (quack n)
(unless (zero? n)
(printf "quack\n")
(quack (sub1 n)))))
]
@history[#:changed "6.3" @elem{Changed @racket[define-syntaxes]
and @racket[define-values] to
shadow any preceding import, and
dropped the use of @racket['submodule]
@tech{syntax property} values on nested
@racket[module] or @racket[module*]
forms.}]}
@defform*[((module* id module-path form ...)
(module* id #f form ...))]{
@guideintro["submodules"]{@racket[module*]}
Like @racket[module], but only for declaring a @tech{submodule} within
a module, and for submodules that may @racket[require] the enclosing module.
Instead of a @racket[module-path] after @racket[id], @racket[#f]
indicates that all bindings from the enclosing module are visible in
the submodule. In that case, @racket[begin-for-syntax] forms that wrap
the @racket[module*] form shift the @tech{phase level} of the
enclosing module's bindings relative to the submodule. The macro
expander handles such nesting by shifting the @tech{phase level} of
the @racket[module*] form so that its body starts at @tech{phase
level} 0, expanding, and then reverting the @tech{phase level} shift;
beware that this process can leave @tech{syntax objects} as
@racket['origin] @tech{syntax property} values out-of-sync with the
expanded module.
When a @racket[module*] form has a @racket[module-path], the submodule
expansion starts by removing the @tech{scopes} of the enclosing
module, the same as the @racket[module] form. No shifting compensates
for any @racket[begin-for-syntax] forms that may wrap the submodule.}
@defform[(module+ id form ...)]{
@guideintro["main-and-test"]{@racket[module+]}
Declares and/or adds to a @tech{submodule} named @racket[id].
Each addition for @racket[id] is combined in order to form the entire
submodule using @racket[(module* id #f ....)] at the end of the
enclosing module. If there is only one @racket[module+] for a given
@racket[id], then @racket[(module+ id form ...)] is equivalent to
@racket[(module* id #f form ...)], but still moved to the end of the
enclosing module.
When a module contains multiple submodules declared with
@racket[module+], then the relative order of the initial
@racket[module+] declarations for each submodule determines the
relative order of the @racket[module*] declarations at the end of the
enclosing module.
A submodule must not be defined using @racket[module+] @emph{and}
@racket[module] or @racket[module*]. That is, if a submodule is made
of @racket[module+] pieces, then it must be made @emph{only} of
@racket[module+] pieces. }
@defform[(#%module-begin form ...)]{
Legal only in a @tech{module begin context}, and handled by the
@racket[module] and @racket[module*] forms.
The @racket[#%module-begin] form of @racketmodname[racket/base] wraps
every top-level expression to print non-@|void-const| results using
@racket[current-print].
The @racket[#%module-begin] form of @racketmodname[racket/base] also
declares a @racket[configure-runtime] submodule (before any other
@racket[form]), unless some @racket[form] is either an immediate
@racket[module] or @racket[module*] form with the name
@racket[configure-runtime]. If a @racket[configure-runtime] submodule
is added, the submodule calls the @racket[configure] function of
@racketmodname[racket/runtime-config].}
@defform[(#%printing-module-begin form ...)]{
Legal only in a @tech{module begin context}.
Like @racket[#%module-begin], but without adding a
@racket[configure-runtime] submodule.}
@defform[(#%plain-module-begin form ...)]{
Legal only in a @tech{module begin context}, and handled by the
@racket[module] and @racket[module*] forms.}
@defform[(#%declare declaration-keyword ...)
#:grammar
([declaration-keyword #:cross-phase-persistent
#:empty-namespace])]{
Declarations that affect run-time or reflective properties of the
module:
@itemlist[
@item{@indexed-racket[#:cross-phase-persistent] --- declares the
module as @tech{cross-phase persistent}, and reports a syntax
error if the module does not meet the import or syntactic
constraints of a @tech{cross-phase persistent} module.}
@item{@indexed-racket[#:empty-namespace] --- declares that
@racket[module->namespace] for this module should produce a
namespace with no bindings; limiting namespace support in this
way can reduce the @tech{lexical information} that
otherwise must be preserved for the module.}
]
A @racket[#%declare] form must appear in a @tech{module
context} or a @tech{module-begin context}. Each
@racket[declaration-keyword] can be declared at most once within a
@racket[module] body.
@history[#:changed "6.3" @elem{Added @racket[#:empty-namespace].}]}
@;------------------------------------------------------------------------
@section[#:tag '("require" "provide")]{Importing and Exporting: @racket[require] and @racket[provide]}
@section-index["modules" "imports"]
@section-index["modules" "exports"]
@guideintro["module-require"]{@racket[require]}
@defform/subs[#:literals (only-in prefix-in except-in rename-in lib file planet submod + - =
for-syntax for-template for-label for-meta only-meta-in combine-in
relative-in quote)
(require require-spec ...)
([require-spec module-path
(only-in require-spec id-maybe-renamed ...)
(except-in require-spec id ...)
(prefix-in prefix-id require-spec)
(rename-in require-spec [orig-id bind-id] ...)
(combine-in require-spec ...)
(relative-in module-path require-spec ...)
(only-meta-in phase-level require-spec ...)
(for-syntax require-spec ...)
(for-template require-spec ...)
(for-label require-spec ...)
(for-meta phase-level require-spec ...)
derived-require-spec]
[module-path root-module-path
(submod root-module-path submod-path-element ...)
(submod "." submod-path-element ...)
(submod ".." submod-path-element ...)]
[root-module-path (#,(racket quote) id)
rel-string
(lib rel-string ...+)
id
(file string)
(planet id)
(planet string)
(planet rel-string
(user-string pkg-string vers)
rel-string ...)]
[submod-path-element id
".."]
[id-maybe-renamed id
[orig-id bind-id]]
[phase-level exact-integer #f]
[vers code:blank
nat
(code:line nat minor-vers)]
[minor-vers nat
(nat nat)
((unsyntax (racketidfont "=")) nat)
((unsyntax (racketidfont "+")) nat)
((unsyntax (racketidfont "-")) nat)])]{
In a @tech{top-level context}, @racket[require] @tech{instantiates}
modules (see @secref["module-eval-model"]). In a @tech{top-level
context} or @tech{module context}, expansion of @racket[require]
@tech{visits} modules (see @secref["mod-parse"]). In both contexts and
both evaluation and expansion, @racket[require] introduces bindings
into a @tech{namespace} or a module (see @secref["intro-binding"]). A
@racket[require] form in a @tech{expression context} or
@tech{internal-definition context} is a syntax error.
A @racket[require-spec] designates a particular set of identifiers to
be bound in the importing context. Each identifier is mapped to a
particular export of a particular module; the identifier to bind may
be different from the symbolic name of the originally exported
identifier. Each identifier also binds at a particular @tech{phase
level}.
No identifier can be bound multiple times in a given @tech{phase
level} by an import, unless all of the bindings refer to the same
original definition in the same module. In a @tech{module context},
an identifier can be either imported or defined for a given
@tech{phase level}, but not both.
The syntax of @racket[require-spec] can be extended via
@racket[define-require-syntax], and when multiple
@racket[require-spec]s are specified in a @racket[require], the
bindings of each @racket[require-spec] are visible for expanding later
@racket[require-spec]s. The pre-defined forms (as exported by
@racketmodname[racket/base]) are as follows:
@specsubform[module-path]{ Imports all exported bindings from the
named module, using the export identifiers as the local identifiers.
(See below for information on @racket[module-path].) The lexical
context of the @racket[module-path] form determines the context of
the introduced identifiers.}
@defsubform[(only-in require-spec id-maybe-renamed ...)]{
Like @racket[require-spec], but constrained to those exports for
which the identifiers to bind match @racket[id-maybe-renamed]: as
@racket[_id] or as @racket[_orig-id] in @racket[[_orig-id _bind-id]]. If
the @racket[_id] or @racket[_orig-id] of any @racket[id-maybe-renamed]
is not in the set that @racket[require-spec] describes, a syntax
error is reported.
@examples[#:eval (syntax-eval) #:once
(require (only-in racket/tcp
tcp-listen
[tcp-accept my-accept]))
tcp-listen
my-accept
(eval:error tcp-accept)
]}
@defsubform[(except-in require-spec id ...)]{ Like
@racket[require-spec], but omitting those imports for which
@racket[id]s are the identifiers to bind; if any @racket[id] is not
in the set that @racket[require-spec] describes, a syntax error is
reported.
@examples[#:eval (syntax-eval) #:once
(require (except-in racket/tcp
tcp-listen))
tcp-accept
(eval:error tcp-listen)
]}
@defsubform[(prefix-in prefix-id require-spec)]{ Like
@racket[require-spec], but adjusting each identifier to be bound by
prefixing it with @racket[prefix-id]. The lexical context of the
@racket[prefix-id] is ignored, and instead preserved from the
identifiers before prefixing.
@examples[#:eval (syntax-eval) #:once
(require (prefix-in tcp: racket/tcp))
tcp:tcp-accept
tcp:tcp-listen
]}
@defsubform[(rename-in require-spec [orig-id bind-id] ...)]{
Like @racket[require-spec], but replacing the identifier to
bind @racket[orig-id] with @racket[bind-id]; if any
@racket[orig-id] is not in the set that @racket[require-spec]
describes, a syntax error is reported.
@examples[#:eval (syntax-eval) #:once
(require (rename-in racket/tcp
(tcp-accept accept)
(tcp-listen listen)))
accept
listen
]}
@defsubform[(combine-in require-spec ...)]{
The union of the @racket[require-spec]s. If two or more imports from the
@racket[require-spec]s have the same identifier name but they do not refer to
the same original binding, a syntax error is reported.
@examples[#:eval (syntax-eval) #:once
(require (combine-in (only-in racket/tcp tcp-accept)
(only-in racket/tcp tcp-listen)))
tcp-accept
tcp-listen
]}
@defsubform[(relative-in module-path require-spec ...)]{
Like the union of the @racket[require-spec]s, but each
relative module path in a @racket[require-spec] is treated
as relative to @racket[module-path] instead of the enclosing
context.
The @tech{require transformer} that implements @racket[relative-in]
sets @racket[current-require-module-path] to adjust module paths
in the @racket[require-spec]s.}
@defsubform[(only-meta-in phase-level require-spec ...)]{
Like the combination of @racket[require-spec]s, but removing any
binding that is not for @racket[phase-level], where @racket[#f] for
@racket[phase-level] corresponds to the @tech{label phase level}.
The following example imports bindings only at @tech{phase level} 1,
the transform phase:
@examples[#:label #f #:eval meta-in-eval
(module nest racket
(provide (for-syntax meta-eggs)
(for-meta 1 meta-chicks)
num-eggs)
(define-for-syntax meta-eggs 2)
(define-for-syntax meta-chicks 3)
(define num-eggs 2))
(require (only-meta-in 1 'nest))
(define-syntax (desc stx)
(printf "~s ~s\n" meta-eggs meta-chicks)
#'(void))
(desc)
(eval:error num-eggs)
]
The following example imports only bindings at @tech{phase level} 0, the
normal phase.
@examples[#:label #f #:eval meta-in-eval
(require (only-meta-in 0 'nest))
num-eggs
]}
@specsubform[#:literals (for-meta)
(for-meta phase-level require-spec ...)]{Like the combination of
@racket[require-spec]s, but the binding specified by
each @racket[require-spec] is shifted by @racket[phase-level]. The
@tech{label phase level} corresponds to @racket[#f], and a shifting
combination that involves @racket[#f] produces @racket[#f].
@examples[#:eval (syntax-eval) #:once
(module nest racket
(provide num-eggs)
(define num-eggs 2))
(require (for-meta 0 'nest))
num-eggs
(require (for-meta 1 'nest))
(define-syntax (roost stx)
(datum->syntax stx num-eggs))
(roost)
]}
@specsubform[#:literals (for-syntax)
(for-syntax require-spec ...)]{Same as
@racket[(for-meta 1 require-spec ...)].}
@specsubform[#:literals (for-template)
(for-template require-spec ...)]{Same as
@racket[(for-meta -1 require-spec ...)].}
@specsubform[#:literals (for-label)
(for-label require-spec ...)]{Same as
@racket[(for-meta #f require-spec ...)]. If an identifier in any of the
@racket[require-spec]s is bound at more than one phase level, a syntax error
is reported.}
@specsubform[derived-require-spec]{See @racket[define-require-syntax]
for information on expanding the set of @racket[require-spec]
forms.}
@guideintro["module-paths"]{module paths}
A @racket[module-path] identifies a module, either a root module or
a @tech{submodule} that is declared lexically within another module.
A root module is identified either through a concrete
name in the form of an identifier, or through an indirect name that
can trigger automatic loading of the module declaration. Except for
the @racket[(#,(racket quote) id)] case below, the actual resolution
of a root module path is up to the current
@tech{module name resolver} (see
@racket[current-module-name-resolver]), and the description below
corresponds to the default @tech{module name resolver}.
