racket/c/gc.c
Matthew Flatt 18cdcd977e add ephemerons
original commit: 8a09c2c3f032e6e30b1ef393d2334963aa70507e
2017-05-24 09:38:24 -06:00

2128 lines
74 KiB
C

/* gc.c
* Copyright 1984-2017 Cisco Systems, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "system.h"
#include "sort.h"
#ifndef WIN32
#include <sys/wait.h>
#endif /* WIN32 */
#define enable_object_counts do_not_use_enable_object_counts_in_this_file_use_ifdef_ENABLE_OBJECT_COUNTS_instead
/* locally defined functions */
static ptr append_bang PROTO((ptr ls1, ptr ls2));
static uptr count_unique PROTO((ptr ls));
static uptr list_length PROTO((ptr ls));
static ptr dosort PROTO((ptr ls, uptr n));
static ptr domerge PROTO((ptr l1, ptr l2));
static IBOOL search_locked PROTO((ptr p));
static ptr copy PROTO((ptr pp, seginfo *si));
static void sweep_ptrs PROTO((ptr *p, iptr n));
static void sweep PROTO((ptr tc, ptr p, IBOOL sweep_pure));
static ptr copy_stack PROTO((ptr old, iptr *length, iptr clength));
static void resweep_weak_pairs PROTO((IGEN g));
static void forward_or_bwp PROTO((ptr *pp, ptr p));
static void sweep_generation PROTO((ptr tc, IGEN g));
static iptr size_object PROTO((ptr p));
static iptr sweep_typed_object PROTO((ptr p));
static void sweep_symbol PROTO((ptr p));
static void sweep_port PROTO((ptr p));
static void sweep_thread PROTO((ptr p));
static void sweep_continuation PROTO((ptr p));
static void sweep_stack PROTO((uptr base, uptr size, uptr ret));
static void sweep_record PROTO((ptr x));
static IGEN sweep_dirty_record PROTO((ptr x));
static void sweep_code_object PROTO((ptr tc, ptr co));
static void record_dirty_segment PROTO((IGEN from_g, IGEN to_g, seginfo *si));
static void sweep_dirty PROTO((void));
static void resweep_dirty_weak_pairs PROTO((void));
static void add_ephemeron_to_pending PROTO((ptr p));
static void add_trigger_ephemerons_to_repending PROTO((ptr p));
static void check_pending_ephemerons PROTO(());
static void clear_trigger_ephemerons PROTO(());
/* MAXPTR is used to pad the sorted_locked_object vector. The pad value must be greater than any heap address */
#define MAXPTR ((ptr)-1)
#define OLDSPACE(x) (SPACE(x) & space_old)
/* #define DEBUG */
/* initialized and used each gc cycle. any others should be defined in globals.h */
static IBOOL change;
static IGEN target_generation;
static IGEN max_copied_generation;
static ptr sweep_loc[max_real_space+1];
static ptr orig_next_loc[max_real_space+1];
static ptr sorted_locked_objects;
static ptr tlcs_to_rehash;
static ptr append_bang(ptr ls1, ptr ls2) { /* assumes ls2 pairs are older than ls1 pairs, or that we don't car */
if (ls2 == Snil) {
return ls1;
} else if (ls1 == Snil) {
return ls2;
} else {
ptr this = ls1, next;
while ((next = Scdr(this)) != Snil) this = next;
INITCDR(this) = ls2;
return ls1;
}
}
static uptr count_unique(ls) ptr ls; { /* assumes ls is sorted and nonempty */
uptr i = 1; ptr x = Scar(ls), y;
while ((ls = Scdr(ls)) != Snil) {
if ((y = Scar(ls)) != x) {
i += 1;
x = y;
}
}
return i;
}
#define CARLT(x, y) (Scar(x) < Scar(y))
mkmergesort(dosort, domerge, ptr, Snil, CARLT, INITCDR)
uptr list_length(ptr ls) {
uptr i = 0;
while (ls != Snil) { ls = Scdr(ls); i += 1; }
return i;
}
#define relocate(ppp) {\
ptr PP;\
PP = *ppp;\
relocate_help(ppp, PP)\
}
/* optimization of:
* relocate(ppp)
* if (GENERATION(*ppp) < youngest)
* youngest = GENERATION(*ppp);
*/
#define relocate_dirty(ppp,tg,youngest) {\
ptr PP = *ppp; seginfo *SI;\
if (!IMMEDIATE(PP) && (SI = MaybeSegInfo(ptr_get_segment(PP))) != NULL) {\
if (SI->space & space_old) {\
relocate_help_help(ppp, PP, SI)\
youngest = tg;\
} else {\
IGEN pg;\
if (youngest != tg && (pg = SI->generation) < youngest) {\
youngest = pg;\
}\
}\
}\
}
#define relocate_help(ppp, pp) {\
seginfo *SI; \
if (!IMMEDIATE(pp) && (SI = MaybeSegInfo(ptr_get_segment(pp))) != NULL && SI->space & space_old)\
relocate_help_help(ppp, pp, SI)\
}
#define relocate_help_help(ppp, pp, si) {\
if (FWDMARKER(pp) == forward_marker && TYPEBITS(pp) != type_flonum)\
*ppp = FWDADDRESS(pp);\
else\
*ppp = copy(pp, si);\
}
#define relocate_return_addr(pcp) {\
seginfo *SI;\
ptr XCP;\
XCP = *(pcp);\
if ((SI = SegInfo(ptr_get_segment(XCP)))->space & space_old) { \
iptr CO;\
CO = ENTRYOFFSET(XCP) + ((uptr)XCP - (uptr)&ENTRYOFFSET(XCP));\
relocate_code(pcp,XCP,CO,SI)\
}\
}
/* in the call to copy below, assuming SPACE(PP) == SPACE(XCP) since
PP and XCP point to/into the same object */
#define relocate_code(pcp,XCP,CO,SI) {\
ptr PP;\
PP = (ptr)((uptr)XCP - CO);\
if (FWDMARKER(PP) == forward_marker)\
PP = FWDADDRESS(PP);\
else\
PP = copy(PP, SI);\
*pcp = (ptr)((uptr)PP + CO);\
}
/* rkd 2015/06/05: tried to use sse instructions. abandoned the code
because the collector ran slower */
#define copy_ptrs(ty, p1, p2, n) {\
ptr *Q1, *Q2, *Q1END;\
Q1 = (ptr *)UNTYPE((p1),ty);\
Q2 = (ptr *)UNTYPE((p2),ty);\
Q1END = (ptr *)((uptr)Q1 + n);\
while (Q1 != Q1END) *Q1++ = *Q2++;}
static IBOOL search_locked(ptr p) {
uptr k; ptr v, *vp, x;
v = sorted_locked_objects;
k = Svector_length(v);
vp = &INITVECTIT(v, 0);
for (;;) {
k >>= 1;
if ((x = vp[k]) == p) return 1;
if (k == 0) return 0;
if (x < p) vp += k + 1;
}
}
#define locked(p) (sorted_locked_objects != FIX(0) && search_locked(p))
static void check_trigger_ephemerons(si) seginfo *si; {
/* Registering ephemerons to recheck at the gradularity of a segment
means that the worst-case complexity of GC is quadratic in the
number of objects that fit into a segment (but that only happens
if the objects are ephemeron keys that are reachable just through
a chain via the value field of the same ephemerons). */
if (si->trigger_ephemerons) {
add_trigger_ephemerons_to_repending(si->trigger_ephemerons);
si->trigger_ephemerons = NULL;
}
}
static ptr copy(pp, si) ptr pp; seginfo *si; {
ptr p, tf; ITYPE t; IGEN tg;
if (locked(pp)) return pp;
tg = target_generation;
change = 1;
check_trigger_ephemerons(si);
if ((t = TYPEBITS(pp)) == type_typed_object) {
tf = TYPEFIELD(pp);
if (TYPEP(tf, mask_record, type_record)) {
ptr rtd; iptr n; ISPC s;
/* relocate to make sure we aren't using an oldspace descriptor
that has been overwritten by a forwarding marker, but don't loop
on tag-reflexive base descriptor */
if ((rtd = tf) != pp) relocate(&rtd)
n = size_record_inst(UNFIX(RECORDDESCSIZE(rtd)));
#ifdef ENABLE_OBJECT_COUNTS
{ ptr counts; IGEN g;
counts = RECORDDESCCOUNTS(rtd);
if (counts == Sfalse) {
IGEN grtd = rtd == pp ? tg : GENERATION(rtd);
S_G.countof[grtd][countof_rtd_counts] += 1;
/* allocate counts struct in same generation as rtd. initialize timestamp & counts */
find_room(space_data, grtd, type_typed_object, size_rtd_counts, counts);
RTDCOUNTSTYPE(counts) = type_rtd_counts;
RTDCOUNTSTIMESTAMP(counts) = S_G.gctimestamp[0];
for (g = 0; g <= static_generation; g += 1) RTDCOUNTSIT(counts, g) = 0;
RECORDDESCCOUNTS(rtd) = counts;
S_G.rtds_with_counts[grtd] = S_cons_in((grtd == 0 ? space_new : space_impure), grtd, rtd, S_G.rtds_with_counts[grtd]);
S_G.countof[grtd][countof_pair] += 1;
} else {
relocate(&counts)
RECORDDESCCOUNTS(rtd) = counts;
if (RTDCOUNTSTIMESTAMP(counts) != S_G.gctimestamp[0]) S_fixup_counts(counts);
}
RTDCOUNTSIT(counts, tg) += 1;
}
#endif /* ENABLE_OBJECT_COUNTS */
/* if the rtd is the only pointer and is immutable, put the record
into space data. if the record contains only pointers, put it
into space_pure or space_impure. otherwise put it into
space_pure_typed_object or space_impure_record. we could put all
records into space_{pure,impure}_record or even into
space_impure_record, but by picking the target space more
carefully we may reduce fragmentation and sweeping cost */
s = RECORDDESCPM(rtd) == FIX(1) && RECORDDESCMPM(rtd) == FIX(0) ?
space_data :
RECORDDESCPM(rtd) == FIX(-1) ?
