racket/collects/math/private/matrix/matrix-constructors.rkt
Neil Toronto 155ec7dc41 Reviewing and refactoring `math/matrix', part 1
* Finally added `array-axis-expand' as a dual for `array-axis-reduce'
  in order to implement `vandermonde-matrix' elegantly

* Better, shorter matrix multiply; reworked all matrix arithmetic

* Split "matrix-operations.rkt" into at least 5 parts:
 * "matrix-operations.rkt"
 * "matrix-basic.rkt"
 * "matrix-comprehension.rkt"
 * "matrix-sequences.rkt"
 * "matrix-column.rkt"

Added "matrix-constructors.rkt"

Added `matrix', `row-matrix', and `col-matrix' macros

A lot of other little changes

Currently, `in-row' and `in-column' are broken. I intend to implement
them in a way that makes them work in untyped and Typed Racket.
2012-12-20 17:32:16 -07:00

377 lines
16 KiB
Racket

#lang racket/base
(provide
;; Constructors
identity-matrix
make-matrix
build-matrix
diagonal-matrix/zero
diagonal-matrix
block-diagonal-matrix/zero
block-diagonal-matrix
vandermonde-matrix
;; Basic conversion
list->matrix
matrix->list
vector->matrix
matrix->vector
->row-matrix
->col-matrix
;; Nested conversion
list*->matrix
matrix->list*
vector*->matrix
matrix->vector*
;; Syntax
matrix
row-matrix
col-matrix)
(module typed-defs typed/racket/base
(require racket/fixnum
racket/list
racket/vector
math/array
"../array/utils.rkt"
"matrix-types.rkt"
"utils.rkt"
"../unsafe.rkt")
(provide (all-defined-out))
;; =================================================================================================
;; Constructors
(: identity-matrix (Integer -> (Matrix (U 0 1))))
(define (identity-matrix m) (diagonal-array 2 m 1 0))
(: make-matrix (All (A) (Integer Integer A -> (Matrix A))))
(define (make-matrix m n x)
(make-array (vector m n) x))
(: build-matrix (All (A) (Integer Integer (Index Index -> A) -> (Matrix A))))
(define (build-matrix m n proc)
(cond [(or (not (index? m)) (= m 0))
(raise-argument-error 'build-matrix "Positive-Index" 0 m n proc)]
[(or (not (index? n)) (= n 0))
(raise-argument-error 'build-matrix "Positive-Index" 1 m n proc)]
[else
(unsafe-build-array
((inst vector Index) m n)
(λ: ([js : Indexes])
(proc (unsafe-vector-ref js 0)
(unsafe-vector-ref js 1))))]))
(: diagonal-matrix/zero (All (A) (Array A) A -> (Array A)))
(define (diagonal-matrix/zero a zero)
(define ds (array-shape a))
(cond [(= 1 (vector-length ds))
(define m (unsafe-vector-ref ds 0))
(define proc (unsafe-array-proc a))
(unsafe-build-array
((inst vector Index) m m)
(λ: ([js : Indexes])
(define i (unsafe-vector-ref js 0))
(cond [(= i (unsafe-vector-ref js 1)) (proc ((inst vector Index) i))]
[else zero])))]
[else
(raise-argument-error 'diagonal-matrix "Array with one dimension" a)]))
(: diagonal-matrix (case-> ((Array Real) -> (Array Real))
((Array Number) -> (Array Number))))
(define (diagonal-matrix a)
(diagonal-matrix/zero a 0))
(: block-diagonal-matrix/zero* (All (A) (Vectorof (Array A)) A -> (Array A)))
(define (block-diagonal-matrix/zero* as zero)
(define num (vector-length as))
(define-values (ms ns)
(let-values ([(ms ns) (for/fold: ([ms : (Listof Index) empty]
[ns : (Listof Index) empty]
) ([a (in-vector as)])
(define-values (m n) (matrix-shape a))
(values (cons m ms) (cons n ns)))])
(values (reverse ms) (reverse ns))))
(define res-m (assert (apply + ms) index?))
(define res-n (assert (apply + ns) index?))
(define vs ((inst make-vector Index) res-m 0))
(define hs ((inst make-vector Index) res-n 0))