@specsubform[#:literals (quote)
(#,(racket quote) id)]{
Refers to a submodule previously declared with the name
@racket[id] or a module previously declared interactively with the name
@racket[id]. When @racket[id] refers to a submodule, @racket[(#,(racket quote) id)]
is equivalent to @racket[(submod "." id)].
@examples[
(code:comment @#,t{a module declared interactively as @racketidfont{test}:})
(eval:alts (require '@#,racketidfont{test}) (void))]}
@specsubform[rel-string]{A path relative to the containing source (as
determined by @racket[current-load-relative-directory] or
@racket[current-directory]). Regardless of the current platform,
@racket[rel-string] is always parsed as a Unix-format relative path:
@litchar{/} is the path delimiter (multiple adjacent @litchar{/}s are
treated as a single delimiter), @litchar{..} accesses the parent
directory, and @litchar{.} accesses the current directory. The path
cannot be empty or contain a leading or trailing slash, path elements
before than the last one cannot include a file suffix (i.e., a
@litchar{.} in an element other than @litchar{.} or @litchar{..}),
and the only allowed characters are ASCII letters, ASCII digits,
@litchar{-}, @litchar{+}, @litchar{_}, @litchar{.}, @litchar{/}, and
@litchar{%}. Furthermore, a @litchar{%} is allowed only when followed
by two lowercase hexadecimal digits, and the digits must form a
number that is not the ASCII value of a letter, digit, @litchar{-},
@litchar{+}, or @litchar{_}.
@margin-note{The @litchar{%} provision is intended to support a
one-to-one encoding of arbitrary strings as path elements (after
UTF-8 encoding). Such encodings are not decoded to arrive at a
filename, but instead preserved in the file access.}
If @racket[rel-string] ends with a @filepath{.ss} suffix, it is
converted to a @filepath{.rkt} suffix. The @tech{compiled-load
handler} may reverse that conversion if a @filepath{.rkt} file does
not exist and a @filepath{.ss} exists.
@examples[
(code:comment @#,t{a module named @filepath{x.rkt} in the same})
(code:comment @#,t{directory as the enclosing module's file:})
(eval:alts (require "x.rkt") (void))
(code:comment @#,t{a module named @filepath{x.rkt} in the parent directory})
(code:comment @#,t{of the enclosing module file's directory:})
(eval:alts (require "../x.rkt") (void))]}
@defsubform[(lib rel-string ...+)]{A path to a module installed into
a @tech{collection} (see @secref["collects"]). The @racket[rel-string]s in
@racket[lib] are constrained similar to the plain @racket[rel-string]
case, with the additional constraint that a @racket[rel-string]
cannot contain @litchar{.} or @litchar{..} directory indicators.
The specific interpretation of the path depends on the number and
shape of the @racket[rel-string]s:
@itemize[
@item{If a single @racket[rel-string] is provided, and if it
consists of a single element (i.e., no @litchar{/}) with no file
suffix (i.e., no @litchar{.}), then @racket[rel-string] names a
@tech{collection}, and @filepath{main.rkt} is the library file name.
@examples[
(code:comment @#,t{the main @racketmodname[swindle #:indirect] library:})
(eval:alts (require (lib "swindle")) (void))
(code:comment @#,t{the same:})
(eval:alts (require (lib "swindle/main.rkt")) (void))]}
@item{If a single @racket[rel-string] is provided, and if it
consists of multiple @litchar{/}-separated elements, then each
element up to the last names a @tech{collection}, subcollection,
etc., and the last element names a file. If the last element has
no file suffix, @filepath{.rkt} is added, while a @filepath{.ss}
suffix is converted to @filepath{.rkt}.
@examples[
(code:comment @#,t{@filepath{turbo.rkt} from the @filepath{swindle} collection:})
(eval:alts (require (lib "swindle/turbo")) (void))
(code:comment @#,t{the same:})
(eval:alts (require (lib "swindle/turbo.rkt")) (void))
(code:comment @#,t{the same:})
(eval:alts (require (lib "swindle/turbo.ss")) (void))]}
@item{If a single @racket[rel-string] is provided, and if it
consists of a single element @italic{with} a file suffix (i.e,
with a @litchar{.}), then @racket[rel-string] names a file within
the @filepath{mzlib} @tech{collection}. A @filepath{.ss}
suffix is converted to @filepath{.rkt}. (This convention is for
compatibility with older version of Racket.)
@examples[
(code:comment @#,t{@filepath{tar.rkt} module from the @filepath{mzlib} collection:})
(eval:alts (require (lib "tar.ss")) (void))]}
@item{Otherwise, when multiple @racket[rel-string]s are provided,
the first @racket[rel-string] is effectively moved after the
others, and all @racket[rel-string]s are appended with @litchar{/}
separators. The resulting path names a @tech{collection}, then
subcollection, etc., ending with a file name. No suffix is added
automatically, but a @filepath{.ss} suffix is converted to
@filepath{.rkt}. (This convention is for compatibility with older
version of Racket.)
@examples[
(code:comment @#,t{@filepath{tar.rkt} module from the @filepath{mzlib} collection:})
(eval:alts (require (lib "tar.ss" "mzlib")) (void))]}
]}
@specsubform[id]{A shorthand for a @racket[lib] form with a single
@racket[_rel-string] whose characters are the same as in the symbolic
form of @racket[id]. In addition to the constraints of a @racket[lib]
@racket[_rel-string], @racket[id] must not contain @litchar{.}.
@examples[#:eval require-eval
(eval:alts (require racket/tcp) (void))]}
@defsubform[(file string)]{Similar to the plain @racket[rel-string]
case, but @racket[string] is a path---possibly absolute---using the
current platform's path conventions and @racket[expand-user-path].
A @filepath{.ss} suffix is converted to @filepath{.rkt}.
@examples[(eval:alts (require (file "~/tmp/x.rkt")) (void))]}
@defsubform*[((planet id)
(planet string)
(planet rel-string (user-string pkg-string vers)
rel-string ...))]{
Specifies a library available via the @PLaneT server.
The first form is a shorthand for the last one, where the @racket[id]'s
character sequence must match the following @nonterm{spec} grammar:
@BNF[
(list @nonterm{spec}
(BNF-seq @nonterm{owner} @litchar{/} @nonterm{pkg} @nonterm{lib}))
(list @nonterm{owner} @nonterm{elem})
(list @nonterm{pkg}
(BNF-alt @nonterm{elem} (BNF-seq @nonterm{elem} @litchar{:} @nonterm{version})))
(list @nonterm{version}
(BNF-alt @nonterm{int} (BNF-seq @nonterm{int} @litchar{:} @nonterm{minor})))
(list @nonterm{minor}
(BNF-alt @nonterm{int}
(BNF-seq @litchar{<=} @nonterm{int})
(BNF-seq @litchar{>=} @nonterm{int})
(BNF-seq @litchar{=} @nonterm{int}))
(BNF-seq @nonterm{int} @litchar{-} @nonterm{int}))
(list @nonterm{lib} (BNF-alt @nonterm{empty} (BNF-seq @litchar{/} @nonterm{path})))
(list @nonterm{path} (BNF-alt @nonterm{elem} (BNF-seq @nonterm{elem} @litchar{/} @nonterm{path})))
]
and where an @nonterm{elem} is a non-empty sequence of characters
that are ASCII letters, ASCII digits, @litchar{-}, @litchar{+},
@litchar{_}, or @litchar{%} followed by lowercase hexadecimal digits
(that do not encode one of the other allowed characters), and an
@nonterm{int} is a non-empty sequence of ASCII digits. As this
shorthand is expended, a @filepath{.plt} extension is added to
@nonterm{pkg}, and a @filepath{.rkt} extension is added to
@nonterm{path}; if no @nonterm{path} is included, @filepath{main.rkt}
is used in the expansion.
A @racket[(planet string)] form is like a @racket[(planet id)] form
with the identifier converted to a string, except that the
@racket[string] can optionally end with a file extension (i.e., a
@litchar{.}) for a @nonterm{path}. A @filepath{.ss} file extension is
converted to @filepath{.rkt}.
In the more general last form of a @racket[planet] module path, the
@racket[rel-string]s are similar to the @racket[lib] form, except
that the @racket[(user-string pkg-string vers)] names a
@|PLaneT|-based package instead of a @tech{collection}. A version
specification can include an optional major and minor version, where
the minor version can be a specific number or a constraint:
@racket[(_nat _nat)] specifies an inclusive range, @racket[((unsyntax
(racketidfont "=")) _nat)] specifies an exact match,
@racket[((unsyntax (racketidfont "+")) _nat)] specifies a minimum
version and is equivalent to just @racket[_nat], and
@racket[((unsyntax (racketidfont "-")) _nat)] specifies a maximum
version. The @racketidfont{=}, @racketidfont{+}, and @racketidfont{-}
identifiers in a minor-version constraint are recognized
symbolically.
@examples[
(code:comment @#,t{@filepath{main.rkt} in package @filepath{farm} by @filepath{mcdonald}:})
(eval:alts (require (planet mcdonald/farm)) (void))
(code:comment @#,t{@filepath{main.rkt} in version >= 2.0 of @filepath{farm} by @filepath{mcdonald}:})
(eval:alts (require (planet mcdonald/farm:2)) (void))
(code:comment @#,t{@filepath{main.rkt} in version >= 2.5 of @filepath{farm} by @filepath{mcdonald}:})
(eval:alts (require (planet mcdonald/farm:2:5)) (void))
(code:comment @#,t{@filepath{duck.rkt} in version >= 2.5 of @filepath{farm} by @filepath{mcdonald}:})
(eval:alts (require (planet mcdonald/farm:2:5/duck)) (void))
]}
@defsubform*[((submod root-module submod-path-element ...)
(submod "." submod-path-element ...)
(submod ".." submod-path-element ...))]{
Identifies a @tech{submodule} within the module specified by @racket[root-module]
or relative to the current module in the case of @racket[(submod "." ....)],
where @racket[(submod ".." submod-path-element ...)] is equivalent to
@racket[(submod "." ".." submod-path-element ...)].
Submodules have symbolic names, and a sequence of identifiers as @racket[submod-path-element]s
determine a path of successively nested submodules with the given names.
A @racket[".."] as a @racket[submod-path-element] names the enclosing module
of a submodule, and it's intended for use in @racket[(submod "." ....)]
and @racket[(submod ".." ....)] forms.}
As @racket[require] prepares to handle a sequence of
@racket[require-spec]s, it logs a ``prefetch'' message to the
@tech{current logger} at the @racket['info] level, using the name
@racket['module-prefetch], and including message data that is a list
of two elements: a list of @tech{module paths} that appear to be
imported, and a directory path to use for relative module paths. The
logged list of module paths may be incomplete, but a compilation
manager can use approximate prefetch information to start on
compilations in parallel.
@history[#:changed "6.0.1.10" @elem{Added prefetch logging.}]}
@defform[(local-require require-spec ...)]{
Like @racket[require], but for use in a @tech{internal-definition context} to
import just into the local context. Only bindings from @tech{phase
level} 0 are imported.
@examples[
(let ()
(local-require racket/control)
fcontrol)
(eval:error fcontrol)
]}
@guideintro["module-provide"]{@racket[provide]}
@defform/subs[#:literals (protect-out all-defined-out all-from-out rename-out
except-out prefix-out struct-out for-meta combine-out
for-syntax for-label for-template)
(provide provide-spec ...)
([provide-spec id
(all-defined-out)
(all-from-out module-path ...)
(rename-out [orig-id export-id] ...)
(except-out provide-spec provide-spec ...)
(prefix-out prefix-id provide-spec)
(struct-out id)
(combine-out provide-spec ...)
(protect-out provide-spec ...)
(for-meta phase-level provide-spec ...)
(for-syntax provide-spec ...)
(for-template provide-spec ...)
(for-label provide-spec ...)
derived-provide-spec]
[phase-level exact-integer #f])]{
Declares exports from a module. A @racket[provide] form must appear in
a @tech{module context} or a @tech{module-begin context}.
A @racket[provide-spec] indicates one or more bindings to provide.
For each exported binding, the external name is a symbol that can be
different from the symbolic form of the identifier that is bound
within the module. Also, each export is drawn from a particular
@tech{phase level} and exported at the same @tech{phase level}; by
default, the relevant phase level is the number of
@racket[begin-for-syntax] forms that enclose the @racket[provide]
form.
The syntax of @racket[provide-spec] can be extended by bindings to
@tech{provide transformers} or @tech{provide pre-transformers}, such
as via @racket[define-provide-syntax], but the pre-defined forms are
as follows.