RECORDDESCMPM(rtd) == FIX(0) ?
space_pure :
space_impure :
RECORDDESCMPM(rtd) == FIX(0) ?
space_pure_typed_object :
space_impure_record;
find_room(s, tg, type_typed_object, n, p);
copy_ptrs(type_typed_object, p, pp, n);
/* overwrite type field with forwarded descriptor */
RECORDINSTTYPE(p) = rtd == pp ? p : rtd;
/* pad if necessary */
if (s == space_pure || s == space_impure) {
iptr m = unaligned_size_record_inst(UNFIX(RECORDDESCSIZE(rtd)));
if (m != n)
*((ptr *)((uptr)UNTYPE(p,type_typed_object) + m)) = FIX(0);
}
} else if (TYPEP(tf, mask_vector, type_vector)) {
iptr len, n;
len = Svector_length(pp);
n = size_vector(len);
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_vector] += 1;
S_G.bytesof[tg][countof_vector] += n;
#endif /* ENABLE_OBJECT_COUNTS */
/* assumes vector lengths look like fixnums; if not, vectors will need their own space */
if ((uptr)tf & vector_immutable_flag) {
find_room(space_pure, tg, type_typed_object, n, p);
} else {
find_room(space_impure, tg, type_typed_object, n, p);
}
copy_ptrs(type_typed_object, p, pp, n);
/* pad if necessary */
if ((len & 1) == 0) INITVECTIT(p, len) = FIX(0);
} else if (TYPEP(tf, mask_string, type_string)) {
iptr n;
n = size_string(Sstring_length(pp));
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_string] += 1;
S_G.bytesof[tg][countof_string] += n;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_data, tg, type_typed_object, n, p);
copy_ptrs(type_typed_object, p, pp, n);
} else if (TYPEP(tf, mask_fxvector, type_fxvector)) {
iptr n;
n = size_fxvector(Sfxvector_length(pp));
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_fxvector] += 1;
S_G.bytesof[tg][countof_fxvector] += n;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_data, tg, type_typed_object, n, p);
copy_ptrs(type_typed_object, p, pp, n);
} else if (TYPEP(tf, mask_bytevector, type_bytevector)) {
iptr n;
n = size_bytevector(Sbytevector_length(pp));
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_bytevector] += 1;
S_G.bytesof[tg][countof_bytevector] += n;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_data, tg, type_typed_object, n, p);
copy_ptrs(type_typed_object, p, pp, n);
} else if ((iptr)tf == type_tlc) {
ptr keyval, next;
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_tlc] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_impure, tg, type_typed_object, size_tlc, p);
TLCTYPE(p) = type_tlc;
INITTLCKEYVAL(p) = keyval = TLCKEYVAL(pp);
INITTLCHT(p) = TLCHT(pp);
INITTLCNEXT(p) = next = TLCNEXT(pp);
/* if next isn't false and keyval is old, add tlc to a list of tlcs
* to process later. determining if keyval is old is a (conservative)
* approximation to determining if key is old. we can't easily
* determine if key is old, since keyval might or might not have been
* swept already. NB: assuming keyvals are always pairs. */
if (next != Sfalse && SPACE(keyval) & space_old)
tlcs_to_rehash = S_cons_in(space_new, 0, p, tlcs_to_rehash);
} else if (TYPEP(tf, mask_box, type_box)) {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_box] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
if ((uptr)tf == type_immutable_box) {
find_room(space_pure, tg, type_typed_object, size_box, p);
} else {
find_room(space_impure, tg, type_typed_object, size_box, p);
}
BOXTYPE(p) = (iptr)tf;
INITBOXREF(p) = Sunbox(pp);
} else if ((iptr)tf == type_ratnum) {
/* not recursive: place in space_data and relocate fields immediately */
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_ratnum] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_data, tg,
type_typed_object, size_ratnum, p);
RATTYPE(p) = type_ratnum;
RATNUM(p) = RATNUM(pp);
RATDEN(p) = RATDEN(pp);
relocate(&RATNUM(p))
relocate(&RATDEN(p))
} else if ((iptr)tf == type_exactnum) {
/* not recursive: place in space_data and relocate fields immediately */
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_exactnum] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_data, tg,
type_typed_object, size_exactnum, p);
EXACTNUM_TYPE(p) = type_exactnum;
EXACTNUM_REAL_PART(p) = EXACTNUM_REAL_PART(pp);
EXACTNUM_IMAG_PART(p) = EXACTNUM_IMAG_PART(pp);
relocate(&EXACTNUM_REAL_PART(p))
relocate(&EXACTNUM_IMAG_PART(p))
} else if ((iptr)tf == type_inexactnum) {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_inexactnum] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_data, tg,
type_typed_object, size_inexactnum, p);
INEXACTNUM_TYPE(p) = type_inexactnum;
INEXACTNUM_REAL_PART(p) = INEXACTNUM_REAL_PART(pp);
INEXACTNUM_IMAG_PART(p) = INEXACTNUM_IMAG_PART(pp);
} else if (TYPEP(tf, mask_bignum, type_bignum)) {
iptr n;
n = size_bignum(BIGLEN(pp));
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_bignum] += 1;
S_G.bytesof[tg][countof_bignum] += n;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_data, tg, type_typed_object, n, p);
copy_ptrs(type_typed_object, p, pp, n);
} else if (TYPEP(tf, mask_port, type_port)) {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_port] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_port, tg,
type_typed_object, size_port, p);
PORTTYPE(p) = PORTTYPE(pp);
PORTHANDLER(p) = PORTHANDLER(pp);
PORTNAME(p) = PORTNAME(pp);
PORTINFO(p) = PORTINFO(pp);
PORTOCNT(p) = PORTOCNT(pp);
PORTICNT(p) = PORTICNT(pp);
PORTOBUF(p) = PORTOBUF(pp);
PORTOLAST(p) = PORTOLAST(pp);
PORTIBUF(p) = PORTIBUF(pp);
PORTILAST(p) = PORTILAST(pp);
} else if (TYPEP(tf, mask_code, type_code)) {
iptr n;
n = size_code(CODELEN(pp));
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_code] += 1;
S_G.bytesof[tg][countof_code] += n;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_code, tg, type_typed_object, n, p);
copy_ptrs(type_typed_object, p, pp, n);
} else if ((iptr)tf == type_thread) {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_thread] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_pure_typed_object, tg,
type_typed_object, size_thread, p);
TYPEFIELD(p) = (ptr)type_thread;
THREADTC(p) = THREADTC(pp); /* static */
} else if ((iptr)tf == type_rtd_counts) {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_rtd_counts] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_data, tg, type_typed_object, size_rtd_counts, p);
copy_ptrs(type_typed_object, p, pp, size_rtd_counts);
} else {
S_error_abort("copy(gc): illegal type");
return (ptr)0 /* not reached */;
}
} else if (t == type_pair) {
if (si->space == (space_ephemeron | space_old)) {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_ephemeron] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_ephemeron, tg, type_pair, size_ephemeron, p);
INITCAR(p) = Scar(pp);
INITCDR(p) = Scdr(pp);
} else {
ptr qq = Scdr(pp); ptr q; seginfo *qsi;
if (qq != pp && TYPEBITS(qq) == type_pair && (qsi = MaybeSegInfo(ptr_get_segment(qq))) != NULL && qsi->space == si->space && FWDMARKER(qq) != forward_marker && !locked(qq)) {
check_trigger_ephemerons(qsi);
if (si->space == (space_weakpair | space_old)) {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_weakpair] += 2;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_weakpair, tg, type_pair, 2 * size_pair, p);
} else {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_pair] += 2;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_impure, tg, type_pair, 2 * size_pair, p);
}
q = (ptr)((uptr)p + size_pair);
INITCAR(p) = Scar(pp);
INITCDR(p) = q;
INITCAR(q) = Scar(qq);
INITCDR(q) = Scdr(qq);
FWDMARKER(qq) = forward_marker;
FWDADDRESS(qq) = q;
} else {
if (si->space == (space_weakpair | space_old)) {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_weakpair] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_weakpair, tg, type_pair, size_pair, p);