(define is ((inst make-vector Index) res-m 0))
(define js ((inst make-vector Index) res-n 0))
(define-values (_res-i _res-j)
(for/fold: ([res-i : Nonnegative-Fixnum 0]
[res-j : Nonnegative-Fixnum 0]
) ([m (in-list ms)]
[n (in-list ns)]
[k : Nonnegative-Fixnum (in-range num)])
(let ([k (assert k index?)])
(for: ([i : Nonnegative-Fixnum (in-range m)])
(vector-set! vs (unsafe-fx+ res-i i) k)
(vector-set! is (unsafe-fx+ res-i i) (assert i index?)))
(for: ([j : Nonnegative-Fixnum (in-range n)])
(vector-set! hs (unsafe-fx+ res-j j) k)
(vector-set! js (unsafe-fx+ res-j j) (assert j index?))))
(values (unsafe-fx+ res-i m) (unsafe-fx+ res-j n))))
(define procs (vector-map (λ: ([a : (Array A)]) (unsafe-array-proc a)) as))
(unsafe-build-array
((inst vector Index) res-m res-n)
(λ: ([ij : Indexes])
(define i (unsafe-vector-ref ij 0))
(define j (unsafe-vector-ref ij 1))
(define v (unsafe-vector-ref vs i))
(cond [(fx= v (vector-ref hs j))
(define proc (unsafe-vector-ref procs v))
(define iv (unsafe-vector-ref is i))
(define jv (unsafe-vector-ref js j))
(unsafe-vector-set! ij 0 iv)
(unsafe-vector-set! ij 1 jv)
(define res (proc ij))
(unsafe-vector-set! ij 0 i)
(unsafe-vector-set! ij 1 j)
res]
[else
zero]))))
(: block-diagonal-matrix/zero (All (A) (Listof (Array A)) A -> (Array A)))
(define (block-diagonal-matrix/zero as zero)
(let ([as (list->vector as)])
(define num (vector-length as))
(cond [(= num 0)
(raise-argument-error 'block-diagonal-matrix/zero "nonempty List" as)]
[(= num 1)
(unsafe-vector-ref as 0)]
[else
(block-diagonal-matrix/zero* as zero)])))
(: block-diagonal-matrix (case-> ((Listof (Array Real)) -> (Array Real))
((Listof (Array Number)) -> (Array Number))))
(define (block-diagonal-matrix as)
(block-diagonal-matrix/zero as 0))
(: expt-hack (case-> (Real Integer -> Real)
(Number Integer -> Number)))
;; Stop using this when TR correctly derives expt : Real Integer -> Real
(define (expt-hack x n)
(cond [(real? x) (assert (expt x n) real?)]
[else (expt x n)]))
(: vandermonde-matrix (case-> ((Listof Real) Integer -> (Array Real))
((Listof Number) Integer -> (Array Number))))
(define (vandermonde-matrix xs n)
(cond [(empty? xs)
(raise-argument-error 'vandermonde-matrix "nonempty List" 0 xs n)]
[(or (not (index? n)) (zero? n))
(raise-argument-error 'vandermonde-matrix "Positive-Index" 1 xs n)]
[else
(array-axis-expand (list->array xs) 1 n expt-hack)]))
;; =================================================================================================
;; Flat conversion
(: list->matrix (All (A) (Integer Integer (Listof A) -> (Array A))))
(define (list->matrix m n xs)
(cond [(or (not (index? m)) (= m 0))
(raise-argument-error 'list->matrix "Positive-Index" 0 m n xs)]
[(or (not (index? n)) (= n 0))
(raise-argument-error 'list->matrix "Positive-Index" 1 m n xs)]
[else (list->array (vector m n) xs)]))
(: matrix->list (All (A) ((Array A) -> (Listof A))))
(define (matrix->list a)
(array->list (ensure-matrix 'matrix->list a)))
(: vector->matrix (All (A) (Integer Integer (Vectorof A) -> (Mutable-Array A))))
(define (vector->matrix m n v)
(cond [(or (not (index? m)) (= m 0))
(raise-argument-error 'vector->matrix "Positive-Index" 0 m n v)]
[(or (not (index? n)) (= n 0))
(raise-argument-error 'vector->matrix "Positive-Index" 1 m n v)]
[else (vector->array (vector m n) v)]))
(: matrix->vector (All (A) ((Array A) -> (Vectorof A))))
(define (matrix->vector a)
(array->vector (ensure-matrix 'matrix->vector a)))