@specsubform[id]{ Exports @racket[id], which must be @tech{bound}
within the module (i.e., either defined or imported) at the relevant
@tech{phase level}. The symbolic form of @racket[id] is used as the
external name, and the symbolic form of the defined or imported
identifier must match (otherwise, the external name could be
ambiguous).
@examples[#:eval (syntax-eval) #:once
(module nest racket
(provide num-eggs)
(define num-eggs 2))
(require 'nest)
num-eggs
]
If @racket[id] has a transformer binding to a @tech{rename
transformer}, then the transformer affects the exported binding. See
@racket[make-rename-transformer] for more information.}
@defsubform[(all-defined-out)]{ Exports all identifiers that are
defined at the relevant @tech{phase level} within the
exporting module, and that have the same lexical context as the
@racket[(all-defined-out)] form, excluding bindings to @tech{rename
transformers} where the target identifier has the
@racket['not-provide-all-defined] @tech{syntax property}. The
external name for each identifier is the symbolic form of the
identifier. Only identifiers accessible from the lexical context of
the @racket[(all-defined-out)] form are included; that is,
macro-introduced imports are not re-exported, unless the
@racket[(all-defined-out)] form was introduced at the same time.
@examples[#:eval (syntax-eval) #:once
(module nest racket
(provide (all-defined-out))
(define num-eggs 2))
(require 'nest)
num-eggs
]}
@defsubform[(all-from-out module-path ...)]{ Exports all identifiers
that are imported into the exporting module using a
@racket[require-spec] built on each @racket[module-path] (see
@secref["require"]) with no @tech{phase-level} shift. The symbolic
name for export is derived from the name that is bound within the
module, as opposed to the symbolic name of the export from each
@racket[module-path]. Only identifiers accessible from the lexical
context of the @racket[module-path] are included; that is,
macro-introduced imports are not re-exported, unless the
@racket[module-path] was introduced at the same time.
@examples[#:eval (syntax-eval) #:once
(module nest racket
(provide num-eggs)
(define num-eggs 2))
(module hen-house racket
(require 'nest)
(provide (all-from-out 'nest)))
(require 'hen-house)
num-eggs
]}
@defsubform[(rename-out [orig-id export-id] ...)]{ Exports each
@racket[orig-id], which must be @tech{bound} within the module at
the relevant @tech{phase level}. The symbolic name for each export is
@racket[export-id] instead @racket[orig-d].
@examples[#:eval (syntax-eval) #:once
(module nest racket
(provide (rename-out [count num-eggs]))
(define count 2))
(require 'nest)
num-eggs
(eval:error count)
]}
@defsubform[(except-out provide-spec provide-spec ...)]{ Like the
first @racket[provide-spec], but omitting the bindings listed in each
subsequent @racket[provide-spec]. If one of the latter bindings is
not included in the initial @racket[provide-spec], a syntax error is
reported. The symbolic export name information in the latter
@racket[provide-spec]s is ignored; only the bindings are used.
@examples[#:eval (syntax-eval) #:once
(module nest racket
(provide (except-out (all-defined-out)
num-chicks))
(define num-eggs 2)
(define num-chicks 3))
(require 'nest)
num-eggs
(eval:error num-chicks)
]}
@defsubform[(prefix-out prefix-id provide-spec)]{
Like @racket[provide-spec], but with each symbolic export name from
@racket[provide-spec] prefixed with @racket[prefix-id].
@examples[#:eval (syntax-eval) #:once
(module nest racket
(provide (prefix-out chicken: num-eggs))
(define num-eggs 2))
(require 'nest)
chicken:num-eggs
]}
@defsubform[(struct-out id)]{Exports the bindings associated with a
structure type @racket[id]. Typically, @racket[id] is bound with
@racket[(struct id ....)]; more generally, @racket[id] must have a
@tech{transformer} binding of structure-type information at the relevant
@tech{phase level}; see @secref["structinfo"]. Furthermore, for
each identifier mentioned in the structure-type information, the
enclosing module must define or import one identifier that is
@racket[free-identifier=?]. If the structure-type information
includes a super-type identifier, and if the identifier has a
@tech{transformer} binding of structure-type information, the
accessor and mutator bindings of the super-type are @italic{not}
included by @racket[struct-out] for export.
@examples[#:eval (syntax-eval) #:once
(module nest racket
(provide (struct-out egg))
(struct egg (color wt)))
(require 'nest)
(egg-color (egg 'blue 10))
]}
@defsubform[(combine-out provide-spec ...)]{ The union of the
@racket[provide-spec]s.
@examples[#:eval (syntax-eval) #:once
(module nest racket
(provide (combine-out num-eggs num-chicks))
(define num-eggs 2)
(define num-chicks 1))
(require 'nest)
num-eggs
num-chicks
]}
@defsubform[(protect-out provide-spec ...)]{ Like the union of the
@racket[provide-spec]s, except that the exports are protected;
requiring modules may refer to these bindings, but may not extract
these bindings from macro expansions or access them via @racket[eval] without
access privileges.
For more details, see @secref["modprotect"]. The @racket[provide-spec] must specify only
bindings that are defined within the exporting module.
@examples[#:eval (syntax-eval) #:once
(module nest racket
(provide num-eggs (protect-out num-chicks))
(define num-eggs 2)
(define num-chicks 3))
(define weak-inspector (make-inspector (current-code-inspector)))
(define (weak-eval x)
(parameterize ([current-code-inspector weak-inspector])
(define weak-ns (make-base-namespace))
(namespace-attach-module (current-namespace)
''nest
weak-ns)
(parameterize ([current-namespace weak-ns])
(namespace-require ''nest)
(eval x))))
(require 'nest)
(list num-eggs num-chicks)
(weak-eval 'num-eggs)
(eval:error (weak-eval 'num-chicks))
]}
@specsubform[#:literals (for-meta)
(for-meta phase-level provide-spec ...)]{ Like the union of the
@racket[provide-spec]s, but adjusted to apply to the @tech{phase
level} specified by @racket[phase-level] relative to the current
phase level (where @racket[#f] corresponds to the @tech{label phase
level}). In particular, an @racket[_id] or @racket[rename-out] form
as a @racket[provide-spec] refers to a binding at
@racket[phase-level] relative to the current level, an
@racket[all-defined-out] exports only definitions at
@racket[phase-level] relative to the current phase level, and an
@racket[all-from-out] exports bindings imported with a shift by
@racket[phase-level].
@examples[#:eval (syntax-eval) #:once
(module nest racket
(begin-for-syntax
(define eggs 2))
(define chickens 3)
(provide (for-syntax eggs)
chickens))
(require 'nest)
(define-syntax (test-eggs stx)
(printf "Eggs are ~a\n" eggs)
#'0)
(test-eggs)
chickens
(eval:error
(module broken-nest racket
(define eggs 2)
(define chickens 3)
(provide (for-syntax eggs)
chickens)))
(module nest2 racket
(begin-for-syntax
(define eggs 2))
(provide (for-syntax eggs)))
(require (for-meta 2 racket/base)
(for-syntax 'nest2))
(define-syntax (test stx)
(define-syntax (show-eggs stx)
(printf "Eggs are ~a\n" eggs)
#'0)
(begin
(show-eggs)
#'0))
(test)
]}
@specsubform[#:literals (for-syntax)
(for-syntax provide-spec ...)]{Same as
@racket[(for-meta 1 provide-spec ...)].}
@specsubform[#:literals (for-template)
(for-template provide-spec ...)]{Same as
@racket[(for-meta -1 provide-spec ...)].}
@specsubform[#:literals (for-label)
(for-label provide-spec ...)]{Same as
@racket[(for-meta #f provide-spec ...)].}
@specsubform[derived-provide-spec]{See @racket[define-provide-syntax]
for information on expanding the set of @racket[provide-spec] forms.}
Each export specified within a module must have a distinct symbolic
export name, though the same binding can be specified with the
multiple symbolic names.}
@defform[(for-meta phase-level require-spec ...)]{See @racket[require] and @racket[provide].}
@defform[(for-syntax require-spec ...)]{See @racket[require] and @racket[provide].} @defform[(for-template require-spec ...)]{See @racket[require] and @racket[provide].}
@defform[(for-label require-spec ...)]{See @racket[require] and @racket[provide].}
@defform/subs[(#%require raw-require-spec ...)
([raw-require-spec phaseless-spec
(#,(racketidfont "for-meta") phase-level phaseless-spec ...)
(#,(racketidfont "for-syntax") phaseless-spec ...)
(#,(racketidfont "for-template") phaseless-spec ...)
(#,(racketidfont "for-label") phaseless-spec ...)
(#,(racketidfont "just-meta") phase-level raw-require-spec ...)]
[phase-level exact-integer
#f]
[phaseless-spec raw-module-path
(#,(racketidfont "only") raw-module-path id ...)
(#,(racketidfont "prefix") prefix-id raw-module-path)
(#,(racketidfont "all-except") raw-module-path id ...)
(#,(racketidfont "prefix-all-except") prefix-id
raw-module-path id ...)
(#,(racketidfont "rename") raw-module-path local-id exported-id)]
[raw-module-path raw-root-module-path
(#,(racketidfont "submod") raw-root-module-path id ...+)
(#,(racketidfont "submod") "." id ...+)]
[raw-root-module-path (#,(racketidfont "quote") id)
rel-string
(#,(racketidfont "lib") rel-string ...)
id
(#,(racketidfont "file") string)
(#,(racketidfont "planet") rel-string
(user-string pkg-string vers ...))
literal-path])]{
The primitive import form, to which @racket[require] expands. A
@racket[raw-require-spec] is similar to a @racket[_require-spec] in a
@racket[require] form, except that the syntax is more constrained, not
composable, and not extensible. Also, sub-form names like
@racketidfont{for-syntax} and @racketidfont{lib} are recognized
symbolically, instead of via bindings. Although not formalized in the
grammar above, a @racketidfont{just-meta} form cannot appear within a
@racketidfont{just-meta} form.
Each @racket[raw-require-spec] corresponds to the obvious
@racket[_require-spec], but the @racketidfont{rename} sub-form has the
identifiers in reverse order compared to @racket[rename-in].
For most @racket[raw-require-spec]s, the lexical context of the
@racket[raw-require-spec] determines the context of introduced
identifiers. The exception is the @racketidfont{rename} sub-form,
where the lexical context of the @racket[local-id] is preserved.
A @racket[literal-path] as a @racket[raw-root-module-path] corresponds
to a path in the sense of @racket[path?]. Since path values are never
produced by @racket[read-syntax], they appear only in programmatically
constructed expressions. They also appear naturally as arguments to
functions such as @racket[namespace-require], with otherwise take a
quoted @racket[raw-module-spec].}
@defform/subs[(#%provide raw-provide-spec ...)
([raw-provide-spec phaseless-spec
(#,(racketidfont "for-meta") phase-level phaseless-spec)
(#,(racketidfont "for-syntax") phaseless-spec)
(#,(racketidfont "for-label") phaseless-spec)
(#,(racketidfont "protect") raw-provide-spec)]
[phase-level exact-integer
#f]
[phaseless-spec id
(#,(racketidfont "rename") local-id export-id)
(#,(racketidfont "struct") struct-id (field-id ...))
(#,(racketidfont "all-from") raw-module-path)
(#,(racketidfont "all-from-except") raw-module-path id ...)
(#,(racketidfont "all-defined"))
(#,(racketidfont "all-defined-except") id ...)
(#,(racketidfont "prefix-all-defined") prefix-id)
(#,(racketidfont "prefix-all-defined-except") prefix-id id ...)
(#,(racketidfont "protect") phaseless-spec ...)
(#,(racketidfont "expand") (id . datum))])]{
The primitive export form, to which @racket[provide] expands. A
@racket[_raw-module-path] is as for @racket[#%require]. A
@racketidfont{protect} sub-form cannot appear within a
@racket[protect] sub-form.
Like @racket[#%require], the sub-form keywords for @racket[#%provide]
are recognized symbolically, and nearly every
@racket[raw-provide-spec] has an obvious equivalent
@racket[_provide-spec] via @racket[provide], with the exception of the
@racketidfont{struct} and @racketidfont{expand} sub-forms.
A @racket[(#,(racketidfont "struct") struct-id (field-id ...))]
sub-form expands to @racket[struct-id],
@racketidfont{make-}@racket[struct-id],
@racketidfont{struct:}@racket[struct-id],
@racket[struct-id]@racketidfont{?},
@racket[struct-id]@racketidfont{-}@racket[field-id] for each
@racket[field-id], and
@racketidfont{set-}@racket[struct-id]@racketidfont{-}@racket[field-id]@racketidfont{!}
for each @racket[field-id]. The lexical context of the
@racket[struct-id] is used for all generated identifiers.