} else {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_pair] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_impure, tg, type_pair, size_pair, p);
}
INITCAR(p) = Scar(pp);
INITCDR(p) = qq;
}
}
} else if (t == type_closure) {
ptr code;
/* relocate before accessing code type field, which otherwise might
be a forwarding marker */
code = CLOSCODE(pp);
relocate(&code)
if (CODETYPE(code) & (code_flag_continuation << code_flags_offset)) {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_continuation] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_continuation, tg,
type_closure, size_continuation, p);
SETCLOSCODE(p,code);
/* don't promote one-shots */
CONTLENGTH(p) = CONTLENGTH(pp);
CONTCLENGTH(p) = CONTCLENGTH(pp);
CONTWINDERS(p) = CONTWINDERS(pp);
if (CONTLENGTH(p) != scaled_shot_1_shot_flag) {
CONTLINK(p) = CONTLINK(pp);
CONTRET(p) = CONTRET(pp);
CONTSTACK(p) = CONTSTACK(pp);
}
} else {
iptr len, n;
len = CLOSLEN(pp);
n = size_closure(len);
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_closure] += 1;
S_G.bytesof[tg][countof_closure] += n;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_pure, tg, type_closure, n, p);
copy_ptrs(type_closure, p, pp, n);
SETCLOSCODE(p,code);
/* pad if necessary */
if ((len & 1) == 0) CLOSIT(p, len) = FIX(0);
}
} else if (t == type_symbol) {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_symbol] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_symbol, tg, type_symbol, size_symbol, p);
INITSYMVAL(p) = SYMVAL(pp);
INITSYMPVAL(p) = SYMPVAL(pp);
INITSYMPLIST(p) = SYMPLIST(pp);
INITSYMSPLIST(p) = SYMSPLIST(pp);
INITSYMNAME(p) = SYMNAME(pp);
INITSYMHASH(p) = SYMHASH(pp);
} else if (t == type_flonum) {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_flonum] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_data, tg, type_flonum, size_flonum, p);
FLODAT(p) = FLODAT(pp);
/* no room for forwarding address, so let 'em be duplicated */
return p;
} else {
S_error_abort("copy(gc): illegal type");
return (ptr)0 /* not reached */;
}
FWDMARKER(pp) = forward_marker;
FWDADDRESS(pp) = p;
return p;
}
static void sweep_ptrs(pp, n) ptr *pp; iptr n; {
ptr *end = pp + n;
while (pp != end) {
relocate(pp)
pp += 1;
}
}
static void sweep(ptr tc, ptr p, IBOOL sweep_pure) {
ptr tf; ITYPE t;
if ((t = TYPEBITS(p)) == type_pair) {
ISPC s = SPACE(p) & ~(space_locked | space_old);
if (s == space_ephemeron)
add_ephemeron_to_pending(p);
else {
if (s != space_weakpair) {
relocate(&INITCAR(p))
}
relocate(&INITCDR(p))
}
} else if (t == type_closure) {
if (sweep_pure) {
ptr code;
code = CLOSCODE(p);
relocate(&code)
SETCLOSCODE(p,code);
if (CODETYPE(code) & (code_flag_continuation << code_flags_offset))
sweep_continuation(p);
else
sweep_ptrs(&CLOSIT(p, 0), CLOSLEN(p));
}
} else if (t == type_symbol) {
sweep_symbol(p);
} else if (t == type_flonum) {
/* nothing to sweep */;
/* typed objects */
} else if (tf = TYPEFIELD(p), TYPEP(tf, mask_vector, type_vector)) {
sweep_ptrs(&INITVECTIT(p, 0), Svector_length(p));
} else if (TYPEP(tf, mask_string, type_string) || TYPEP(tf, mask_bytevector, type_bytevector) || TYPEP(tf, mask_fxvector, type_fxvector)) {
/* nothing to sweep */;
} else if (TYPEP(tf, mask_record, type_record)) {
relocate(&RECORDINSTTYPE(p));
if (sweep_pure || RECORDDESCMPM(RECORDINSTTYPE(p)) != FIX(0)) {
sweep_record(p);
}
} else if (TYPEP(tf, mask_box, type_box)) {
relocate(&INITBOXREF(p))
} else if ((iptr)tf == type_ratnum) {
if (sweep_pure) {
relocate(&RATNUM(p))
relocate(&RATDEN(p))
}
} else if ((iptr)tf == type_exactnum) {
if (sweep_pure) {
relocate(&EXACTNUM_REAL_PART(p))
relocate(&EXACTNUM_IMAG_PART(p))
}
} else if ((iptr)tf == type_inexactnum) {
/* nothing to sweep */;
} else if (TYPEP(tf, mask_bignum, type_bignum)) {
/* nothing to sweep */;
} else if (TYPEP(tf, mask_port, type_port)) {
sweep_port(p);
} else if (TYPEP(tf, mask_code, type_code)) {
if (sweep_pure) {
sweep_code_object(tc, p);
}
} else if ((iptr)tf == type_thread) {
sweep_thread(p);
} else if ((iptr)tf == type_rtd_counts) {
/* nothing to sweep */;
} else {
S_error_abort("sweep(gc): illegal type");
}
}
static ptr copy_stack(old, length, clength) ptr old; iptr *length, clength; {
iptr n, m; ptr new;
/* Don't copy non-oldspace stacks, since we may be sweeping a locked
continuation that is older than target_generation. Doing so would
be a waste of work anyway. */
if (!OLDSPACE(old)) return old;
/* reduce headroom created for excessively large frames (typically resulting from apply with long lists) */
if ((n = *length) != clength && n > default_stack_size && n > (m = clength + one_shot_headroom)) {
*length = n = m;
}
n = ptr_align(n);
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[target_generation][countof_stack] += 1;
S_G.bytesof[target_generation][countof_stack] += n;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_data, target_generation, typemod, n, new);
n = ptr_align(clength);
/* warning: stack may have been left non-double-aligned by split_and_resize */
copy_ptrs(typemod, new, old, n);
/* also returning possibly updated value in *length */
return new;
}
#define NONSTATICINHEAP(si, x) (!IMMEDIATE(x) && (si = MaybeSegInfo(ptr_get_segment(x))) != NULL && si->generation != static_generation)
#define ALWAYSTRUE(si, x) (si = SegInfo(ptr_get_segment(x)), 1)
#define partition_guardians(LS, FILTER) { \
ptr ls; seginfo *si;\
for (ls = LS; ls != Snil; ls = next) { \
obj = GUARDIANOBJ(ls); \
next = GUARDIANNEXT(ls); \
\
if (FILTER(si, obj)) { \
if (!(si->space & space_old) || locked(obj)) { \
INITGUARDIANNEXT(ls) = pend_hold_ls; \
pend_hold_ls = ls; \
} else if (FWDMARKER(obj) == forward_marker && TYPEBITS(obj) != type_flonum) { \
INITGUARDIANOBJ(ls) = FWDADDRESS(obj); \
INITGUARDIANNEXT(ls) = pend_hold_ls; \
pend_hold_ls = ls; \
} else { \
tconc = GUARDIANTCONC(ls); \
if (!OLDSPACE(tconc) || locked(tconc)) { \
INITGUARDIANNEXT(ls) = final_ls; \
final_ls = ls; \
} else if (FWDMARKER(tconc) == forward_marker) { \
INITGUARDIANTCONC(ls) = FWDADDRESS(tconc); \
INITGUARDIANNEXT(ls) = final_ls; \
final_ls = ls; \
} else { \
INITGUARDIANNEXT(ls) = pend_final_ls; \
pend_final_ls = ls; \
} \
} \
} \
} \
}
void GCENTRY(ptr tc, IGEN mcg, IGEN tg) {
IGEN g; ISPC s;
seginfo *oldspacesegments, *si, *nextsi;
ptr ls;
bucket_pointer_list *buckets_to_rebuild;
ptr locked_oldspace_objects;
/* flush instruction cache: effectively clear_code_mod but safer */
for (ls = S_threads; ls != Snil; ls = Scdr(ls)) {
ptr tc = (ptr)THREADTC(Scar(ls));
S_flush_instruction_cache(tc);
}
tlcs_to_rehash = Snil;
for (ls = S_threads; ls != Snil; ls = Scdr(ls)) {
ptr tc = (ptr)THREADTC(Scar(ls));
S_scan_dirty((ptr **)EAP(tc), (ptr **)REAL_EAP(tc));
EAP(tc) = REAL_EAP(tc) = AP(tc) = (ptr)0;
}
/* perform after ScanDirty */
if (S_checkheap) S_check_heap(0);
#ifdef DEBUG
(void)printf("mcg = %x; go? ", mcg); (void)fflush(stdout); (void)getc(stdin);
#endif
target_generation = tg;
max_copied_generation = mcg;
/* set up generations to be copied */
for (s = 0; s <= max_real_space; s++)
for (g = 0; g <= mcg; g++) {
S_G.base_loc[s][g] = FIX(0);
S_G.first_loc[s][g] = FIX(0);
S_G.next_loc[s][g] = FIX(0);
S_G.bytes_left[s][g] = 0;
S_G.bytes_of_space[s][g] = 0;
}
/* set up target generation sweep_loc and orig_next_loc pointers */
for (s = 0; s <= max_real_space; s++)
orig_next_loc[s] = sweep_loc[s] = S_G.next_loc[s][tg];
/* mark segments from which objects are to be copied */
oldspacesegments = (seginfo *)NULL;
for (s = 0; s <= max_real_space; s += 1) {
for (g = 0; g <= mcg; g += 1) {
for (si = S_G.occupied_segments[s][g]; si != NULL; si = nextsi) {
nextsi = si->next;
si->next = oldspacesegments;
oldspacesegments = si;