(: list->row-matrix (All (A) ((Listof A) -> (Array A))))
(define (list->row-matrix xs)
(cond [(empty? xs) (raise-argument-error 'list->row-matrix "nonempty List" xs)]
[else (list->array ((inst vector Index) 1 (length xs)) xs)]))
(: list->col-matrix (All (A) ((Listof A) -> (Array A))))
(define (list->col-matrix xs)
(cond [(empty? xs) (raise-argument-error 'list->col-matrix "nonempty List" xs)]
[else (list->array ((inst vector Index) (length xs) 1) xs)]))
(: vector->row-matrix (All (A) ((Vectorof A) -> (Mutable-Array A))))
(define (vector->row-matrix xs)
(define n (vector-length xs))
(cond [(zero? n) (raise-argument-error 'vector->row-matrix "nonempty Vector" xs)]
[else (vector->array ((inst vector Index) 1 n) xs)]))
(: vector->col-matrix (All (A) ((Vectorof A) -> (Mutable-Array A))))
(define (vector->col-matrix xs)
(define n (vector-length xs))
(cond [(zero? n) (raise-argument-error 'vector->col-matrix "nonempty Vector" xs)]
[else (vector->array ((inst vector Index) n 1) xs)]))
(: find-nontrivial-axis ((Vectorof Index) -> (Values Index Index)))
(define (find-nontrivial-axis ds)
(define dims (vector-length ds))
(let: loop : (Values Index Index) ([k : Nonnegative-Fixnum 0])
(cond [(k . < . dims) (define dk (unsafe-vector-ref ds k))
(if (dk . > . 1) (values k dk) (loop (fx+ k 1)))]
[else (values 0 0)])))
(: array->row-matrix (All (A) ((Array A) -> (Array A))))
(define (array->row-matrix arr)
(define (fail)
(raise-argument-error 'array->row-matrix "nonempty Array with one axis of length >= 1" arr))
(define ds (array-shape arr))
(define dims (vector-length ds))
(define num-ones (vector-count (λ: ([d : Index]) (= d 1)) ds))
(cond [(zero? (array-size arr)) (fail)]
[(row-matrix? arr) arr]
[(= num-ones dims)
(define: js : (Vectorof Index) (make-vector dims 0))
(define proc (unsafe-array-proc arr))
(unsafe-build-array ((inst vector Index) 1 1)
(λ: ([ij : Indexes]) (proc js)))]
[(= num-ones (- dims 1))
(define-values (k n) (find-nontrivial-axis ds))
(define js (make-thread-local-indexes dims))
(define proc (unsafe-array-proc arr))
(unsafe-build-array ((inst vector Index) 1 n)
(λ: ([ij : Indexes])
(let ([js (js)])
(unsafe-vector-set! js k (unsafe-vector-ref ij 1))
(proc js))))]
[else (fail)]))
(: array->col-matrix (All (A) ((Array A) -> (Array A))))
(define (array->col-matrix arr)
(define (fail)
(raise-argument-error 'array->col-matrix "nonempty Array with one axis of length >= 1" arr))
(define ds (array-shape arr))
(define dims (vector-length ds))
(define num-ones (vector-count (λ: ([d : Index]) (= d 1)) ds))
(cond [(zero? (array-size arr)) (fail)]
[(col-matrix? arr) arr]
[(= num-ones dims)
(define: js : (Vectorof Index) (make-vector dims 0))
(define proc (unsafe-array-proc arr))
(unsafe-build-array ((inst vector Index) 1 1)
(λ: ([ij : Indexes]) (proc js)))]
[(= num-ones (- dims 1))
(define-values (k m) (find-nontrivial-axis ds))
(define js (make-thread-local-indexes dims))
(define proc (unsafe-array-proc arr))
(unsafe-build-array ((inst vector Index) m 1)
(λ: ([ij : Indexes])
(let ([js (js)])
(unsafe-vector-set! js k (unsafe-vector-ref ij 0))
(proc js))))]
[else (fail)]))
(: ->row-matrix (All (A) ((U (Listof A) (Vectorof A) (Array A)) -> (Array A))))
(define (->row-matrix xs)
(cond [(list? xs) (list->row-matrix xs)]
[(array? xs) (array->row-matrix xs)]
[else (vector->row-matrix xs)]))
(: ->col-matrix (All (A) ((U (Listof A) (Vectorof A) (Array A)) -> (Array A))))