Unlike @racket[#%require], the @racket[#%provide] form is
macro-extensible via an explicit @racketidfont{expand} sub-form; the
@racket[(id . datum)] part is locally expanded as an expression (even
though it is not actually an expression), stopping when a
@racket[begin] form is produced; if the expansion result is
@racket[(begin raw-provide-spec ...)], it is spliced in place of the
@racketidfont{expand} form, otherwise a syntax error is reported. The
@racketidfont{expand} sub-form is not normally used directly; it
provides a hook for implementing @racket[provide] and @tech{provide
transformers}.
The @racketidfont{all-from} and @racketidfont{all-from-except} forms
re-export only identifiers that are accessible in lexical context of
the @racketidfont{all-from} or @racketidfont{all-from-except} form
itself. That is, macro-introduced imports are not re-exported, unless
the @racketidfont{all-from} or @racketidfont{all-from-except} form was
introduced at the same time. Similarly, @racketidfont{all-defined} and
its variants export only definitions accessible from the lexical
context of the @racket[phaseless-spec] form.}
@; --------------------
@subsection{Additional @racket[require] Forms}
@note-lib-only[racket/require]
The following forms support more complex selection and manipulation of
sets of imported identifiers.
@defform[(matching-identifiers-in regexp require-spec)]{
Like @racket[require-spec], but including only imports whose names
match @racket[regexp]. The @racket[regexp] must be a literal regular
expression (see @secref["regexp"]).
@examples[#:eval (syntax-eval) #:once
(module zoo racket/base
(provide tunafish swordfish blowfish
monkey lizard ant)
(define tunafish 1)
(define swordfish 2)
(define blowfish 3)
(define monkey 4)
(define lizard 5)
(define ant 6))
(require racket/require)
(require (matching-identifiers-in #rx"\\w*fish" 'zoo))
tunafish
swordfish
blowfish
(eval:error monkey)
]}
@defform[(subtract-in require-spec subtracted-spec ...)]{
Like @racket[require-spec], but omitting those imports that would be
imported by one of the @racket[subtracted-spec]s.
@examples[#:eval (syntax-eval) #:once
(module earth racket
(provide land sea air)
(define land 1)
(define sea 2)
(define air 3))
(module mars racket
(provide aliens)
(define aliens 4))
(module solar-system racket
(require 'earth 'mars)
(provide (all-from-out 'earth)
(all-from-out 'mars)))
(require racket/require)
(require (subtract-in 'solar-system 'earth))
(eval:error land)
aliens
]}
@defform[(filtered-in proc-expr require-spec)]{
Applies an arbitrary transformation on the import names (as strings)
of @racket[require-spec]. The @racket[proc-expr] must evaluate at
expansion time to a single-argument procedure, which is applied on
each of the names from @racket[require-spec]. For each name, the
procedure must return either a string for the import's new name or
@racket[#f] to exclude the import.
For example,
@racketblock[
(require (filtered-in
(lambda (name)
(and (regexp-match? #rx"^[a-z-]+$" name)
(regexp-replace #rx"-" (string-titlecase name) "")))
racket/base))]
imports only bindings from @racketmodname[racket/base] that match the
pattern @racket[#rx"^[a-z-]+$"], and it converts the names to ``camel case.''}
@defform[(path-up rel-string ...)]{
Specifies paths to modules named by the @racket[rel-string]s similar
to using the @racket[rel-string]s directly, except that if a required
module file is not found relative to the enclosing source, it is
searched for in the parent directory, and then in the grand-parent
directory, etc., all the way to the root directory. The discovered
path relative to the enclosing source becomes part of the expanded
form.
This form is useful in setting up a ``project environment.'' For
example, using the following @filepath{config.rkt} file in the root
directory of your project:
@racketmod[
racket/base
(require racket/require-syntax
(for-syntax "utils/in-here.rkt"))
;; require form for my utilities
(provide utils-in)
(define-require-syntax utils-in in-here-transformer)
]
and using @filepath{utils/in-here.rkt} under the same root directory:
@racketmod[
racket/base
(require racket/runtime-path)
(provide in-here-transformer)
(define-runtime-path here ".")
(define (in-here-transformer stx)
(syntax-case stx ()
[(_ sym)
(identifier? #'sym)
(let ([path (build-path here (format "~a.rkt" (syntax-e #'sym)))])
(datum->syntax stx `(file ,(path->string path)) stx))]))
]
then @racket[path-up] works for any other module under the project
directory to find @filepath{config.rkt}:
@racketblock[
(require racket/require
(path-up "config.rkt")
(utils-in foo))]
Note that the order of requires in the example is important, as each of
the first two bind the identifier used in the following.
An alternative in this scenario is to use @racket[path-up] directly to
find the utility module:
@racketblock[
(require racket/require
(path-up "utils/foo.rkt"))]
but then sub-directories that are called
@filepath{utils} override the one in the project's root.
In other words, the previous method requires only a single unique name.}
@defform/subs[(multi-in subs ...+)
([subs sub-path
(sub-path ...)]
[sub-path rel-string
id])]{
Specifies multiple files to be required from a hierarchy of
directories or collections. The set of required module paths is computed
as the Cartesian product of the @racket[subs] groups, where each
@racket[sub-path] is combined with other @racket[sub-path]s in order
using a @litchar{/} separator. A @racket[sub-path] as a @racket[subs]
is equivalent to @racket[(sub-path)]. All @racket[sub-path]s in a given
@racket[multi-in] form must be either strings or identifiers.
Examples:
@subeqivs[
[(require (multi-in racket (dict @#,racketidfont{list})))
(require racket/dict racket/list)]
[(require (multi-in "math" "matrix" "utils.rkt"))
(require "math/matrix/utils.rkt")]
[(require (multi-in "utils" ("math.rkt" "matrix.rkt")))
(require "utils/math.rkt" "utils/matrix.rkt")]
[(require (multi-in ("math" "matrix") "utils.rkt"))
(require "math/utils.rkt" "matrix/utils.rkt")]
[(require (multi-in ("math" "matrix") ("utils.rkt" "helpers.rkt")))
(require "math/utils.rkt" "math/helpers.rkt"
"matrix/utils.rkt" "matrix/helpers.rkt")]
]}
@; --------------------
@subsection{Additional @racket[provide] Forms}
@note-lib-only[racket/provide]
@defform[(matching-identifiers-out regexp provide-spec)]{ Like
@racket[provide-spec], but including only exports of bindings with
an external name that matches @racket[regexp]. The @racket[regexp]
must be a literal regular expression (see @secref["regexp"]).}
@defform[(filtered-out proc-expr provide-spec)]{
Analogous to @racket[filtered-in], but for filtering and renaming
exports.
For example,
@racketblock[
(provide (filtered-out
(lambda (name)
(and (regexp-match? #rx"^[a-z-]+$" name)
(regexp-replace
#rx"-" (string-titlecase name) "")))
(all-defined-out)))]
exports only bindings that match the
pattern @racket[#rx"^[a-z-]+$"], and it converts the names to ``camel case.''}
@;------------------------------------------------------------------------
@section[#:tag "quote"]{Literals: @racket[quote] and @racket[#%datum]}
Many forms are implicitly quoted (via @racket[#%datum]) as literals. See
@secref["expand-steps"] for more information.
@guideintro["quote"]{@racket[quote]}
@defform[(quote datum)]{
Produces a constant value corresponding to @racket[datum] (i.e., the
representation of the program fragment) without its @tech{lexical
information}, source location, etc. Quoted pairs, vectors, and boxes
are immutable.
@mz-examples[
(eval:alts (#,(racketkeywordfont "quote") x) 'x)
(eval:alts (#,(racketkeywordfont "quote") (+ 1 2)) '(+ 1 2))
(+ 1 2)
]
}
@defform[(#%datum . datum)]{
Expands to @racket[(#,(racketkeywordfont "quote") datum)], as long as
@racket[datum] is not a keyword. If @racket[datum] is a keyword, a
syntax error is reported.
See also @secref["expand-steps"] for information on how the expander
introduces @racketidfont{#%datum} identifiers.
@mz-examples[
(#%datum . 10)
(#%datum . x)
(eval:error (#%datum . #:x))
]
}
@;------------------------------------------------------------------------
@section[#:tag "#%expression"]{Expression Wrapper: @racket[#%expression]}
@defform[(#%expression expr)]{
Produces the same result as @racket[expr]. Using
@racket[#%expression] forces the parsing of a form as an
expression.
@mz-examples[
(#%expression (+ 1 2))
(eval:error (#%expression (define x 10)))
]
The @racket[#%expression] form is helpful in recursive definition contexts
where expanding a subsequent definition can provide compile-time information
for the current expression. For example, consider a @racket[define-sym-case]
macro that simply records some symbols at compile-time in a given identifier.
@examples[#:label #f #:no-prompt #:eval meta-in-eval
(define-syntax (define-sym-case stx)
(syntax-case stx ()
[(_ id sym ...)
(andmap identifier? (syntax->list #'(sym ...)))
#'(define-syntax id
'(sym ...))]))]
and then a variant of @racket[case] that checks to make sure the symbols
used in the expression match those given in the earlier definition:
@examples[#:label #f #:no-prompt #:eval meta-in-eval
(define-syntax (sym-case stx)
(syntax-case stx ()
[(_ id val-expr [(sym) expr] ...)
(let ()
(define expected-ids
(syntax-local-value
#'id
(λ ()
(raise-syntax-error
'sym-case
"expected an identifier bound via def-sym-case"
stx
#'id))))
(define actual-ids (syntax->datum #'(sym ...)))
(unless (equal? expected-ids actual-ids)
(raise-syntax-error
'sym-case
(format "expected the symbols ~s"
expected-ids)
stx))
#'(case val-expr [(sym) expr] ...))]))]
If the definition follows the use like this, then
the @racket[define-sym-case] macro does not have
a chance to bind @racket[id] and the @racket[sym-case]
macro signals an error:
@examples[#:label #f #:eval meta-in-eval
(eval:error
(let ()
(sym-case land-creatures 'bear
[(bear) 1]
[(fox) 2])
(define-sym-case land-creatures bear fox)))
]
But if the @racket[sym-case] is wrapped in an @racket[#%expression],
then the expander does not need to expand it to know it is
an expression and it moves on to the @racket[define-sym-case]
expression.
@examples[#:label #f #:eval meta-in-eval
(let ()
(#%expression (sym-case sea-creatures 'whale
[(whale) 1]
[(squid) 2]))
(define-sym-case sea-creatures whale squid)
'more...)
]
Of course, a macro like @racket[sym-case] should not require its
clients to add @racket[#%expression]; instead it should check
the basic shape of its arguments and then expand to @racket[#%expression]
wrapped around a helper macro that calls @racket[syntax-local-value]
and finishes the expansion.
}
@;------------------------------------------------------------------------
@section[#:tag "#%top"]{Variable References and @racket[#%top]}
@defform/none[id]{
Refers to a top-level, module-level, or local binding, when @racket[id] is
not bound as a transformer (see @secref["expansion"]). At run-time,
the reference evaluates to the value in the @tech{location} associated with
the binding.
When the expander encounters an @racket[id] that is not bound by a
module-level or local binding, it converts the expression to
@racket[(@#,racketidfont{#%top} . id)] giving @racketidfont{#%top}
the lexical context of the @racket[id]; typically, that context refers
to @racket[#%top]. See also @secref["expand-steps"].
@examples[
(define x 10)
x
(let ([x 5]) x)
((lambda (x) x) 2)
]}
@defform[(#%top . id)]{
Equivalent to @racket[id] when @racket[id] is bound to a module-level
or top-level variable. In a top-level context, @racket[(#%top . id)]
always refers to a top-level variable, even if @racket[id] is
@tech{unbound} or otherwise bound.
Within a @racket[module] form, @racket[(#%top . id)] expands to just
@racket[id]---with the obligation that @racket[id] is defined within
the module and has no local binding in its context. At @tech{phase
level} 0, @racket[(#%top . id)] is an immediate syntax error if
@racket[id] is not bound. At @tech{phase level} 1 and higher, a syntax
error is reported if @racket[id] is not defined at the corresponding
phase by the end of @racket[module]-body @tech{partial expansion}.
See also @secref["expand-steps"] for information on how the expander
introduces @racketidfont{#%top} identifiers.
@examples[
(define x 12)
(let ([x 5]) (#%top . x))
]
@history[#:changed "6.3" @elem{Changed the introduction of
@racket[#%top] in a top-level context
to @tech{unbound} identifiers only.}]}
@;------------------------------------------------------------------------
@section{Locations: @racket[#%variable-reference]}
@defform*[#:literals (#%top)
[(#%variable-reference id)
(#%variable-reference (#%top . id))
(#%variable-reference)]]{
Produces an opaque @deftech{variable reference} value representing the
@tech{location} of @racket[id], which must be bound as a variable. If
no @racket[id] is supplied, the resulting value refers to an
``anonymous'' variable defined within the enclosing context (i.e.,
within the enclosing module, or at the top level if the form is not
inside a module).