si->space = s | space_old; /* NB: implicitly clearing space_locked */
}
S_G.occupied_segments[s][g] = NULL;
}
}
#ifdef ENABLE_OBJECT_COUNTS
/* clear object counts & bytes for copied generations; bump timestamp */
{INT i;
for (g = 0; g <= mcg; g += 1) {
for (i = 0; i < countof_types; i += 1) {
S_G.countof[g][i] = 0;
S_G.bytesof[g][i] = 0;
}
if (g == 0) {
S_G.gctimestamp[g] += 1;
} else {
S_G.gctimestamp[g] = S_G.gctimestamp[0];
}
}
}
#endif /* ENABLE_OBJECT_COUNTS */
/* pre-collection handling of locked objects. */
/* create a single sorted_locked_object vector for all copied generations
* to accelerate the search for locked objects in copy(). copy wants
* a vector of some size n=2^k-1 so it doesn't have to check bounds */
ls = Snil;
/* note: append_bang and dosort reuse pairs, which can result in older
* objects pointing to newer ones...but we don't care since they are all
* oldspace and going away after this collection. */
for (g = 0; g <= mcg; g += 1) {
ls = append_bang(S_G.locked_objects[g], ls);
S_G.locked_objects[g] = Snil;
S_G.unlocked_objects[g] = Snil;
}
if (ls == Snil) {
sorted_locked_objects = FIX(0);
locked_oldspace_objects = Snil;
} else {
ptr v, x, y; uptr i, n;
/* dosort is destructive, so have to store the result back */
locked_oldspace_objects = ls = dosort(ls, list_length(ls));
/* create vector of smallest size n=2^k-1 that will fit all of
the list's unique elements */
i = count_unique(ls);
for (n = 1; n < i; n = (n << 1) | 1);
sorted_locked_objects = v = S_vector_in(space_new, 0, n);
/* copy list elements in, skipping duplicates */
INITVECTIT(v,0) = x = Scar(ls);
i = 1;
while ((ls = Scdr(ls)) != Snil) {
if ((y = Scar(ls)) != x) {
INITVECTIT(v, i) = x = y;
i += 1;
}
}
/* fill remaining slots with largest ptr value */
while (i < n) { INITVECTIT(v, i) = MAXPTR; i += 1; }
}
/* sweep older locked and unlocked objects */
for (g = mcg + 1; g <= static_generation; INCRGEN(g)) {
for (ls = S_G.locked_objects[g]; ls != Snil; ls = Scdr(ls))
sweep(tc, Scar(ls), 0);
for (ls = S_G.unlocked_objects[g]; ls != Snil; ls = Scdr(ls))
sweep(tc, Scar(ls), 0);
}
/* sweep younger locked objects, working from sorted vector to avoid redundant sweeping of duplicates */
if (sorted_locked_objects != FIX(0)) {
uptr i; ptr x, v, *vp;
v = sorted_locked_objects;
i = Svector_length(v);
x = *(vp = &INITVECTIT(v, 0));
do sweep(tc, x, 1); while (--i != 0 && (x = *++vp) != MAXPTR);
}
/* sweep non-oldspace threads, since any thread may have an active stack */
for (ls = S_threads; ls != Snil; ls = Scdr(ls)) {
ptr thread;
/* someone may have their paws on the list */
if (FWDMARKER(ls) == forward_marker) ls = FWDADDRESS(ls);
thread = Scar(ls);
if (!OLDSPACE(thread)) sweep_thread(thread);
}
relocate(&S_threads)
/* relocate nonempty oldspace symbols and set up list of buckets to rebuild later */
buckets_to_rebuild = NULL;
for (g = 0; g <= mcg; g += 1) {
bucket_list *bl, *blnext; bucket *b; bucket_pointer_list *bpl; bucket **oblist_cell; ptr sym; iptr idx;
for (bl = S_G.buckets_of_generation[g]; bl != NULL; bl = blnext) {
blnext = bl->cdr;
b = bl->car;
/* mark this bucket old for the rebuilding loop */
b->next = (bucket *)((uptr)b->next | 1);
sym = b->sym;
idx = UNFIX(SYMHASH(sym)) % S_G.oblist_length;
oblist_cell = &S_G.oblist[idx];
if (!((uptr)*oblist_cell & 1)) {
/* mark this bucket in the set */
*oblist_cell = (bucket *)((uptr)*oblist_cell | 1);
/* repurpose the bucket list element for the list of buckets to rebuild later */
/* idiot_checks verifies these have the same size */
bpl = (bucket_pointer_list *)bl;
bpl->car = oblist_cell;
bpl->cdr = buckets_to_rebuild;
buckets_to_rebuild = bpl;
}
if (FWDMARKER(sym) != forward_marker &&
/* coordinate with alloc.c */
(SYMVAL(sym) != sunbound || SYMPLIST(sym) != Snil || SYMSPLIST(sym) != Snil))
(void)copy(sym, SegInfo(ptr_get_segment(sym)));
}
S_G.buckets_of_generation[g] = NULL;
}
/* relocate the protected C pointers */
{uptr i;
for (i = 0; i < S_G.protect_next; i++)
relocate(S_G.protected[i])
}
/* sweep areas marked dirty by assignments into older generations */
sweep_dirty();
sweep_generation(tc, tg);
/* handle guardians */
{ ptr hold_ls, pend_hold_ls, final_ls, pend_final_ls;
ptr obj, rep, tconc, next;
/* move each entry in guardian lists into one of:
* pend_hold_ls if obj accessible
* final_ls if obj not accessible and tconc accessible
* pend_final_ls if obj not accessible and tconc not accessible */
pend_hold_ls = final_ls = pend_final_ls = Snil;
for (ls = S_threads; ls != Snil; ls = Scdr(ls)) {
ptr tc = (ptr)THREADTC(Scar(ls));
partition_guardians(GUARDIANENTRIES(tc), NONSTATICINHEAP);
GUARDIANENTRIES(tc) = Snil;
}
for (g = 0; g <= mcg; g += 1) {
partition_guardians(S_G.guardians[g], ALWAYSTRUE);
S_G.guardians[g] = Snil;
}
/* invariants after partition_guardians:
* for entry in pend_hold_ls, obj is !OLDSPACE or locked
* for entry in final_ls, obj is OLDSPACE and !locked
* for entry in final_ls, tconc is !OLDSPACE or locked
* for entry in pend_final_ls, obj and tconc are OLDSPACE and !locked
*/
hold_ls = S_G.guardians[tg];
while (1) {
IBOOL relocate_rep = final_ls != Snil;
/* relocate & add the final objects to their tconcs */
for (ls = final_ls; ls != Snil; ls = GUARDIANNEXT(ls)) {
ptr old_end, new_end;
rep = GUARDIANREP(ls);
relocate(&rep);
/* if tconc was old it's been forwarded */
tconc = GUARDIANTCONC(ls);
old_end = Scdr(tconc);
/* allocating pair in tg means it will be swept, which is wasted effort, but should cause no harm */
new_end = S_cons_in(space_impure, tg, FIX(0), FIX(0));
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_pair] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
SETCAR(old_end,rep);
SETCDR(old_end,new_end);
SETCDR(tconc,new_end);
}
/* discard static pend_hold_ls entries */
if (tg != static_generation) {
/* copy each entry in pend_hold_ls into hold_ls if tconc accessible */
ls = pend_hold_ls; pend_hold_ls = Snil;
for ( ; ls != Snil; ls = next) {
tconc = GUARDIANTCONC(ls); next = GUARDIANNEXT(ls); ptr p;
if (OLDSPACE(tconc) && !locked(tconc)) {
if (FWDMARKER(tconc) == forward_marker)
tconc = FWDADDRESS(tconc);
else {
INITGUARDIANNEXT(ls) = pend_hold_ls;
pend_hold_ls = ls;
continue;
}
}
rep = GUARDIANREP(ls);
relocate(&rep);
relocate_rep = 1;
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_guardian] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_pure, tg, typemod, size_guardian_entry, p);
INITGUARDIANOBJ(p) = GUARDIANOBJ(ls);
INITGUARDIANREP(p) = rep;
INITGUARDIANTCONC(p) = tconc;
INITGUARDIANNEXT(p) = hold_ls;
hold_ls = p;
}
}
if (!relocate_rep) break;
sweep_generation(tc, tg);
/* move each entry in pend_final_ls into one of:
* final_ls if tconc forwarded
* pend_final_ls if tconc not forwarded */
ls = pend_final_ls; final_ls = pend_final_ls = Snil;
for ( ; ls != Snil; ls = next) {
tconc = GUARDIANTCONC(ls); next = GUARDIANNEXT(ls);
if (FWDMARKER(tconc) == forward_marker) {
INITGUARDIANTCONC(ls) = FWDADDRESS(tconc);
INITGUARDIANNEXT(ls) = final_ls;
final_ls = ls;
} else {
INITGUARDIANNEXT(ls) = pend_final_ls;
pend_final_ls = ls;
}
}
}
S_G.guardians[tg] = hold_ls;
}
/* handle weak pairs */
resweep_dirty_weak_pairs();
resweep_weak_pairs(tg);
/* still-pending ephemerons all go to bwp */
clear_trigger_ephemerons();
/* forward car fields of locked and unlocked older weak pairs */
for (g = mcg + 1; g <= static_generation; INCRGEN(g)) {
for (ls = S_G.locked_objects[g]; ls != Snil; ls = Scdr(ls)) {
ptr x = Scar(ls);
if (Spairp(x) && (SPACE(x) & ~(space_old|space_locked)) == space_weakpair)
forward_or_bwp(&INITCAR(x), Scar(x));
}
for (ls = S_G.unlocked_objects[g]; ls != Snil; ls = Scdr(ls)) {
ptr x = Scar(ls);