(define (->col-matrix xs)
(cond [(list? xs) (list->col-matrix xs)]
[(array? xs) (array->col-matrix xs)]
[else (vector->col-matrix xs)]))
;; =================================================================================================
;; Nested conversion
(: list*-shape (All (A) (Listof (Listof A)) (-> Nothing) -> (Values Positive-Index Positive-Index)))
(define (list*-shape xss fail)
(define m (length xss))
(cond [(m . > . 0)
(define n (length (first xss)))
(cond [(and (n . > . 0) (andmap (λ: ([xs : (Listof A)]) (= n (length xs))) (rest xss)))
(values m n)]
[else (fail)])]
[else (fail)]))
(: vector*-shape (All (A) (Vectorof (Vectorof A)) (-> Nothing)
-> (Values Positive-Index Positive-Index)))
(define (vector*-shape xss fail)
(define m (vector-length xss))
(cond [(m . > . 0)
(define ns ((inst vector-map Index (Vectorof A)) vector-length xss))
(define n (vector-length (unsafe-vector-ref xss 0)))
(cond [(and (n . > . 0)
(let: loop : Boolean ([i : Nonnegative-Fixnum 1])
(cond [(i . fx< . m)
(if (= n (vector-length (unsafe-vector-ref xss i)))
(loop (fx+ i 1))
#f)]
[else #t])))
(values m n)]
[else (fail)])]
[else (fail)]))
(: list*->matrix (All (A) (Listof (Listof A)) -> (Matrix A)))
(define (list*->matrix xss)
(define (fail)
(raise-argument-error 'list*->matrix
"nested lists with rectangular shape and at least one matrix element"
xss))
(define-values (m n) (list*-shape xss fail))
(list->array ((inst vector Index) m n) (apply append xss)))
(: matrix->list* (All (A) (Matrix A) -> (Listof (Listof A))))
(define (matrix->list* a)
(cond [(matrix? a) (array->list (array->list-array a 1))]
[else (raise-argument-error 'matrix->list* "matrix?" a)]))
(: vector*->matrix (All (A) (Vectorof (Vectorof A)) -> (Mutable-Array A)))
(define (vector*->matrix xss)
(define (fail)
(raise-argument-error 'vector*->matrix
"nested vectors with rectangular shape and at least one matrix element"
xss))
(define-values (m n) (vector*-shape xss fail))
(vector->matrix m n (apply vector-append (vector->list xss))))
(: matrix->vector* : (All (A) (Matrix A) -> (Vectorof (Vectorof A))))
(define (matrix->vector* a)
(cond [(matrix? a) (array->vector ((inst array-axis-reduce A (Vectorof A)) a 1 build-vector))]
[else (raise-argument-error 'matrix->vector* "matrix?" a)]))
) ; module
(require (for-syntax racket/base
syntax/parse)
(only-in typed/racket/base :)
math/array
(submod "." typed-defs))
(define-syntax (matrix stx)
(syntax-parse stx #:literals (:)
[(_ [[x0 xs0 ...] [x xs ...] ...])
(syntax/loc stx (array #[#[x0 xs0 ...] #[x xs ...] ...]))]
[(_ [[x0 xs0 ...] [x xs ...] ...] : T)
(syntax/loc stx (array #[#[x0 xs0 ...] #[x xs ...] ...] : T))]
[(_ [xs ... (~and [] r) ys ...] (~optional (~seq : T)))
(raise-syntax-error 'matrix "given empty row" stx #'r)]
[(_ (~and [] c) (~optional (~seq : T)))
(raise-syntax-error 'matrix "given empty matrix" stx #'c)]))
(define-syntax (row-matrix stx)
(syntax-parse stx #:literals (:)
[(_ [x xs ...]) (syntax/loc stx (array #[#[x xs ...]]))]
[(_ [x xs ...] : T) (syntax/loc stx (array #[#[x xs ...]] : T))]
[(_ (~and [] r) (~optional (~seq : T)))
(raise-syntax-error 'row-matrix "given empty row" stx #'r)]))
(define-syntax (col-matrix stx)
(syntax-parse stx #:literals (:)
[(_ [x xs ...]) (syntax/loc stx (array #[#[x] #[xs] ...]))]
[(_ [x xs ...] : T) (syntax/loc stx (array #[#[x] #[xs] ...] : T))]
[(_ (~and [] c) (~optional (~seq : T)))
(raise-syntax-error 'row-matrix "given empty column" stx #'c)]))