A @tech{variable reference} can be used with
@racket[variable-reference->empty-namespace],
@racket[variable-reference->resolved-module-path], and
@racket[variable-reference->namespace], but facilities like
@racket[define-namespace-anchor] and
@racket[namespace-anchor->namespace] wrap those to provide a clearer
interface. A @tech{variable reference} is also useful to low-level
extensions; see @other-manual['(lib
"scribblings/inside/inside.scrbl")].}
@;------------------------------------------------------------------------
@section[#:tag "application"]{Procedure Applications and @racket[#%app]}
@section-index{evaluation order}
@guideintro["application"]{procedure applications}
@defform/none[(proc-expr arg ...)]{
Applies a procedure, when @racket[proc-expr] is not an
identifier that has a transformer binding (see
@secref["expansion"]).
More precisely, the expander converts this form to
@racket[(@#,racketidfont{#%app} proc-expr arg ...)], giving
@racketidfont{#%app} the lexical context that is associated with the
original form (i.e., the pair that combines @racket[proc-expr] and its
arguments). Typically, the lexical context of the pair indicates the
procedure-application @racket[#%app] that is described next. See also
@secref["expand-steps"].
@mz-examples[
(+ 1 2)
((lambda (x #:arg y) (list y x)) #:arg 2 1)
]}
@defform[(#%app proc-expr arg ...)]{
Applies a procedure. Each @racket[arg] is one of the following:
@specsubform[arg-expr]{The resulting value is a non-keyword
argument.}
@specsubform[(code:line keyword arg-expr)]{The resulting value is a
keyword argument using @racket[keyword]. Each
@racket[keyword] in the application must be distinct.}
The @racket[proc-expr] and @racket[_arg-expr]s are evaluated in order,
left to right. If the result of @racket[proc-expr] is a procedure that
accepts as many arguments as non-@racket[_keyword]
@racket[_arg-expr]s, if it accepts arguments for all of the
@racket[_keyword]s in the application, and if all required
keyword-based arguments are represented among the @racket[_keyword]s
in the application, then the procedure is called with the values of
the @racket[arg-expr]s. Otherwise, the @exnraise[exn:fail:contract].
The continuation of the procedure call is the same as the continuation
of the application expression, so the results of the procedure are the
results of the application expression.
The relative order of @racket[_keyword]-based arguments matters only
for the order of @racket[_arg-expr] evaluations; the arguments are
associated with argument variables in the applied procedure based on
the @racket[_keyword]s, and not their positions. The other
@racket[_arg-expr] values, in contrast, are associated with variables
according to their order in the application form.
See also @secref["expand-steps"] for information on how the
expander introduces @racketidfont{#%app} identifiers.
@mz-examples[
(#%app + 1 2)
(#%app (lambda (x #:arg y) (list y x)) #:arg 2 1)
(eval:error (#%app cons))
]}
@defform*[[(#%plain-app proc-expr arg-expr ...)
(#%plain-app)]]{
Like @racket[#%app], but without support for keyword arguments.
As a special case, @racket[(#%plain-app)] produces @racket['()].}
@;------------------------------------------------------------------------
@section[#:tag "lambda"]{Procedure Expressions: @racket[lambda] and @racket[case-lambda]}
@guideintro["lambda"]{procedure expressions}
@deftogether[(
@defform[(lambda kw-formals body ...+)]
@defform/subs[(λ kw-formals body ...+)
([kw-formals (arg ...)
(arg ...+ . rest-id)
rest-id]
[arg id
[id default-expr]
(code:line keyword id)
(code:line keyword [id default-expr])])]
)]{
Produces a procedure. The @racket[kw-formals] determines the number of
arguments and which keyword arguments that the procedure accepts.
Considering only the first @racket[arg] case, a simple
@racket[kw-formals] has one of the following three forms:
@specsubform[(id ...)]{ The procedure accepts as many non-keyword
argument values as the number of @racket[id]s. Each @racket[id]
is associated with an argument value by position.}
@specsubform[(id ...+ . rest-id)]{ The procedure accepts any number of
non-keyword arguments greater or equal to the number of
@racket[id]s. When the procedure is applied, the @racket[id]s
are associated with argument values by position, and all
leftover arguments are placed into a list that is associated to
@racket[rest-id].}
@specsubform[rest-id]{ The procedure accepts any number of non-keyword
arguments. All arguments are placed into a list that is
associated with @racket[rest-id].}
More generally, an @racket[arg] can include a keyword and/or default
value. Thus, the first two cases above are more completely specified
as follows:
@specsubform[(arg ...)]{ Each @racket[arg] has the following
four forms:
@specsubform[id]{Adds one to both the minimum and maximum
number of non-keyword arguments accepted by the procedure. The
@racket[id] is associated with an actual argument by
position.}
@specsubform[[id default-expr]]{Adds one to the maximum number
of non-keyword arguments accepted by the procedure. The
@racket[id] is associated with an actual argument by position,
and if no such argument is provided, the @racket[default-expr]
is evaluated to produce a value associated with @racket[id].
No @racket[arg] with a @racket[default-expr] can appear
before an @racket[id] without a @racket[default-expr] and
without a @racket[keyword].}
@specsubform[(code:line keyword id)]{The procedure requires a
keyword-based argument using @racket[keyword]. The @racket[id]
is associated with a keyword-based actual argument using
@racket[keyword].}
@specsubform[(code:line keyword [id default-expr])]{The
procedure accepts a keyword-based argument using @racket[keyword]. The
@racket[id] is associated with a keyword-based actual argument
using @racket[keyword], if supplied in an application;
otherwise, the @racket[default-expr] is evaluated to obtain a
value to associate with @racket[id].}
The position of a @racket[_keyword] @racket[arg] in
@racket[kw-formals] does not matter, but each specified
@racket[keyword] must be distinct.}
@specsubform[(arg ...+ . rest-id)]{ Like the previous case, but
the procedure accepts any number of non-keyword arguments
beyond its minimum number of arguments. When more arguments are
provided than non-@racket[_keyword] arguments among the
@racket[arg]s, the extra arguments are placed into a
list that is associated to @racket[rest-id].}
The @racket[kw-formals] identifiers are bound in the
@racket[body]s. When the procedure is applied, a new @tech{location}
is created for each identifier, and the location is filled with the
associated argument value. The @tech{locations} are created and filled
in order, with @racket[_default-expr]s evaluated as needed to fill
locations. @margin-note{In other words, argument bindings with
default-value expressions are evaluated analogous to @racket[let*].}
If any identifier appears in the @racket[body]s that is not one of the
identifiers in @racket[kw-formals], then it refers to the same
location that it would if it appeared in place of the @racket[lambda]
expression. (In other words, variable reference is lexically scoped.)
When multiple identifiers appear in a @racket[kw-formals], they must
be distinct according to @racket[bound-identifier=?].
If the procedure produced by @racket[lambda] is applied to fewer or
more by-position or by-keyword arguments than it accepts, to by-keyword arguments
that it does not accept, or without required by-keyword arguments, then
the @exnraise[exn:fail:contract].
The last @racket[body] expression is in tail position with respect to
the procedure body.
@mz-examples[
((lambda (x) x) 10)
((lambda (x y) (list y x)) 1 2)
((lambda (x [y 5]) (list y x)) 1 2)
(let ([f (lambda (x #:arg y) (list y x))])
(list (f 1 #:arg 2)
(f #:arg 2 1)))
]
When compiling a @racket[lambda] or @racket[case-lambda] expression,
Racket looks for a @indexed-racket['method-arity-error] property
attached to the expression (see @secref["stxprops"]). If it is
present with a true value, and if no case of the procedure accepts
zero arguments, then the procedure is marked so that an
@racket[exn:fail:contract:arity] exception involving the procedure
will hide the first argument, if one was provided. (Hiding the first
argument is useful when the procedure implements a method, where the
first argument is implicit in the original source). The property
affects only the format of @racket[exn:fail:contract:arity]
exceptions, not the result of @racket[procedure-arity].
When a keyword-accepting procedure is bound to an identifier in
certain ways, and when the identifier is used in the function position
of an application form, then the application form may be expanded in
such a way that the original binding is obscured as the target of the
application. To help expose the connection between the function
application and function declaration, an identifier in the expansion
of the function application is tagged with a @tech{syntax property}
accessible via @racket[syntax-procedure-alias-property] if it is effectively an alias
for the original identifier. An identifier in the expansion is tagged with a
@tech{syntax property} accessible via @racket[syntax-procedure-converted-arguments-property] if it
is like the original identifier except that the arguments are converted to a
flattened form: keyword arguments, required by-position arguments,
by-position optional arguments, and rest arguments---all as required,
by-position arguments; the keyword arguments are sorted by keyword
name, each optional keyword argument is followed by a boolean to
indicate whether a value is provided, and @racket[#f] is used for an
optional keyword argument whose value is not provided; optional
by-position arguments include @racket[#f] for each non-provided
argument, and then the sequence of optional-argument values is
followed by a parallel sequence of booleans to indicate whether each
optional-argument value was provided.}
@defform/subs[(case-lambda [formals body ...+] ...)
([formals (id ...)
(id ...+ . rest-id)
rest-id])]{
Produces a procedure. Each @racket[[formals body ...+]]
clause is analogous to a single @racket[lambda] procedure; applying
the @racket[case-lambda]-generated procedure is the same as applying a
procedure that corresponds to one of the clauses---the first procedure
that accepts the given number of arguments. If no corresponding
procedure accepts the given number of arguments, the
@exnraise[exn:fail:contract].
Note that a @racket[case-lambda] clause supports only
@racket[formals], not the more general @racket[_kw-formals] of
@racket[lambda]. That is, @racket[case-lambda] does not directly
support keyword and optional arguments.
@mz-examples[
(let ([f (case-lambda
[() 10]
[(x) x]
[(x y) (list y x)]
[r r])])
(list (f)
(f 1)
(f 1 2)
(f 1 2 3)))
]}
@defform[(#%plain-lambda formals body ...+)]{
Like @racket[lambda], but without support for keyword or optional arguments.
}
@;------------------------------------------------------------------------
@section[#:tag "let"]{Local Binding: @racket[let], @racket[let*], @racket[letrec], ...}
@guideintro["let"]{local binding}
@defform*[[(let ([id val-expr] ...) body ...+)
(let proc-id ([id init-expr] ...) body ...+)]]{
The first form evaluates the @racket[val-expr]s left-to-right, creates
a new @tech{location} for each @racket[id], and places the values into the
locations. It then evaluates the @racket[body]s, in which the
@racket[id]s are bound. The last @racket[body] expression is in
tail position with respect to the @racket[let] form. The @racket[id]s
must be distinct according to @racket[bound-identifier=?].
@mz-examples[
(let ([x 5]) x)
(let ([x 5])
(let ([x 2]
[y x])
(list y x)))
]
The second form evaluates the @racket[init-expr]s; the resulting
values become arguments in an application of a procedure
@racket[(lambda (id ...) body ...+)], where @racket[proc-id] is bound
within the @racket[body]s to the procedure itself.}
@mz-examples[
(let fac ([n 10])
(if (zero? n)
1
(* n (fac (sub1 n)))))
]
@defform[(let* ([id val-expr] ...) body ...+)]{
Like @racket[let], but evaluates the @racket[val-expr]s one by
one, creating a @tech{location} for each @racket[id] as soon as the value is
available. The @racket[id]s are bound in the remaining @racket[val-expr]s
as well as the @racket[body]s, and the @racket[id]s need not be
distinct; later bindings shadow earlier bindings.
@mz-examples[
(let* ([x 1]
[y (+ x 1)])
(list y x))
]}
@defform[(letrec ([id val-expr] ...) body ...+)]{
Like @racket[let], including left-to-right evaluation of the @racket[val-expr]s,
but the @tech{locations} for all @racket[id]s are
created first, all
@racket[id]s are bound in all @racket[val-expr]s as well as the
@racket[body]s, and each @racket[id] is initialized immediately after the
corresponding @racket[val-expr] is evaluated. The @racket[id]s must be distinct according to
@racket[bound-identifier=?].
Referencing or assigning to an @racket[id] before its initialization
raises @racket[exn:fail:contract:variable]. If an @racket[id] (i.e.,
the binding instance or @racket[id]) has an
@indexed-racket['undefined-error-name] @tech{syntax property} whose
value is a symbol, the symbol is used as the name of the variable for
error reporting, instead of the symbolic form of @racket[id].