if (Spairp(x) && (SPACE(x) & ~(space_old|space_locked)) == space_weakpair)
forward_or_bwp(&INITCAR(x), Scar(x));
}
}
/* forward car fields of locked oldspace weak pairs */
if (sorted_locked_objects != FIX(0)) {
uptr i; ptr x, v, *vp;
v = sorted_locked_objects;
i = Svector_length(v);
x = *(vp = &INITVECTIT(v, 0));
do {
if (Spairp(x) && (SPACE(x) & ~(space_old|space_locked)) == space_weakpair) {
forward_or_bwp(&INITCAR(x), Scar(x));
}
} while (--i != 0 && (x = *++vp) != MAXPTR);
}
/* post-gc oblist handling. rebuild old buckets in the target generation, pruning unforwarded symbols */
{ bucket_list *bl, *blnext; bucket *b, *bnext; bucket_pointer_list *bpl; bucket **pb; ptr sym;
bl = tg == static_generation ? NULL : S_G.buckets_of_generation[tg];
for (bpl = buckets_to_rebuild; bpl != NULL; bpl = bpl->cdr) {
pb = bpl->car;
for (b = (bucket *)((uptr)*pb - 1); b != NULL && ((uptr)(b->next) & 1); b = bnext) {
bnext = (bucket *)((uptr)(b->next) - 1);
sym = b->sym;
if (locked(sym) || (FWDMARKER(sym) == forward_marker && ((sym = FWDADDRESS(sym)) || 1))) {
find_room(space_data, tg, typemod, sizeof(bucket), b);
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_oblist] += 1;
S_G.bytesof[tg][countof_oblist] += sizeof(bucket);
#endif /* ENABLE_OBJECT_COUNTS */
b->sym = sym;
*pb = b;
pb = &b->next;
if (tg != static_generation) {
blnext = bl;
find_room(space_data, tg, typemod, sizeof(bucket_list), bl);
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_oblist] += 1;
S_G.bytesof[tg][countof_oblist] += sizeof(bucket_list);
#endif /* ENABLE_OBJECT_COUNTS */
bl->cdr = blnext;
bl->car = b;
}
} else {
S_G.oblist_count -= 1;
}
}
*pb = b;
}
if (tg != static_generation) S_G.buckets_of_generation[tg] = bl;
}
/* rebuild rtds_with_counts lists, dropping otherwise inaccessible rtds */
{ IGEN g; ptr ls, p, newls = tg == mcg ? Snil : S_G.rtds_with_counts[tg];
for (g = 0; g <= mcg; g += 1) {
for (ls = S_G.rtds_with_counts[g], S_G.rtds_with_counts[g] = Snil; ls != Snil; ls = Scdr(ls)) {
p = Scar(ls);
if (!OLDSPACE(p) || locked(p)) {
newls = S_cons_in(space_impure, tg, p, newls);
S_G.countof[tg][countof_pair] += 1;
} else if (FWDMARKER(p) == forward_marker) {
newls = S_cons_in(space_impure, tg, FWDADDRESS(p), newls);
S_G.countof[tg][countof_pair] += 1;
}
}
}
S_G.rtds_with_counts[tg] = newls;
}
#ifndef WIN32
/* rebuild child_process list, reaping any that have died and refusing
to promote into the static generation. */
{
ptr old_ls, new_ls; IGEN gtmp, cpgen;
cpgen = tg == static_generation ? S_G.max_nonstatic_generation : tg;
new_ls = cpgen <= mcg ? Snil : S_child_processes[cpgen];
for (gtmp = 0; gtmp <= mcg; gtmp += 1) {
for (old_ls = S_child_processes[gtmp]; old_ls != Snil; old_ls = Scdr(old_ls)) {
INT pid = UNFIX(Scar(old_ls)), status, retpid;
retpid = waitpid(pid, &status, WNOHANG);
if (retpid == 0 || (retpid == pid && !(WIFEXITED(status) || WIFSIGNALED(status)))) {
new_ls = S_cons_in(space_impure, cpgen, FIX(pid), new_ls);
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[cpgen][countof_pair] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
}
}
S_child_processes[gtmp] = Snil;
}
S_child_processes[cpgen] = new_ls;
}
#endif /* WIN32 */
/* post-collection handling of locked objects. This must come after
any use of relocate or any other use of sorted_locked_objects */
if (sorted_locked_objects != FIX(0)) {
ptr ls, lsnew, x, v, *vp; iptr i;
v = sorted_locked_objects;
lsnew = tg == mcg ? Snil : S_G.locked_objects[tg];
/* work from sorted vector to avoid redundant processing of duplicates */
i = Svector_length(v);
x = *(vp = &INITVECTIT(v, 0));
do {
ptr a1, a2; uptr seg; uptr n;
/* promote the segment(s) containing x to the target generation.
reset the space_old bit to prevent the segments from being
reclaimed; set the locked bit to prevent sweeping by
sweep_dirty (since the segments may contain a mix of objects,
many of which have been discarded). */
n = size_object(x);
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[target_generation][countof_locked] += 1;
S_G.bytesof[target_generation][countof_locked] += n;
#endif /* ENABLE_OBJECT_COUNTS */
a1 = UNTYPE_ANY(x);
a2 = (ptr)((uptr)a1 + n - 1);
for (seg = addr_get_segment(a1); seg <= addr_get_segment(a2); seg += 1) {
seginfo *si = SegInfo(seg);
si->generation = tg;
si->space = (si->space & ~space_old) | space_locked;
}
} while (--i != 0 && (x = *++vp) != MAXPTR);
/* append entire list, including duplicates, to target-generation list. we do so
even when tg == static_generation so we can keep track of static objects that need to
be swept at the start of collection. (we could weed out pure static objects.) */
for (ls = locked_oldspace_objects; ls != Snil; ls = Scdr(ls)) {
lsnew = S_cons_in(space_impure, tg, Scar(ls), lsnew);
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_pair] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
}
S_G.locked_objects[tg] = lsnew;
}
/* move old space segments to empty space */
for (si = oldspacesegments; si != NULL; si = nextsi) {
nextsi = si->next;
s = si->space;
if (s & space_locked) {
/* note: the oldspace bit is cleared above for locked objects */
s &= ~space_locked;
g = si->generation;
if (g == static_generation) S_G.number_of_nonstatic_segments -= 1;
si->next = S_G.occupied_segments[s][g];
S_G.occupied_segments[s][g] = si;
} else {
chunkinfo *chunk = si->chunk;
if (si->generation != static_generation) S_G.number_of_nonstatic_segments -= 1;
S_G.number_of_empty_segments += 1;
si->space = space_empty;
si->next = chunk->unused_segs;
chunk->unused_segs = si;
#ifdef WIPECLEAN
memset((void *)build_ptr(seg,0), 0xc7, bytes_per_segment);
#endif
if ((chunk->nused_segs -= 1) == 0) {
if (chunk->bytes != (minimum_segment_request + 1) * bytes_per_segment) {
/* release oversize chunks back to the O/S immediately to avoid allocating
* small stuff into them and thereby invite fragmentation */
S_free_chunk(chunk);
} else {
S_move_to_chunk_list(chunk, &S_chunks[PARTIAL_CHUNK_POOLS]);
}
} else {
S_move_to_chunk_list(chunk, &S_chunks[PARTIAL_CHUNK_POOLS-1]);
}
}
}
if (mcg >= S_G.min_free_gen) S_free_chunks();
S_flush_instruction_cache(tc);
if (S_checkheap) S_check_heap(1);
/* post-collection rehashing of tlcs.
must come after any use of relocate.
logically comes after gc is entirely complete */
while (tlcs_to_rehash != Snil) {
ptr b, next; uptr old_idx, new_idx;
ptr tlc = Scar(tlcs_to_rehash);
ptr ht = TLCHT(tlc);
ptr vec = PTRFIELD(ht,eq_hashtable_vec_disp);
uptr veclen = Svector_length(vec);
ptr key = Scar(TLCKEYVAL(tlc));
/* scan to end of bucket to find the index */
for (b = TLCNEXT(tlc); !Sfixnump(b); b = TLCNEXT(b));
old_idx = UNFIX(b);
if (key == Sbwp_object && PTRFIELD(ht,eq_hashtable_weakp_disp) != Sfalse) {
/* remove tlc */
b = Svector_ref(vec, old_idx);
if (b == tlc) {
SETVECTIT(vec, old_idx, TLCNEXT(b));
} else {
for (;;) { next = TLCNEXT(b); if (next == tlc) break; b = next; }
SETTLCNEXT(b,TLCNEXT(next));
}
INITTLCNEXT(tlc) = Sfalse;
INITPTRFIELD(ht,eq_hashtable_size_disp) = FIX(UNFIX(PTRFIELD(ht,eq_hashtable_size_disp)) - 1);
} else if ((new_idx = ((uptr)key >> primary_type_bits) & (veclen - 1)) != old_idx) {
/* remove tlc from old bucket */
b = Svector_ref(vec, old_idx);
if (b == tlc) {
SETVECTIT(vec, old_idx, TLCNEXT(b));
} else {
for (;;) { next = TLCNEXT(b); if (next == tlc) break; b = next; }
SETTLCNEXT(b,TLCNEXT(next));
}
/* and add to new bucket */
SETTLCNEXT(tlc, Svector_ref(vec, new_idx));
SETVECTIT(vec, new_idx, tlc);
}
tlcs_to_rehash = Scdr(tlcs_to_rehash);
}
S_resize_oblist();
}
#define sweep_space(s, body)\
slp = &sweep_loc[s];\
nlp = &S_G.next_loc[s][g];\
if (*slp == 0) *slp = S_G.first_loc[s][g];\
