![]() Removed counter field from prelex, using the operand field instead to provide the index into the fxmap. This follows other uses within the compiler where we use the operand field as a little place for state that is used within a single pass. This has a few advantages. First, it keeps the record a little smaller. Second, it means that the prelex numbering can start from 0 for each compilation unit, which should help keep the numbers for the fxmap a bit smaller in longer running sessions with multiple calls to the compiler. Finally, it avoids adding to the burden of the tc-mutex, since within the pass it is safe for us to set the prelexes, since only the instance of the pass holding this block of code has a handle on it. As part of this change prelex-counter is now defined in cptypes and the operand is cleared after the variables go out of scope. base-lang.ss Fixed the highest-set-bit function in fxmap so that it will work in the 32-bit versions of Chez Scheme. The fxsrl by 32 raises an exception, and was leading to tests to fail in 32-bit mode. fxmap.ss Restructured predicate-implies? so that it uses committed choice instead of uncommitted choice in comparing x and y. Basically, this means, instead of doing: (or (and (predicate-1? x) (predicate-1? y) ---) (and (predicate-2? x) (predicate-2? y) ---) ...) we now do: (cond [(predicate-1? x) (and (predicate-1? y) ---)] [(predicate-2? x) (and (predicate-2? y) ---)] ...) This avoids running predicates on x that we know will fail because an earlier predicate matches, generally getting out of the predicate faster. This did require a little restructuring, because in some cases x was dominant and in other cases y was dominant. This is now restructured with y dominate, after the eq? and x 'bottom check. Replaced let-values calls with cata-morphism syntax, including removal of maps that built up a list of values that then needed to be separated out with (map car ...) (map cadr ...) etc. calls. This avoid building up structures we don't need, since the nanopass framework will generate a mutltivalued let for these situations. The if clause in cptypes/raw now uses types1 (the result of the recursive call on e1) in place of the incoming types clause when processing the e2 or e3 expressions in the cases where e1 is known statically to produce either a false or non-false value. Fixed a bug with directly-applied variable arity lambda. The original code marked all directly-applied variable arity lambda's as producing bottom, because it was chacking for the interface to be equal to the number of arguments. However, variable arity functions are represented with a negative number. For instance, the original code would transform the expression: (begin ((lambda (a . b) (set! t (cons* b a t))) 'a 'b 'c) t) to ((lambda (a . b) (set! t (cons* b a t))) 'a 'b 'c) anticipating that the call would raise an error, however, it is a perfectly valid (if some what unusual) expression. I tried to come up with a test for this, however, without building something fairly complicated, it is difficult to get past cp0 without cp0 turning it into something like: (let ([b (list 'b 'c)]) (set! t (cons* b 'a t)) t) Fixed make-time, time-second-set!, and time-second to indicate that second can be an exact-integer, since it is not really restricted to the fixnum range (and if fact we even test this fact in the mats on 32-bit machines). primdata.ss Changed check of prelex-was-assigned (which is not reliably on the input to any give pass) with prelex-assigned, which should always have an accurate, if conservative, value in it. Added enable-type-recovery parameter to allow the type recover to be turned on and off, and added cptype to the cp0 not run path that runs cpletrec, so that cptypes can be run independent of cp0. This is helpful for testing and allows us to benefit from type recovery, even in cases where we do not want cp0 to perform any inlining. compile.ss, front.ss, primdata.ss Stylistic changes, mostly for consistency with other parts of the compiler, though I'm not married to these changes if you'd really prefer to keep things the way the are. 1. clauses of define-record type now use parenthesis instead of square brackets. 2. indented by 2 spaces where things were only indented by one space 3. define, let, define-pass, nanopass pass productions clauses, now use parenthesis for outer markers instead of square brackets. fxmap.ss, original commit: 5c6c5a534ff708d4bff23f6fd48fe6726a5c4e05 |
||
---|---|---|
.travis | ||
c | ||
csug | ||
examples | ||
makefiles | ||
mats | ||
nanopass@1f7e80bcff | ||
release_notes | ||
s | ||
stex@3bd2b86cc5 | ||
unicode | ||
wininstall | ||
zlib@cacf7f1d4e | ||
.gitattributes | ||
.gitignore | ||
.gitmodules | ||
.travis.yml | ||
bintar | ||
BUILDING | ||
CHARTER.md | ||
checkin | ||
configure | ||
CONTRIBUTING.md | ||
LICENSE | ||
LOG | ||
newrelease | ||
NOTICE | ||
README.md | ||
scheme.1.in | ||
workarea |
Chez Scheme is both a programming language and an implementation of that language, with supporting tools and documentation.
As a superset of the language described in the Revised6 Report on the Algorithmic Language Scheme (R6RS), Chez Scheme supports all standard features of Scheme, including first-class procedures, proper treatment of tail calls, continuations, user-defined records, libraries, exceptions, and hygienic macro expansion.
Chez Scheme also includes extensive support for interfacing with C and other languages, support for multiple threads possibly running on multiple cores, non-blocking I/O, and many other features.
The Chez Scheme implementation consists of a compiler, run-time system, and programming environment. Although an interpreter is available, all code is compiled by default. Source code is compiled on-the-fly when loaded from a source file or entered via the shell. A source file can also be precompiled into a stored binary form and automatically recompiled when its dependencies change. Whether compiling on the fly or precompiling, the compiler produces optimized machine code, with some optimization across separately compiled library boundaries. The compiler can also be directed to perform whole-program compilation, which does full cross-library optimization and also reduces a program and the libraries upon which it depends to a single binary.
The run-time system interfaces with the operating system and supports, among other things, binary and textual (Unicode) I/O, automatic storage management (dynamic memory allocation and generational garbage collection), library management, and exception handling. By default, the compiler is included in the run-time system, allowing programs to be generated and compiled at run time, and storage for dynamically compiled code, just like any other dynamically allocated storage, is automatically reclaimed by the garbage collector.
The programming environment includes a source-level debugger, a mechanism for producing HTML displays of profile counts and program "hot spots" when profiling is enabled during compilation, tools for inspecting memory usage, and an interactive shell interface (the expression editor, or "expeditor" for short) that supports multi-line expression editing.
The R6RS core of the Chez Scheme language is described in The Scheme Programming Language, which also includes an introduction to Scheme and a set of example programs. Chez Scheme's additional language, run-time system, and programming environment features are described in the Chez Scheme User's Guide. The latter includes a shared index and a shared summary of forms, with links where appropriate to the former, so it is often the best starting point.
Get started with Chez Scheme by Building Chez Scheme.
For more information see the Chez Scheme Project Page.