@mz-examples[
(letrec ([is-even? (lambda (n)
(or (zero? n)
(is-odd? (sub1 n))))]
[is-odd? (lambda (n)
(and (not (zero? n))
(is-even? (sub1 n))))])
(is-odd? 11))
]
@history[#:changed "6.0.1.2" @elem{Changed reference or assignment of an uninitialized @racket[id] to an error.}]}
@defform[(let-values ([(id ...) val-expr] ...) body ...+)]{ Like
@racket[let], except that each @racket[val-expr] must produce as many
values as corresponding @racket[id]s, otherwise the
@exnraise[exn:fail:contract]. A separate @tech{location} is created for each
@racket[id], all of which are bound in the @racket[body]s.
@mz-examples[
(let-values ([(x y) (quotient/remainder 10 3)])
(list y x))
]}
@defform[(let*-values ([(id ...) val-expr] ...) body ...+)]{ Like
@racket[let*], except that each @racket[val-expr] must produce as many
values as corresponding @racket[id]s. A separate @tech{location} is created
for each @racket[id], all of which are bound in the later
@racket[val-expr]s and in the @racket[body]s.
@mz-examples[
(let*-values ([(x y) (quotient/remainder 10 3)]
[(z) (list y x)])
z)
]}
@defform[(letrec-values ([(id ...) val-expr] ...) body ...+)]{ Like
@racket[letrec], except that each @racket[val-expr] must produce as
many values as corresponding @racket[id]s. A separate @tech{location} is
created for each @racket[id], all of which are bound in all @racket[val-expr]s
and in the @racket[body]s.
@mz-examples[
(letrec-values ([(is-even? is-odd?)
(values
(lambda (n)
(or (zero? n)
(is-odd? (sub1 n))))
(lambda (n)
(or (= n 1)
(is-even? (sub1 n)))))])
(is-odd? 11))
]}
@defform[(let-syntax ([id trans-expr] ...) body ...+)]{
@margin-note/ref{See also @racket[splicing-let-syntax].}
Creates a @tech{transformer} binding (see
@secref["transformer-model"]) of each @racket[id] with the value of
@racket[trans-expr], which is an expression at @tech{phase level} 1
relative to the surrounding context. (See @secref["id-model"] for
information on @tech{phase levels}.)
The evaluation of each @racket[trans-expr] is @racket[parameterize]d
to set @racket[current-namespace] to a @tech{namespace} that shares
@tech{bindings} and @tech{variables} with the namespace being used to
expand the @racket[let-syntax] form, except that its @tech{base phase}
is one greater.
Each @racket[id] is bound in the @racket[body]s, and not in other
@racket[trans-expr]s.}
@defform[(letrec-syntax ([id trans-expr] ...) body ...+)]{
@margin-note/ref{See also @racket[splicing-letrec-syntax].}
Like @racket[let-syntax], except that each @racket[id] is also bound
within all @racket[trans-expr]s.}
@defform[(let-syntaxes ([(id ...) trans-expr] ...) body ...+)]{
@margin-note/ref{See also @racket[splicing-let-syntaxes].}
Like @racket[let-syntax], but each @racket[trans-expr] must produce as
many values as corresponding @racket[id]s, each of which is bound to
the corresponding value.}
@defform[(letrec-syntaxes ([(id ...) trans-expr] ...) body ...+)]{
@margin-note/ref{See also @racket[splicing-letrec-syntaxes].}
Like @racket[let-syntax], except that each @racket[id] is also bound
within all @racket[trans-expr]s.}
@defform[(letrec-syntaxes+values ([(trans-id ...) trans-expr] ...)
([(val-id ...) val-expr] ...)
body ...+)]{
Combines @racket[letrec-syntaxes] with a variant of
@racket[letrec-values]: each @racket[trans-id] and @racket[val-id] is
bound in all @racket[trans-expr]s and @racket[val-expr]s.
The @racket[letrec-syntaxes+values] form is the core form for local
compile-time bindings, since forms like @racket[letrec-syntax] and
@tech{internal-definition contexts} expand to it. In a fully expanded
expression (see @secref["fully-expanded"]), the @racket[trans-id]
bindings are discarded and the form reduces to a combination of
@racket[letrec-values] or @racket[let-values].
For variables bound by @racket[letrec-syntaxes+values], the
@tech{location}-creation rules differ slightly from
@racket[letrec-values]. The @racket[[(val-id ...) val-expr]] binding
clauses are partitioned into minimal sets of clauses that satisfy the
following rule: if a clause has a @racket[val-id] binding that is
referenced (in a full expansion) by the @racket[val-expr] of an
earlier clause, the two clauses and all in between are in the same
set. If a set consists of a single clause whose @racket[val-expr] does
not refer to any of the clause's @racket[val-id]s, then
@tech{locations} for the @racket[val-id]s are created @emph{after} the
@racket[val-expr] is evaluated. Otherwise, @tech{locations} for all
@racket[val-id]s in a set are created just before the first
@racket[val-expr] in the set is evaluated. For the purposes
of forming sets, a @racket[(quote-syntax _datum #:local)] form counts
as a reference to all bindings in the @racket[letrec-syntaxes+values]
form
The end result of the @tech{location}-creation rules is that scoping
and evaluation order are the same as for @racket[letrec-values], but
the compiler has more freedom to optimize away @tech{location}
creation. The rules also correspond to a nesting of
@racket[let-values] and @racket[letrec-values], which is how
@racket[letrec-syntaxes+values] for a fully-expanded expression.
See also @racket[local], which supports local bindings with
@racket[define], @racket[define-syntax], and more.}
@;------------------------------------------------------------------------
@section[#:tag "local"]{Local Definitions: @racket[local]}
@note-lib[racket/local]
@defform[(local [definition ...] body ...+)]{
Like @racket[letrec-syntaxes+values], except that the bindings are
expressed in the same way as in the top-level or in a module body:
using @racket[define], @racket[define-values], @racket[define-syntax],
@racket[struct], etc. Definitions are distinguished from
non-definitions by partially expanding @racket[definition] forms (see
@secref["partial-expansion"]). As in the top-level or in a module
body, a @racket[begin]-wrapped sequence is spliced into the sequence
of @racket[definition]s.}
@;------------------------------------------------------------------------
@include-section["shared.scrbl"]
@;------------------------------------------------------------------------
@section[#:tag "if"]{Conditionals: @racket[if], @racket[cond], @racket[and], and @racket[or]}
@guideintro["conditionals"]{conditionals}
@defform[(if test-expr then-expr else-expr)]{
Evaluates @racket[test-expr]. If it produces any value other than
@racket[#f], then @racket[then-expr] is evaluated, and its results are
the result for the @racket[if] form. Otherwise, @racket[else-expr] is
evaluated, and its results are the result for the @racket[if]
form. The @racket[then-expr] and @racket[else-expr] are in tail
position with respect to the @racket[if] form.
@mz-examples[
(if (positive? -5) (error "doesn't get here") 2)
(if (positive? 5) 1 (error "doesn't get here"))
(if 'we-have-no-bananas "yes" "no")
]}
@defform/subs[#:literals (else =>)
(cond cond-clause ...)
([cond-clause [test-expr then-body ...+]
[else then-body ...+]
[test-expr => proc-expr]
[test-expr]])]{
@guideintro["cond"]{@racket[cond]}
A @racket[cond-clause] that starts with @racket[else] must be the last
@racket[cond-clause].
If no @racket[cond-clause]s are present, the result is @|void-const|.
If only a @racket[[else then-body ...+]] is present, then the
@racket[then-body]s are evaluated. The results from all but the last
@racket[then-body] are ignored. The results of the last
@racket[then-body], which is in tail position with respect to the
@racket[cond] form, are the results for the whole @racket[cond]
form.
Otherwise, the first @racket[test-expr] is evaluated. If it produces
@racket[#f], then the result is the same as a @racket[cond] form with
the remaining @racket[cond-clause]s, in tail position with respect to
the original @racket[cond] form. Otherwise, evaluation depends on the
form of the @racket[cond-clause]:
@specsubform[[test-expr then-body ...+]]{The @racket[then-body]s are
evaluated in order, and the results from all but the last
@racket[then-body] are ignored. The results of the last
@racket[then-body], which is in tail position with respect to the
@racket[cond] form, provides the result for the whole @racket[cond]
form.}
@specsubform[#:literals (=>) [test-expr => proc-expr]]{The @racket[proc-expr] is
evaluated, and it must produce a procedure that accepts one argument,
otherwise the @exnraise[exn:fail:contract]. The procedure is applied
to the result of @racket[test-expr] in tail position with respect to
the @racket[cond] expression.}
@specsubform[[test-expr]]{The result of the @racket[test-expr] is
returned as the result of the @racket[cond] form. The
@racket[test-expr] is not in tail position.}
@mz-examples[
(cond)
(cond
[else 5])
(cond
[(positive? -5) (error "doesn't get here")]
[(zero? -5) (error "doesn't get here, either")]
[(positive? 5) 'here])
(cond
[(member 2 '(1 2 3)) => (lambda (l) (map - l))])
(cond
[(member 2 '(1 2 3))])
]}
@defidform[else]{
Recognized specially within forms like @racket[cond]. An
@racket[else] form as an expression is a syntax error.}
@defidform[=>]{
Recognized specially within forms like @racket[cond]. A
@racket[=>] form as an expression is a syntax error.}
@defform[(and expr ...)]{
@guideintro["and+or"]{@racket[and]}
If no @racket[expr]s are provided, then result is @racket[#t].
If a single @racket[expr] is provided, then it is in tail position, so
the results of the @racket[and] expression are the results of the
@racket[expr].
Otherwise, the first @racket[expr] is evaluated. If it produces
@racket[#f], the result of the @racket[and] expression is
@racket[#f]. Otherwise, the result is the same as an @racket[and]
expression with the remaining @racket[expr]s in tail position with
respect to the original @racket[and] form.
@mz-examples[
(and)
(and 1)
(and (values 1 2))
(and #f (error "doesn't get here"))
(and #t 5)
]}
@defform[(or expr ...)]{
@guideintro["and+or"]{@racket[or]}
If no @racket[expr]s are provided, then result is @racket[#f].
If a single @racket[expr] is provided, then it is in tail position, so
the results of the @racket[or] expression are the results of the
@racket[expr].
Otherwise, the first @racket[expr] is evaluated. If it produces a
value other than @racket[#f], that result is the result of the
@racket[or] expression. Otherwise, the result is the same as an
@racket[or] expression with the remaining @racket[expr]s in tail
position with respect to the original @racket[or] form.
@mz-examples[
(or)
(or 1)
(or (values 1 2))
(or 5 (error "doesn't get here"))
(or #f 5)
]}
@;------------------------------------------------------------------------
@section[#:tag "case"]{Dispatch: @racket[case]}
@defform/subs[#:literals (else)
(case val-expr case-clause ...)
([case-clause [(datum ...) then-body ...+]
[else then-body ...+]])]{
Evaluates @racket[val-expr] and uses the result to select a
@racket[case-clause]. The selected clause is the first one with a
@racket[datum] whose @racket[quote]d form is @racket[equal?] to the
result of @racket[val-expr]. If no such @racket[datum] is present, the
@racket[else] @racket[case-clause] is selected; if no @racket[else]
@racket[case-clause] is present, either, then the result of the
@racket[case] form is @|void-const|.@margin-note{The @racket[case]
form of @racketmodname[racket] differs from that of @other-manual['(lib
"r6rs/scribblings/r6rs.scrbl")] or @other-manual['(lib
"r5rs/r5rs.scrbl")] by being based @racket[equal?] instead of
@racket[eqv?] (in addition to allowing internal definitions).}
For the selected @racket[case-clause], the results of the last
@racket[then-body], which is in tail position with respect to the
@racket[case] form, are the results for the whole @racket[case] form.
A @racket[case-clause] that starts with @racket[else] must be the last
@racket[case-clause].
The @racket[case] form can dispatch to a matching @racket[case-clause]
in @math{O(log N)} time for @math{N} @racket[datum]s.
@mz-examples[
(case (+ 7 5)
[(1 2 3) 'small]
[(10 11 12) 'big])
(case (- 7 5)
[(1 2 3) 'small]
[(10 11 12) 'big])
(case (string-append "do" "g")
[("cat" "dog" "mouse") "animal"]
[else "mineral or vegetable"])
(case (list 'y 'x)
[((a b) (x y)) 'forwards]
[((b a) (y x)) 'backwards])
(case 'x
[(x) "ex"]
[('x) "quoted ex"])
(case (list 'quote 'x)
[(x) "ex"]
[('x) "quoted ex"])
(eval:no-prompt
(define (classify c)
(case (char-general-category c)
[(ll lu lt ln lo) "letter"]
[(nd nl no) "number"]
[else "other"])))
(classify #\A)
(classify #\1)
(classify #\!)
]}
@;------------------------------------------------------------------------
@section[#:tag "define"]{Definitions: @racket[define], @racket[define-syntax], ...}
@guideintro["define"]{definitions}
@defform*/subs[[(define id expr)
(define (head args) body ...+)]
([head id
(head args)]
[args (code:line arg ...)