pp = (ptr *)*slp;\
while (pp != (nl = (ptr *)*nlp))\
do\
if ((p = *pp) == forward_marker)\
pp = (ptr *)*(pp + 1);\
else\
body\
while (pp != nl);\
*slp = (ptr)pp;
static void resweep_weak_pairs(g) IGEN g; {
ptr *slp, *nlp; ptr *pp, p, *nl;
sweep_loc[space_weakpair] = S_G.first_loc[space_weakpair][g];
sweep_space(space_weakpair, {
forward_or_bwp(pp, p);
pp += 2;
})
}
static void forward_or_bwp(pp, p) ptr *pp; ptr p; {
seginfo *si;
/* adapted from relocate */
if (!IMMEDIATE(p) && (si = MaybeSegInfo(ptr_get_segment(p))) != NULL && si->space & space_old && !locked(p)) {
if (FWDMARKER(p) == forward_marker && TYPEBITS(p) != type_flonum) {
*pp = FWDADDRESS(p);
} else {
*pp = Sbwp_object;
}
}
}
static void sweep_generation(tc, g) ptr tc; IGEN g; {
ptr *slp, *nlp; ptr *pp, p, *nl;
do {
change = 0;
sweep_space(space_impure, {
relocate_help(pp, p)
p = *(pp += 1);
relocate_help(pp, p)
pp += 1;
})
sweep_space(space_symbol, {
p = TYPE((ptr)pp, type_symbol);
sweep_symbol(p);
pp += size_symbol / sizeof(ptr);
})
sweep_space(space_port, {
p = TYPE((ptr)pp, type_typed_object);
sweep_port(p);
pp += size_port / sizeof(ptr);
})
sweep_space(space_weakpair, {
p = *(pp += 1);
relocate_help(pp, p)
pp += 1;
})
sweep_space(space_ephemeron, {
p = TYPE((ptr)pp, type_pair);
add_ephemeron_to_pending(p);
pp += size_ephemeron / sizeof(ptr);
})
sweep_space(space_pure, {
relocate_help(pp, p)
p = *(pp += 1);
relocate_help(pp, p)
pp += 1;
})
sweep_space(space_continuation, {
p = TYPE((ptr)pp, type_closure);
sweep_continuation(p);
pp += size_continuation / sizeof(ptr);
})
sweep_space(space_pure_typed_object, {
p = TYPE((ptr)pp, type_typed_object);
pp = (ptr *)((uptr)pp + sweep_typed_object(p));
})
sweep_space(space_code, {
p = TYPE((ptr)pp, type_typed_object);
sweep_code_object(tc, p);
pp += size_code(CODELEN(p)) / sizeof(ptr);
})
sweep_space(space_impure_record, {
p = TYPE((ptr)pp, type_typed_object);
sweep_record(p);
pp = (ptr *)((iptr)pp +
size_record_inst(UNFIX(RECORDDESCSIZE(RECORDINSTTYPE(p)))));
})
/* Waiting until sweeping doesn't trigger a change reduces the
chance that an ephemeron must be reigistered as a
segment-specific trigger or gets triggered for recheck, but
it doesn't change the worst-case complexity. */
if (!change)
check_pending_ephemerons();
} while (change);
}
static iptr size_object(p) ptr p; {
ITYPE t; ptr tf;
if ((t = TYPEBITS(p)) == type_pair) {
seginfo *si;
if ((si = MaybeSegInfo(ptr_get_segment(p))) != NULL && (si->space & ~(space_locked | space_old)) == space_ephemeron)
return size_ephemeron;
else
return size_pair;
} else if (t == type_closure) {
ptr code = CLOSCODE(p);
if (CODETYPE(code) & (code_flag_continuation << code_flags_offset))
return size_continuation;
else
return size_closure(CLOSLEN(p));
} else if (t == type_symbol) {
return size_symbol;
} else if (t == type_flonum) {
return size_flonum;
/* typed objects */
} else if (tf = TYPEFIELD(p), TYPEP(tf, mask_vector, type_vector)) {
return size_vector(Svector_length(p));
} else if (TYPEP(tf, mask_string, type_string)) {
return size_string(Sstring_length(p));
} else if (TYPEP(tf, mask_bytevector, type_bytevector)) {
return size_bytevector(Sbytevector_length(p));
} else if (TYPEP(tf, mask_record, type_record)) {
return size_record_inst(UNFIX(RECORDDESCSIZE(tf)));
} else if (TYPEP(tf, mask_fxvector, type_fxvector)) {
return size_fxvector(Sfxvector_length(p));
} else if (TYPEP(tf, mask_box, type_box)) {
return size_box;
} else if ((iptr)tf == type_ratnum) {
return size_ratnum;
} else if ((iptr)tf == type_exactnum) {
return size_exactnum;
} else if ((iptr)tf == type_inexactnum) {
return size_inexactnum;
} else if (TYPEP(tf, mask_bignum, type_bignum)) {
return size_bignum(BIGLEN(p));
} else if (TYPEP(tf, mask_port, type_port)) {
return size_port;
} else if (TYPEP(tf, mask_code, type_code)) {
return size_code(CODELEN(p));
} else if ((iptr)tf == type_thread) {
return size_thread;
} else if ((iptr)tf == type_rtd_counts) {
return size_rtd_counts;
} else {
S_error_abort("size_object(gc): illegal type");
return 0 /* not reached */;
}
}
static iptr sweep_typed_object(p) ptr p; {
ptr tf = TYPEFIELD(p);
if (TYPEP(tf, mask_record, type_record)) {
sweep_record(p);
return size_record_inst(UNFIX(RECORDDESCSIZE(RECORDINSTTYPE(p))));
} else if (TYPEP(tf, mask_thread, type_thread)) {
sweep_thread(p);
return size_thread;
} else {
S_error_abort("sweep_typed_object(gc): unexpected type");
return 0 /* not reached */;
}
}
static void sweep_symbol(p) ptr p; {
ptr val, code;
val = SYMVAL(p);
relocate(&val);
INITSYMVAL(p) = val;
code = Sprocedurep(val) ? CLOSCODE(val) : SYMCODE(p);
relocate(&code);
INITSYMCODE(p,code);
relocate(&INITSYMPLIST(p))
relocate(&INITSYMSPLIST(p))
relocate(&INITSYMNAME(p))
relocate(&INITSYMHASH(p))
}
static void sweep_port(p) ptr p; {
relocate(&PORTHANDLER(p))
relocate(&PORTINFO(p))
relocate(&PORTNAME(p))
if (PORTTYPE(p) & PORT_FLAG_OUTPUT) {
iptr n = (iptr)PORTOLAST(p) - (iptr)PORTOBUF(p);
relocate(&PORTOBUF(p))
PORTOLAST(p) = (ptr)((iptr)PORTOBUF(p) + n);
}
if (PORTTYPE(p) & PORT_FLAG_INPUT) {
iptr n = (iptr)PORTILAST(p) - (iptr)PORTIBUF(p);
relocate(&PORTIBUF(p))
PORTILAST(p) = (ptr)((iptr)PORTIBUF(p) + n);
}
}
static void sweep_thread(p) ptr p; {
ptr tc = (ptr)THREADTC(p);
INT i;
if (tc != (ptr)0) {
ptr old_stack = SCHEMESTACK(tc);
if (OLDSPACE(old_stack)) {
iptr clength = (uptr)SFP(tc) - (uptr)old_stack;
/* include SFP[0], which contains the return address */
SCHEMESTACK(tc) = copy_stack(old_stack, &SCHEMESTACKSIZE(tc), clength + sizeof(ptr));
SFP(tc) = (ptr)((uptr)SCHEMESTACK(tc) + clength);
ESP(tc) = (ptr)((uptr)SCHEMESTACK(tc) + SCHEMESTACKSIZE(tc) - stack_slop);
}
STACKCACHE(tc) = Snil;
relocate(&CCHAIN(tc))
/* U32 RANDOMSEED(tc) */
/* I32 ACTIVE(tc) */
relocate(&STACKLINK(tc))
/* iptr SCHEMESTACKSIZE */
relocate(&WINDERS(tc))
relocate_return_addr(&FRAME(tc,0))
sweep_stack((uptr)SCHEMESTACK(tc), (uptr)SFP(tc), (uptr)FRAME(tc,0));
relocate(&U(tc))
relocate(&V(tc))
relocate(&W(tc))
relocate(&X(tc))
relocate(&Y(tc))
/* immediate SOMETHINGPENDING(tc) */
/* immediate TIMERTICKS */
/* immediate DISABLE_COUNT */
/* immediate SIGNALINTERRUPTPENDING */
/* immediate KEYBOARDINTERRUPTPENDING */
relocate(&THREADNO(tc))
relocate(&CURRENTINPUT(tc))
relocate(&CURRENTOUTPUT(tc))
relocate(&CURRENTERROR(tc))
/* immediate BLOCKCOUNTER */
relocate(&SFD(tc))
relocate(&TARGETMACHINE(tc))
relocate(&FXLENGTHBV(tc))
relocate(&FXFIRSTBITSETBV(tc))
relocate(&NULLIMMUTABLEVECTOR(tc))
relocate(&NULLIMMUTABLEFXVECTOR(tc))
relocate(&NULLIMMUTABLEBYTEVECTOR(tc))
relocate(&NULLIMMUTABLESTRING(tc))
/* immediate METALEVEL */
relocate(&COMPILEPROFILE(tc))
/* immediate GENERATEINSPECTORINFORMATION */
/* immediate GENERATEPROFILEFORMS */
/* immediate OPTIMIZELEVEL */
relocate(&PARAMETERS(tc))
/* U64 INSTRCOUNTER(tc) */
/* U64 ALLOCCOUNTER(tc) */
for (i = 0 ; i < virtual_register_count ; i += 1) {
relocate(&VIRTREG(tc, i));
}
}
}
static void sweep_continuation(p) ptr p; {
relocate(&CONTWINDERS(p))
/* bug out for shot 1-shot continuations */
if (CONTLENGTH(p) == scaled_shot_1_shot_flag) return;
if (OLDSPACE(CONTSTACK(p)))
CONTSTACK(p) = copy_stack(CONTSTACK(p), &CONTLENGTH(p), CONTCLENGTH(p));
relocate(&CONTLINK(p))
relocate_return_addr(&CONTRET(p))
/* use CLENGTH to avoid sweeping unoccupied portion of one-shots */
sweep_stack((uptr)CONTSTACK(p), (uptr)CONTSTACK(p) + CONTCLENGTH(p), (uptr)CONTRET(p));
}
/* assumes stack has already been copied to newspace */
static void sweep_stack(base, fp, ret) uptr base, fp, ret; {
ptr *pp; iptr oldret;
ptr num;
while (fp != base) {
if (fp < base)
S_error_abort("sweep_stack(gc): malformed stack");