(code:line arg ... @#,racketparenfont{.} rest-id)]
[arg arg-id
[arg-id default-expr]
(code:line keyword arg-id)
(code:line keyword [arg-id default-expr])])]{
The first form @tech{bind}s @racket[id] to the result of
@racket[expr], and the second form @tech{bind}s @racket[id] to a
procedure. In the second case, the generated procedure is
@racket[(#,cvt (head args) body ...+)], using the @|cvt| meta-function
defined as follows:
@racketblock[
(#,cvt (id . _kw-formals) . _datum) = (lambda _kw-formals . _datum)
(#,cvt (head . _kw-formals) . _datum) = (lambda _kw-formals expr)
@#,elem{if} (#,cvt head . _datum) = expr
]
In an @tech{internal-definition context}, a @racket[define] form
introduces a local binding; see @secref["intdef-body"].
At the top level, the top-level binding for @racket[id] is created after
evaluating @racket[expr], if it does not exist already, and the
top-level mapping of @racket[id] (in the @techlink{namespace} linked
with the compiled definition) is set to the binding at the same time.
In a context that allows @tech{liberal expansion} of @racket[define],
@racket[id] is bound as syntax if @racket[expr] is an immediate
@racket[lambda] form with keyword arguments or @racket[args] include
keyword arguments.
@examples[
(eval:no-prompt (define x 10))
x
(eval:no-prompt
(define (f x)
(+ x 1)))
(f 10)
(eval:no-prompt
(define ((f x) [y 20])
(+ x y)))
((f 10) 30)
((f 10))
]
}
@defform[(define-values (id ...) expr)]{
Evaluates the @racket[expr], and @tech{bind}s the results to the
@racket[id]s, in order, if the number of results matches the number of
@racket[id]s; if @racket[expr] produces a different number of results,
the @exnraise[exn:fail:contract].
In an @tech{internal-definition context} (see @secref["intdef-body"]),
a @racket[define-values] form introduces local bindings.
At the top level, the top-level binding for each @racket[id] is
created after evaluating @racket[expr], if it does not exist already,
and the top-level mapping of each @racket[id] (in the
@techlink{namespace} linked with the compiled definition) is set to
the binding at the same time.
@examples[
(define-values () (values))
(define-values (x y z) (values 1 2 3))
z
]
If a @racket[define-values] form for a function definition in a module
body has a @indexed-racket['compiler-hint:cross-module-inline]
@tech{syntax property} with a true value, then the Racket treats the
property as a performance hint. See
@guidesecref["func-call-performance"] in @|Guide| for more
information, and see also @racket[begin-encourage-inline].}
@defform*[[(define-syntax id expr)
(define-syntax (head args) body ...+)]]{
The first form creates a @tech{transformer} binding (see
@secref["transformer-model"]) of @racket[id] with the value of
@racket[expr], which is an expression at @tech{phase level} 1 relative
to the surrounding context. (See @secref["id-model"] for information
on @tech{phase levels}.) Evaluation of @racket[expr] side is
@racket[parameterize]d to set @racket[current-namespace] as in
@racket[let-syntax].
The second form is a shorthand the same as for @racket[define]; it
expands to a definition of the first form where the @racket[expr] is a
@racket[lambda] form.}
In an @tech{internal-definition context} (see @secref["intdef-body"]),
a @racket[define-syntax] form introduces a local binding.
@examples[#:eval (syntax-eval) #:once
(define-syntax foo
(syntax-rules ()
((_ a ...)
(printf "~a\n" (list a ...)))))
(foo 1 2 3 4)
(define-syntax (bar syntax-object)
(syntax-case syntax-object ()
((_ a ...)
#'(printf "~a\n" (list a ...)))))
(bar 1 2 3 4)
]
@defform[(define-syntaxes (id ...) expr)]{
Like @racket[define-syntax], but creates a @tech{transformer} binding
for each @racket[id]. The @racket[expr] should produce as many values
as @racket[id]s, and each value is bound to the corresponding
@racket[id].
When @racket[expr] produces zero values for a top-level
@racket[define-syntaxes] (i.e., not in a module or internal-definition
position), then the @racket[id]s are effectively declared without
binding; see @secref["macro-introduced-bindings"].
In an @tech{internal-definition context} (see @secref["intdef-body"]),
a @racket[define-syntaxes] form introduces local bindings.
@examples[#:eval (syntax-eval) #:once
(define-syntaxes (foo1 foo2 foo3)
(let ([transformer1 (lambda (syntax-object)
(syntax-case syntax-object ()
[(_) #'1]))]
[transformer2 (lambda (syntax-object)
(syntax-case syntax-object ()
[(_) #'2]))]
[transformer3 (lambda (syntax-object)
(syntax-case syntax-object ()
[(_) #'3]))])
(values transformer1
transformer2
transformer3)))
(foo1)
(foo2)
(foo3)
]}
@defform*[[(define-for-syntax id expr)
(define-for-syntax (head args) body ...+)]]{
Like @racket[define], except that the binding is at @tech{phase level}
1 instead of @tech{phase level} 0 relative to its context. The
expression for the binding is also at @tech{phase level} 1. (See
@secref["id-model"] for information on @tech{phase levels}.) The form
is a shorthand for @racket[(begin-for-syntax (define id expr))] or
@racket[(begin-for-syntax (define (head args) body ...+))].
Within a module, bindings introduced by @racket[define-for-syntax]
must appear before their uses or in the same
@racket[define-for-syntax] form (i.e., the @racket[define-for-syntax]
form must be expanded before the use is expanded). In particular,
mutually recursive functions bound by @racket[define-for-syntax] must
be defined by the same @racket[define-for-syntax] form.
@examples[#:eval (syntax-eval) #:once
(define-for-syntax helper 2)
(define-syntax (make-two syntax-object)
(printf "helper is ~a\n" helper)
#'2)
(make-two)
(code:comment @#,t{`helper' is not bound in the runtime phase})
(eval:error helper)
(define-for-syntax (filter-ids ids)
(filter identifier? ids))
(define-syntax (show-variables syntax-object)
(syntax-case syntax-object ()
[(_ expr ...)
(with-syntax ([(only-ids ...)
(filter-ids (syntax->list #'(expr ...)))])
#'(list only-ids ...))]))
(let ([a 1] [b 2] [c 3])
(show-variables a 5 2 b c))]
@defform[(define-values-for-syntax (id ...) expr)]{
Like @racket[define-for-syntax], but @racket[expr] must produce as
many values as supplied @racket[id]s, and all of the @racket[id]s are
bound (at @tech{phase level} 1).}
@examples[#:eval (syntax-eval) #:once
(define-values-for-syntax (foo1 foo2) (values 1 2))
(define-syntax (bar syntax-object)
(printf "foo1 is ~a foo2 is ~a\n" foo1 foo2)
#'2)
(bar)
]}
@; ----------------------------------------------------------------------
@subsection[#:tag "require-syntax"]{@racket[require] Macros}
@note-lib-only[racket/require-syntax]
@defform*[[(define-require-syntax id proc-expr)
(define-require-syntax (id args ...) body ...+)]]{
The first form is like @racket[define-syntax], but for a
@racket[require] sub-form. The @racket[proc-expr] must produce a
procedure that accepts and returns a syntax object representing a
@racket[require] sub-form.
This form expands to @racket[define-syntax] with a use of
@racket[make-require-transformer] (see @secref["require-trans"] for
more information), and the @tech{syntax object} passed to and from the
macro transformer is adjusted via @racket[syntax-local-require-introduce].
The second form is a shorthand the same as for @racket[define-syntax]; it
expands to a definition of the first form where the @racket[proc-expr] is a
@racket[lambda] form.}
@defproc[(syntax-local-require-introduce [stx syntax?])
syntax?]{
Provided @racket[for-syntax] for use only during the application of a
@racket[require] sub-form macro transformer: like
@racket[syntax-local-introduce], but for @racket[require] sub-form
expansion.}
@; ----------------------------------------------------------------------
@subsection[#:tag "provide-syntax"]{@racket[provide] Macros}
@note-lib-only[racket/provide-syntax]
@defform*[[(define-provide-syntax id proc-expr)
(define-provide-syntax (id args ...) body ...+)]]{
The first form is like @racket[define-syntax], but for a
@racket[provide] sub-form. The @racket[proc-expr] must produce a
procedure that accepts and returns a syntax object representing a
@racket[provide] sub-form.
This form expands to @racket[define-syntax] with a use of
@racket[make-provide-transformer] (see @secref["provide-trans"] for
more information), and the @tech{syntax object} passed to and from the
macro transformer is adjusted via @racket[syntax-local-provide-introduce].
The second form is a shorthand the same as for @racket[define-syntax]; it
expands to a definition of the first form where the @racket[expr] is a
@racket[lambda] form.}
@defproc[(syntax-local-provide-introduce [stx syntax?])
syntax?]{
Provided @racket[for-syntax] for use only during the application of a
@racket[provide] sub-form macro transformer: like
@racket[syntax-local-introduce], but for @racket[provide] sub-form
expansion.}
@;------------------------------------------------------------------------
@section[#:tag "begin"]{Sequencing: @racket[begin], @racket[begin0], and @racket[begin-for-syntax]}
@guideintro["begin"]{@racket[begin] and @racket[begin0]}
@defform*[[(begin form ...)
(begin expr ...+)]]{
The first form applies when @racket[begin] appears at the top level,
at module level, or in an internal-definition position (before any
expression in the internal-definition sequence). In that case, the
@racket[begin] form is equivalent to splicing the @racket[form]s into
the enclosing context.
The second form applies for @racket[begin] in an expression position.
In that case, the @racket[expr]s are evaluated in order, and the
results are ignored for all but the last @racket[expr]. The last
@racket[expr] is in tail position with respect to the @racket[begin]
form.
@examples[
(begin
(define x 10)
x)
(+ 1 (begin
(printf "hi\n")
2))
(let-values ([(x y) (begin
(values 1 2 3)
(values 1 2))])
(list x y))
]}
@defform[(begin0 expr ...+)]{
Evaluates the first @racket[expr], then evaluates the other @racket[exprs]s
in order, ignoring their results. The results of the first @racket[expr]
are the results of the @racket[begin0] form; the first @racket[expr] is
in tail position only if no other @racket[expr]s are present.
@mz-examples[
(begin0
(values 1 2)
(printf "hi\n"))
]}
@defform[(begin-for-syntax form ...)]{
Allowed only in a @tech{top-level context} or @tech{module context},
shifts the @tech{phase level} of each @racket[form] by one:
@itemize[
@item{expressions reference bindings at a @tech{phase level} one
greater than in the context of the @racket[begin-for-syntax]
form;}
@item{@racket[define], @racket[define-values],
@racket[define-syntax], and @racket[define-syntaxes] forms bind
at a @tech{phase level} one greater than in the context of the
@racket[begin-for-syntax] form;}
@item{in @racket[require] and @racket[provide] forms, the default
@tech{phase level} is greater, which is roughly like wrapping
the content of the @racket[require] form with
@racket[for-syntax];}
@item{expression form @racket[_expr]: converted to
@racket[(define-values-for-syntax () (begin _expr (values)))], which
effectively evaluates the expression at expansion time and, in
the case of a @tech{module context}, preserves the expression
for future @tech{visit}s of the module.}
]
See also @racket[module] for information about expansion order and
partial expansion for @racket[begin-for-syntax] within a module
context. Evaluation of an @racket[expr] within
@racket[begin-for-syntax] is @racket[parameterize]d to set
@racket[current-namespace] as in @racket[let-syntax].
}
@;------------------------------------------------------------------------
@section[#:tag "when+unless"]{Guarded Evaluation: @racket[when] and @racket[unless]}
@guideintro["when+unless"]{@racket[when] and @racket[unless]}
@defform[(when test-expr body ...+)]{
Evaluates @racket[test-expr]. If the result is @racket[#f], then
the result of the @racket[when] expression is
@|void-const|. Otherwise, the @racket[body]s are evaluated, and the
last @racket[body] is in tail position with respect to the
@racket[when] form.
@mz-examples[
(when (positive? -5)
(display "hi"))
(when (positive? 5)
(display "hi")
(display " there"))
]}
@defform[(unless test-expr body ...+)]{
Equivalent to @racket[(when (not test-expr) body ...+)].
@mz-examples[
(unless (positive? 5)
(display "hi"))
(unless (positive? -5)
(display "hi")
(display " there"))
]}
@;------------------------------------------------------------------------
@section[#:tag "set!"]{Assignment: @racket[set!] and @racket[set!-values]}
@guideintro["set!"]{@racket[set!]}
@defform[(set! id expr)]{
If @racket[id] has a @tech{transformer} binding to an @tech{assignment
transformer}, as produced by @racket[make-set!-transformer] or as an
instance of a structure type with the @racket[prop:set!-transformer]
property, then this form is expanded by calling the assignment
transformer with the full expressions. If @racket[id] has a
@tech{transformer} binding to a @tech{rename transformer} as produced
by @racket[make-rename-transformer] or as an instance of a structure
type with the @racket[prop:rename-transformer] property, then this
form is expanded by replacing @racket[id] with the target identifier
(e.g., the one provided to @racket[make-rename-transformer]). If a
transformer binding has both @racket[prop:set!-transformer] and
@racket[prop:rename-transformer] properties, the latter takes
precedence.
Otherwise, evaluates @racket[expr] and installs the result into the
location for @racket[id], which must be bound as a local variable or
defined as a @tech{top-level variable} or @tech{module-level
variable}. If @racket[id] refers to an imported binding, a syntax
error is reported. If @racket[id] refers to a @tech{top-level
variable} that has not been defined, the @exnraise[exn:fail:contract].
See also @racket[compile-allow-set!-undefined].
@examples[
(define x 12)
(set! x (add1 x))
x
(let ([x 5])
(set! x (add1 x))
x)
(eval:error (set! i-am-not-defined 10))
]}
@defform[(set!-values (id ...) expr)]{
Assuming that all @racket[id]s refer to variables, this form evaluates
@racket[expr], which must produce as many values as supplied
@racket[id]s. The location of each @racket[id] is filled with the
corresponding value from @racket[expr] in the same way as for
@racket[set!].
@mz-examples[
(let ([a 1]
[b 2])
(set!-values (a b) (values b a))
(list a b))
]
More generally, the @racket[set!-values] form is expanded to
@racketblock[
(let-values ([(_tmp-id ...) expr])
(set! id _tmp-id) ...)
]
which triggers further expansion if any @racket[id] has a transformer
binding to an @tech{assignment transformer}.}
@;------------------------------------------------------------------------
@include-section["for.scrbl"]
@;------------------------------------------------------------------------
@section[#:tag "wcm"]{Continuation Marks: @racket[with-continuation-mark]}
@defform[(with-continuation-mark key-expr val-expr result-expr)]{
The @racket[key-expr], @racket[val-expr], and @racket[result-expr]
expressions are evaluated in order. After @racket[key-expr] is
evaluated to obtain a key and @racket[val-expr] is evaluated to
obtain a value, the key is mapped to the value as a @tech{continuation mark} in the current
continuation's initial @tech{continuation frame}. If the frame already has a mark for the
key, the mark is replaced. Finally, the @racket[result-expr] is evaluated;
the continuation for evaluating @racket[result-expr] is the
continuation of the @racket[with-continuation-mark] expression (so the
result of the @racket[result-expr] is the result of the
@racket[with-continuation-mark] expression, and @racket[result-expr]
is in tail position for the @racket[with-continuation-mark]
expression).
@moreref["contmarks"]{continuation marks}}
@;------------------------------------------------------------------------
@section[#:tag "quasiquote"]{Quasiquoting: @racket[quasiquote], @racket[unquote], and @racket[unquote-splicing]}
@guideintro["qq"]{@racket[quasiquote]}
@defform[(quasiquote datum)]{
The same as @racket[(quote datum)] if @racket[datum] does not include
@racket[(#,unquote-id _expr)] or @racket[(#,unquote-splicing-id _expr)]. An
@racket[(#,unquote-id _expr)] form escapes from the quote, however,
and the result of the @racket[_expr] takes the place of the
@racket[(#,unquote-id _expr)] form in the @racket[quasiquote] result. An
@racket[(#,unquote-splicing-id _expr)] similarly escapes, but the
@racket[_expr] must produce a list, and its elements are spliced as
multiple values place of the @racket[(#,unquote-splicing-id _expr)], which
must appear as the @racket[car] or a quoted pair, as an element of a
quoted vector, or as an element of a quoted @tech{prefab} structure;
in the case of a pair, if the @racket[cdr] of the relevant quoted pair
is empty, then @racket[_expr] need not produce a list, and its result
is used directly in place of the quoted pair (in the same way that
@racket[append] accepts a non-list final argument). In a quoted
@tech{hash table}, an @racket[(#,unquote-id _expr)] or
@racket[(#,unquote-splicing-id _expr)] expression escapes only in the
second element of an entry pair (i.e., the value), while entry keys
are always implicitly quoted. If @racket[unquote] or
@racket[unquote-splicing] appears within @racket[quasiquote] in any
other way than as @racket[(#,unquote-id _expr)] or
@racket[(#,unquote-splicing-id _expr)], a syntax error is reported.
@mz-examples[
(eval:alts (#,(racket quasiquote) (0 1 2)) `(0 1 2))
(eval:alts (#,(racket quasiquote) (0 (#,unquote-id (+ 1 2)) 4)) `(0 ,(+ 1 2) 4))
(eval:alts (#,(racket quasiquote) (0 (#,unquote-splicing-id (list 1 2)) 4)) `(0 ,@(list 1 2) 4))
(eval:error (eval:alts (#,(racket quasiquote) (0 (#,unquote-splicing-id 1) 4)) `(0 ,@1 4)))
(eval:alts (#,(racket quasiquote) (0 (#,unquote-splicing-id 1))) `(0 ,@1))
]
A @racket[quasiquote], @racket[unquote], or @racket[unquote-splicing]
form is typically abbreviated with @litchar{`}, @litchar{,}, or
@litchar[",@"], respectively. See also @secref["parse-quote"].
@mz-examples[
`(0 1 2)
`(1 ,(+ 1 2) 4)
`#s(stuff 1 ,(+ 1 2) 4)
(eval:alts #,(racketfont (racketvalfont "`#hash((\"a\" . ") "," (racket (+ 1 2)) (racketvalfont "))")) #hash(("a" . 3)))
`#hash((,(+ 1 2) . "a"))
`(1 ,@(list 1 2) 4)
`#(1 ,@(list 1 2) 4)
]
A @racket[quasiquote] form within the original @racket[datum]
increments the level of quasiquotation: within the @racket[quasiquote]
form, each @racket[unquote] or @racket[unquote-splicing] is preserved,
but a further nested @racket[unquote] or @racket[unquote-splicing]
escapes. Multiple nestings of @racket[quasiquote] require multiple
nestings of @racket[unquote] or @racket[unquote-splicing] to escape.
@mz-examples[
`(1 `,(+ 1 ,(+ 2 3)) 4)
`(1 ```,,@,,@(list (+ 1 2)) 4)
]
The @racket[quasiquote] form allocates only as many fresh cons cells,
vectors, and boxes as are needed without analyzing @racket[unquote]
and @racket[unquote-splicing] expressions. For example, in
@racketblock[
`(,1 2 3)
]
a single tail @racket['(2 3)] is used for every evaluation of the
@racket[quasiquote] expression.
}
@defidform[unquote]{
See @racket[quasiquote], where @racket[unquote] is recognized as an
escape. An @racket[unquote] form as an expression is a syntax error.}
@defidform[unquote-splicing]{
See @racket[quasiquote], where @racket[unquote-splicing] is recognized as an
escape. An @racket[unquote-splicing] form as an expression is a syntax error.}
@;------------------------------------------------------------------------
@section{Syntax Quoting: @racket[quote-syntax]}
@defform*[[(quote-syntax datum)
(quote-syntax datum #:local)]]{
Similar to @racket[quote], but produces a @tech{syntax object}
that preserves the @tech{lexical information} and source-location
information attached to @racket[datum] at expansion time.
When @racket[#:local] is specified, then all @tech{scopes} in the
syntax object's @tech{lexical information} are preserved. When
@racket[#:local] is omitted, then the @tech{scope sets} within
@racket[datum] are pruned to omit the @tech{scope} for any binding
form that appears between the @racket[quote-syntax] form and the
enclosing top-level context, module body, or @tech{phase level}
crossing, whichever is closer.
Unlike @racket[syntax] (@litchar{#'}), @racket[quote-syntax] does
not substitute pattern variables bound by @racket[with-syntax],
@racket[syntax-parse], or @racket[syntax-case].
@mz-examples[
(syntax? (quote-syntax x))
(quote-syntax (1 2 3))
(with-syntax ([a #'5])
(quote-syntax (a b c)))
(free-identifier=? (let ([x 1]) (quote-syntax x))
(quote-syntax x))
(free-identifier=? (let ([x 1]) (quote-syntax x #:local))
(quote-syntax x))
]
@history[#:changed "6.3" @elem{Added @tech{scope} pruning and support
for @racket[#:local].}]}
@;------------------------------------------------------------------------
@section[#:tag "#%top-interaction"]{Interaction Wrapper: @racket[#%top-interaction]}
@defform[(#%top-interaction . form)]{
Expands to simply @racket[form]. The @racket[#%top-interaction] form
is similar to @racket[#%app] and @racket[#%module-begin], in that it
provides a hook to control interactive evaluation through
@racket[load] (more precisely, the default @tech{load handler}) or
@racket[read-eval-print-loop].}
@;------------------------------------------------------------------------
@include-section["block.scrbl"]
@;------------------------------------------------------------------------
@section[#:tag "stratified-body"]{Internal-Definition Limiting: @racket[#%stratified-body]}
@defform[(#%stratified-body defn-or-expr ...)]{
Like @racket[(let () defn-or-expr ...)] for an
@tech{internal-definition context} sequence, except that an expression
is not allowed to precede a definition, and all definitions are
treated as referring to all other definitions (i.e., @tech{locations}
for variables are all allocated first, like @racket[letrec] and
unlike @racket[letrec-syntaxes+values]).
The @racket[#%stratified-body] form is useful for implementing
syntactic forms or languages that supply a more limited kind of
@tech{internal-definition context}.}
@close-eval[require-eval]
@close-eval[meta-in-eval]
@;------------------------------------------------------------------------
@section[#:tag "performance-hint"]{Performance Hints: @racket[begin-encourage-inline]}
@note-lib-only[racket/performance-hint]
@defform[(begin-encourage-inline form ...)]{
Attaches a @racket['compiler-hint:cross-module-inline]
@tech{syntax property} to each @racket[form], which is useful when a
@racket[form] is a function definition. See @racket[define-values].
The @racket[begin-encourage-inline] form is also provided by the
@racketmodname[(submod racket/performance-hint begin-encourage-inline)] module,
which has fewer dependencies than @racketmodname[racket/performance-hint].
@history[#:changed "6.2" @elem{Added the @racketmodname[(submod racket/performance-hint begin-encourage-inline)] submodule.}]
}
@defform*/subs[[(define-inline id expr)
(define-inline (head args) body ...+)]
([head id
(head args)]
[args (code:line arg ...)
(code:line arg ... @#,racketparenfont{.} rest-id)]
[arg arg-id
[arg-id default-expr]
(code:line keyword arg-id)
(code:line keyword [arg-id default-expr])])]{
Like @racket[define], but ensures that the definition will be inlined at its
call sites. Recursive calls are not inlined, to avoid infinite inlining.
Higher-order uses are supported, but also not inlined.
@racket[define-inline] may interfere with the Racket compiler's own inlining
heuristics, and should only be used when other inlining attempts (such as
@racket[begin-encourage-inline]) fail.
}
@;------------------------------------------------------------------------
@section[#:tag "lazy-require"]{Importing Modules Lazily: @racket[lazy-require]}
@note-lib-only[racket/lazy-require]
@(define lazy-require-eval (make-base-eval))
@(lazy-require-eval '(require racket/lazy-require))
@defform[(lazy-require [module-path (fun-import ...)] ...)
#:grammar
([fun-import fun-id
(orig-fun-id fun-id)])]{
Defines each @racket[fun-id] as a function that, when called,
dynamically requires the export named @racket[orig-fun-id] from the
module specified by @racket[module-path] and calls it with the same
arguments. If @racket[orig-fun-id] is not given, it defaults to
@racket[fun-id].
If the enclosing relative phase level is not 0, then
@racket[module-path] is also placed in a submodule (with a use of
@racket[define-runtime-module-path-index] at phase level 0 within the
submodule). Introduced submodules have the names
@racket[lazy-require-]@racket[_n]@racketidfont{-}@racket[_m], where
@racket[_n] is a phase-level number and @racket[_m] is a number.
When the use of a lazily-required function triggers module loading, it
also triggers a use of @racket[register-external-module] to declare an
indirect compilation dependency (in case the function is used in the
process of compiling a module).
@examples[#:eval lazy-require-eval
(lazy-require
[racket/list (partition)])
(partition even? '(1 2 3 4 5))
(module hello racket/base
(provide hello)
(printf "starting hello server\n")
(define (hello) (printf "hello!\n")))
(lazy-require
['hello ([hello greet])])
(greet)
]
}
@(close-eval lazy-require-eval)