fp = fp - ENTRYFRAMESIZE(ret);
pp = (ptr *)fp;
oldret = ret;
ret = (iptr)(*pp);
relocate_return_addr(pp)
num = ENTRYLIVEMASK(oldret);
if (Sfixnump(num)) {
uptr mask = UNFIX(num);
while (mask != 0) {
pp += 1;
if (mask & 0x0001) relocate(pp)
mask >>= 1;
}
} else {
iptr index;
relocate(&ENTRYLIVEMASK(oldret))
num = ENTRYLIVEMASK(oldret);
index = BIGLEN(num);
while (index-- != 0) {
INT bits = bigit_bits;
bigit mask = BIGIT(num,index);
while (bits-- > 0) {
pp += 1;
if (mask & 1) relocate(pp)
mask >>= 1;
}
}
}
}
}
static void sweep_record(x) ptr x; {
ptr *pp; ptr num; ptr rtd;
/* record-type descriptor was forwarded in copy */
rtd = RECORDINSTTYPE(x);
num = RECORDDESCPM(rtd);
pp = &RECORDINSTIT(x,0);
/* sweep cells for which bit in pm is set; quit when pm == 0. */
if (Sfixnump(num)) {
/* ignore bit for already forwarded rtd */
uptr mask = (uptr)UNFIX(num) >> 1;
if (mask == (uptr)-1 >> 1) {
ptr *ppend = (ptr *)((uptr)pp + UNFIX(RECORDDESCSIZE(rtd))) - 1;
while (pp < ppend) {
relocate(pp)
pp += 1;
}
} else {
while (mask != 0) {
if (mask & 1) relocate(pp)
mask >>= 1;
pp += 1;
}
}
} else {
iptr index; bigit mask; INT bits;
/* bignum pointer mask may have been forwarded */
relocate(&RECORDDESCPM(rtd))
num = RECORDDESCPM(rtd);
index = BIGLEN(num) - 1;
/* ignore bit for already forwarded rtd */
mask = BIGIT(num,index) >> 1;
bits = bigit_bits - 1;
for (;;) {
do {
if (mask & 1) relocate(pp)
mask >>= 1;
pp += 1;
} while (--bits > 0);
if (index-- == 0) break;
mask = BIGIT(num,index);
bits = bigit_bits;
}
}
}
static IGEN sweep_dirty_record(x) ptr x; {
ptr *pp; ptr num; ptr rtd; IGEN tg, youngest;
tg = target_generation;
youngest = 0xff;
/* warning: assuming rtd is immutable */
rtd = RECORDINSTTYPE(x);
/* warning: assuming MPM field is immutable */
num = RECORDDESCMPM(rtd);
pp = &RECORDINSTIT(x,0);
/* sweep cells for which bit in mpm is set
include rtd in case it's mutable */
if (Sfixnump(num)) {
/* ignore bit for assumed immutable rtd */
uptr mask = (uptr)UNFIX(num) >> 1;
while (mask != 0) {
if (mask & 1) relocate_dirty(pp,tg,youngest)
mask >>= 1;
pp += 1;
}
} else {
iptr index; bigit mask; INT bits;
index = BIGLEN(num) - 1;
/* ignore bit for assumed immutable rtd */
mask = BIGIT(num,index) >> 1;
bits = bigit_bits - 1;
for (;;) {
do {
if (mask & 1) relocate_dirty(pp,tg,youngest)
mask >>= 1;
pp += 1;
} while (--bits > 0);
if (index-- == 0) break;
mask = BIGIT(num,index);
bits = bigit_bits;
}
}
return youngest;
}
static void sweep_code_object(tc, co) ptr tc, co; {
ptr t, oldco; iptr a, m, n;
#ifdef DEBUG
if ((CODETYPE(co) & mask_code) != type_code) {
(void)printf("unexpected type %x sweeping code object %p\n", CODETYPE(co), co);
(void)fflush(stdout);
}
#endif
relocate(&CODENAME(co))
relocate(&CODEARITYMASK(co))
relocate(&CODEINFO(co))
relocate(&CODEPINFOS(co))
t = CODERELOC(co);
m = RELOCSIZE(t);
oldco = RELOCCODE(t);
a = 0;
n = 0;
while (n < m) {
uptr entry, item_off, code_off; ptr obj;
entry = RELOCIT(t, n); n += 1;
if (RELOC_EXTENDED_FORMAT(entry)) {
item_off = RELOCIT(t, n); n += 1;
code_off = RELOCIT(t, n); n += 1;
} else {
item_off = RELOC_ITEM_OFFSET(entry);
code_off = RELOC_CODE_OFFSET(entry);
}
a += code_off;
obj = S_get_code_obj(RELOC_TYPE(entry), oldco, a, item_off);
relocate(&obj)
S_set_code_obj("gc", RELOC_TYPE(entry), co, a, obj, item_off);
}
if (target_generation == static_generation && !S_G.retain_static_relocation) {
CODERELOC(co) = (ptr)0;
} else {
/* Don't copy non-oldspace relocation tables, since we may be
sweeping a locked code object that is older than target_generation
Doing so would be a waste of work anyway. */
if (OLDSPACE(t)) {
ptr oldt = t;
n = size_reloc_table(RELOCSIZE(oldt));
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[target_generation][countof_relocation_table] += 1;
S_G.bytesof[target_generation][countof_relocation_table] += n;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_data, target_generation, typemod, n, t);
copy_ptrs(typemod, t, oldt, n);
}
RELOCCODE(t) = co;
CODERELOC(co) = t;
}
S_record_code_mod(tc, (uptr)&CODEIT(co,0), (uptr)CODELEN(co));
}
typedef struct _weakseginfo {
seginfo *si;
IGEN youngest[cards_per_segment];
struct _weakseginfo *next;
} weakseginfo;
static weakseginfo *weaksegments_to_resweep;
static void record_dirty_segment(IGEN from_g, IGEN to_g, seginfo *si) {
if (si->min_dirty_byte != 0xff) {
S_error_abort("record_dirty(gc): unexpected mutation while sweeping");
}
if (to_g < from_g) {
seginfo *oldfirst = DirtySegments(from_g, to_g);
DirtySegments(from_g, to_g) = si;
si->dirty_prev = &DirtySegments(from_g, to_g);
si->dirty_next = oldfirst;
if (oldfirst != NULL) oldfirst->dirty_prev = &si->dirty_next;
si->min_dirty_byte = to_g;
}
}
static void sweep_dirty(void) {
IGEN tg, mcg, youngest, min_youngest, pg;
ptr *pp, *ppend, *nl;
uptr seg, d;
ISPC s;
IGEN from_g, to_g;
seginfo *dirty_si, *nextsi;
tg = target_generation;
mcg = max_copied_generation;
weaksegments_to_resweep = NULL;
/* clear dirty segment lists for copied generations */
for (from_g = 1; from_g <= mcg; from_g += 1) {
for (to_g = 0; to_g < from_g; to_g += 1) {
DirtySegments(from_g, to_g) = NULL;
}
}
/* NB: could have problems if a card is moved from some current or to-be-swept (from_g, to_g) to some previously
swept list due to a dirty_set while we sweep. believe this can't happen as of 6/14/2013. if it can, it
might be sufficient to process the lists in reverse order. */
for (from_g = mcg + 1; from_g <= static_generation; INCRGEN(from_g)) {
for (to_g = 0; to_g <= mcg; to_g += 1) {
for (dirty_si = DirtySegments(from_g, to_g), DirtySegments(from_g, to_g) = NULL; dirty_si != NULL; dirty_si = nextsi) {
nextsi = dirty_si->dirty_next;
seg = dirty_si->number;
s = dirty_si->space;
if (s & space_locked) continue;
/* reset min dirty byte so we can detect if byte is set while card is swept */
dirty_si->min_dirty_byte = 0xff;
min_youngest = 0xff;
nl = from_g == tg ? (ptr *)orig_next_loc[s] : (ptr *)S_G.next_loc[s][from_g];
ppend = build_ptr(seg, 0);
if (s == space_weakpair) {
weakseginfo *next = weaksegments_to_resweep;
find_room(space_data, 0, typemod, sizeof(weakseginfo), weaksegments_to_resweep);
weaksegments_to_resweep->si = dirty_si;
weaksegments_to_resweep->next = next;
}
d = 0;
while (d < cards_per_segment) {
uptr dend = d + sizeof(iptr);
iptr *dp = (iptr *)(dirty_si->dirty_bytes + d);
/* check sizeof(iptr) bytes at a time for 0xff */
if (*dp == -1) {
pp = ppend;
ppend += bytes_per_card;
if (pp <= nl && nl < ppend) ppend = nl;
d = dend;
} else {
while (d < dend) {
pp = ppend;
ppend += bytes_per_card / sizeof(ptr);
if (pp <= nl && nl < ppend) ppend = nl;
if (dirty_si->dirty_bytes[d] <= mcg) {
/* assume we won't find any wrong-way pointers */
youngest = 0xff;
if (s == space_impure) {
while (pp < ppend && *pp != forward_marker) {
/* handle two pointers at a time */
relocate_dirty(pp,tg,youngest)
pp += 1;
relocate_dirty(pp,tg,youngest)
pp += 1;
}
} else if (s == space_symbol) {
/* old symbols cannot overlap segment boundaries
since any object that spans multiple
generations begins at the start of a segment,
and symbols are much smaller (we assume)
than the segment size. */
pp = (ptr *)build_ptr(seg,0) +
((pp - (ptr *)build_ptr(seg,0)) /
(size_symbol / sizeof(ptr))) *
(size_symbol / sizeof(ptr));
while (pp < ppend && *pp != forward_marker) { /* might overshoot card by part of a symbol. no harm. */
ptr p, val, code;
p = TYPE((ptr)pp, type_symbol);
val = SYMVAL(p);
relocate_dirty(&val,tg,youngest)
INITSYMVAL(p) = val;
code = Sprocedurep(val) ? CLOSCODE(val) : SYMCODE(p);
relocate_dirty(&code,tg,youngest)
INITSYMCODE(p,code);
relocate_dirty(&INITSYMPLIST(p),tg,youngest)
relocate_dirty(&INITSYMSPLIST(p),tg,youngest)
relocate_dirty(&INITSYMNAME(p),tg,youngest)
relocate_dirty(&INITSYMHASH(p),tg,youngest)
pp += size_symbol / sizeof(ptr);
}
} else if (s == space_port) {
/* old ports cannot overlap segment boundaries
since any object that spans multiple
generations begins at the start of a segment,
and ports are much smaller (we assume)
than the segment size. */
pp = (ptr *)build_ptr(seg,0) +
((pp - (ptr *)build_ptr(seg,0)) /
(size_port / sizeof(ptr))) *
(size_port / sizeof(ptr));
while (pp < ppend && *pp != forward_marker) { /* might overshoot card by part of a port. no harm. */
ptr p = TYPE((ptr)pp, type_typed_object);
relocate_dirty(&PORTHANDLER(p),tg,youngest)
relocate_dirty(&PORTINFO(p),tg,youngest)
relocate_dirty(&PORTNAME(p),tg,youngest)
if (PORTTYPE(p) & PORT_FLAG_OUTPUT) {
iptr n = (iptr)PORTOLAST(p) - (iptr)PORTOBUF(p);
relocate_dirty(&PORTOBUF(p),tg,youngest)
PORTOLAST(p) = (ptr)((iptr)PORTOBUF(p) + n);
}
if (PORTTYPE(p) & PORT_FLAG_INPUT) {
iptr n = (iptr)PORTILAST(p) - (iptr)PORTIBUF(p);
relocate_dirty(&PORTIBUF(p),tg,youngest)
PORTILAST(p) = (ptr)((iptr)PORTIBUF(p) + n);
}
pp += size_port / sizeof(ptr);
}
} else if (s == space_impure_record) { /* abandon hope all ye who enter here */
uptr j; ptr p, pnext; seginfo *si;
/* synchronize on first record that overlaps the dirty
area, then relocate any mutable pointers in that
record and those that follow within the dirty area. */
/* find first segment of group of like segments */
j = seg - 1;
while ((si = MaybeSegInfo(j)) != NULL &&
si->space == s &&
si->generation == from_g)
j -= 1;
j += 1;
/* now find first record in segment seg */
/* we count on following fact: if an object spans two
or more segments, then he starts at the beginning
of a segment */
for (;;) {
p = TYPE(build_ptr(j,0),type_typed_object);
pnext = (ptr)((iptr)p +
size_record_inst(UNFIX(RECORDDESCSIZE(
RECORDINSTTYPE(p)))));
if (ptr_get_segment(pnext) >= seg) break;
j = ptr_get_segment(pnext) + 1;
}
/* now find first within dirty area */
while ((ptr *)UNTYPE(pnext, type_typed_object) <= pp) {
p = pnext;
pnext = (ptr)((iptr)p +
size_record_inst(UNFIX(RECORDDESCSIZE(
RECORDINSTTYPE(p)))));
}
/* now sweep */
while ((ptr *)UNTYPE(p, type_typed_object) < ppend) {
/* quit on end of segment */
if (FWDMARKER(p) == forward_marker) break;
pg = sweep_dirty_record(p);
if (pg < youngest) youngest = pg;
p = (ptr)((iptr)p +
size_record_inst(UNFIX(RECORDDESCSIZE(
RECORDINSTTYPE(p)))));
}
} else if (s == space_weakpair) {
while (pp < ppend && *pp != forward_marker) {
/* skip car field and handle cdr field */
pp += 1;
relocate_dirty(pp, tg, youngest)
pp += 1;
}
} else if (s == space_ephemeron) {
while (pp < ppend && *pp != forward_marker) {
ptr p = TYPE((ptr)pp, type_pair);
add_ephemeron_to_pending(p);
pp += size_ephemeron / sizeof(ptr);
}
} else {
S_error_abort("sweep_dirty(gc): unexpected space");
}
if (s == space_weakpair) {
weaksegments_to_resweep->youngest[d] = youngest;
} else {
dirty_si->dirty_bytes[d] = youngest < from_g ? youngest : 0xff;
}
if (youngest < min_youngest) min_youngest = youngest;
} else {
if (dirty_si->dirty_bytes[d] < min_youngest) min_youngest = dirty_si->dirty_bytes[d];
}
d += 1;
}
}
}
if (s != space_weakpair) {
record_dirty_segment(from_g, min_youngest, dirty_si);
}
}
}
}
}
static void resweep_dirty_weak_pairs() {
weakseginfo *ls;
ptr *pp, *ppend, *nl, p;
IGEN from_g, min_youngest, youngest, tg, mcg, pg;
uptr d;
tg = target_generation;
mcg = max_copied_generation;
for (ls = weaksegments_to_resweep; ls != NULL; ls = ls->next) {
seginfo *dirty_si = ls->si;
from_g = dirty_si->generation;
nl = from_g == tg ? (ptr *)orig_next_loc[space_weakpair] : (ptr *)S_G.next_loc[space_weakpair][from_g];
ppend = build_ptr(dirty_si->number, 0);
min_youngest = 0xff;
d = 0;
while (d < cards_per_segment) {
uptr dend = d + sizeof(iptr);
iptr *dp = (iptr *)(dirty_si->dirty_bytes + d);
/* check sizeof(iptr) bytes at a time for 0xff */
if (*dp == -1) {
d = dend;
ppend += bytes_per_card;
} else {
while (d < dend) {
pp = ppend;
ppend += bytes_per_card / sizeof(ptr);
if (pp <= nl && nl < ppend) ppend = nl;
if (dirty_si->dirty_bytes[d] <= mcg) {
youngest = ls->youngest[d];
while (pp < ppend) {
p = *pp;
seginfo *si;
/* handle car field */
if (!IMMEDIATE(p) && (si = MaybeSegInfo(ptr_get_segment(p))) != NULL) {
if (si->space & space_old) {
if (locked(p)) {
youngest = tg;
} else if (FWDMARKER(p) == forward_marker && TYPEBITS(p) != type_flonum) {
*pp = FWDADDRESS(p);
youngest = tg;
} else {
*pp = Sbwp_object;
}
} else {
if (youngest != tg && (pg = si->generation) < youngest)
youngest = pg;
}
}
/* skip cdr field */
pp += 2;
}
dirty_si->dirty_bytes[d] = youngest < from_g ? youngest : 0xff;
if (youngest < min_youngest) min_youngest = youngest;
} else {
if (dirty_si->dirty_bytes[d] < min_youngest) min_youngest = dirty_si->dirty_bytes[d];
}
d += 1;
}
}
}
record_dirty_segment(from_g, min_youngest, dirty_si);
}
}
static ptr pending_ephemerons = NULL;
/* Ephemerons that we haven't looked at, chained through `next`. */
static ptr trigger_ephemerons = NULL;
/* Ephemerons that we've checked and added to segment triggers,
chained through `next`. Ephemerons attached to a segment are
chained through `trigger-next`. A #t in `trigger-next` means that
the ephemeron has been processed, so we don't need to remove it
from the trigger list in a segment. */
static ptr repending_ephemerons = NULL;
/* Ephemerons in `trigger_ephemerons` that we need to inspect again,
remove from the triggering segment and chained here through
`trigger-next`. */
static void add_ephemeron_to_pending(ptr pe) {
EPHEMERONNEXT(pe) = pending_ephemerons;
pending_ephemerons = pe;
}
static void add_trigger_ephemerons_to_repending(ptr pe) {
ptr last_pe = pe, next_pe = EPHEMERONTRIGGERNEXT(pe);
while (next_pe != NULL) {
last_pe = next_pe;
next_pe = EPHEMERONTRIGGERNEXT(next_pe);
}
EPHEMERONTRIGGERNEXT(last_pe) = repending_ephemerons;
repending_ephemerons = pe;
}
static void check_pending_ephemeron(ptr pe, int add_to_trigger) {
ptr p;
seginfo *si;
p = Scar(pe);
if (!IMMEDIATE(p) && (si = MaybeSegInfo(ptr_get_segment(p))) != NULL && si->space & space_old && !locked(p)) {
if (FWDMARKER(p) == forward_marker && TYPEBITS(p) != type_flonum) {
INITCAR(pe) = FWDADDRESS(p);
relocate(&INITCDR(pe))
if (!add_to_trigger)
EPHEMERONTRIGGERNEXT(pe) = Strue; /* in trigger list, #t means "done" */
} else {
/* Not reached, so far; install as trigger */
EPHEMERONTRIGGERNEXT(pe) = si->trigger_ephemerons;
si->trigger_ephemerons = pe;
if (add_to_trigger) {
EPHEMERONNEXT(pe) = trigger_ephemerons;
trigger_ephemerons = pe;
}
}
} else {
relocate(&INITCDR(pe))
}
}
static void check_pending_ephemerons() {
ptr pe, next_pe;
pe = pending_ephemerons;
pending_ephemerons = NULL;
while (pe != NULL) {
next_pe = EPHEMERONNEXT(pe);
check_pending_ephemeron(pe, 1);
pe = next_pe;
}
pe = repending_ephemerons;
repending_ephemerons = NULL;
while (pe != NULL) {
next_pe = EPHEMERONTRIGGERNEXT(pe);
check_pending_ephemeron(pe, 0);
pe = next_pe;
}
}
static void clear_trigger_ephemerons() {
ptr pe;
if (pending_ephemerons != NULL)
S_error_abort("clear_trigger_ephemerons(gc): non-empty pending list");
pe = trigger_ephemerons;
trigger_ephemerons = NULL;
while (pe != NULL) {
if (EPHEMERONTRIGGERNEXT(pe) == Strue) {
/* The ephemeron was triggers and retains its key and value */
} else {
seginfo *si;
ptr p = Scar(pe);
/* Key never became reachable, so clear key and value */
INITCAR(pe) = Sbwp_object;
INITCDR(pe) = Sbwp_object;
/* Remove trigger */
si = SegInfo(ptr_get_segment(p));
si->trigger_ephemerons = NULL;
}
pe = EPHEMERONNEXT(pe);
}
}