The Racket repository
Go to file
Matthew Flatt 1baa0da991 use opportunistic 1-shot continuations for attachments
An attachment continuation link can be a 1-shot continuation, but
the existing 1-short continuation implementation tends to work
less well than mutishot continuations. An opportunistic 1-shot
continuation is like a multi-shot continuation, but if it is
called from a stack that is adjacent to the continuation, then
the stack is merged with the continuation's stack.

original commit: ea1eb3c5192d644ad4c4cbf755bcb6fd438cc364
2019-02-08 13:59:28 -08:00
.travis use uuid_generate on unix-like systems for S_unique_id 2018-09-19 10:19:03 -04:00
c use opportunistic 1-shot continuations for attachments 2019-02-08 13:59:28 -08:00
csug Merge branch 'eqfl' of github.com:mflatt/ChezScheme 2019-01-22 05:57:17 -07:00
examples Updated csug socket code to match that in examples folder 2018-06-18 09:28:53 -04:00
makefiles added uninstall target for Unix-like systems 2018-08-31 13:22:47 -04:00
mats Merge branch 'fpstr' of github.com:mflatt/ChezScheme 2019-02-01 05:26:06 -07:00
nanopass@1f7e80bcff latest nanopass 2016-06-27 09:45:20 -04:00
release_notes Merge branch 'eqfl' of github.com:mflatt/ChezScheme 2019-01-22 05:57:17 -07:00
s use opportunistic 1-shot continuations for attachments 2019-02-08 13:59:28 -08:00
stex@3bd2b86cc5 - compile-whole-program and compile-whole-library now copy the hash-bang 2016-05-04 20:35:38 -04:00
unicode initial upload of open-source release 2016-04-26 10:04:54 -04:00
wininstall add PDB files for Windows 2018-09-07 16:56:33 -04:00
zlib@cacf7f1d4e updated zlib to latest version, version 1.2.11 2017-02-13 22:27:21 -05:00
.gitattributes Adding .gitattributes files to correct language stats 2016-10-12 11:47:53 -04:00
.gitignore Added generated docs and intermediate files to .gitignore 2017-10-14 12:32:44 -04:00
.gitmodules - compile-whole-program and compile-whole-library now copy the hash-bang 2016-05-04 20:35:38 -04:00
.travis.yml use uuid_generate on unix-like systems for S_unique_id 2018-09-19 10:19:03 -04:00
bintar - updated version to 9.5.1 2017-10-11 19:57:53 -04:00
BUILDING use uuid_generate on unix-like systems for S_unique_id 2018-09-19 10:19:03 -04:00
CHARTER.md initial upload of open-source release 2016-04-26 10:04:54 -04:00
checkin changed copyright year to 2017 2017-04-06 11:41:33 -04:00
configure add --disable-curses option 2018-10-22 19:38:08 -06:00
CONTRIBUTING.md - added custom install options. workarea creates an empty config.h, 2016-05-06 18:30:06 -04:00
LICENSE initial upload of open-source release 2016-04-26 10:04:54 -04:00
LOG Merge branch 'fpstr' of github.com:mflatt/ChezScheme 2019-02-01 05:26:06 -07:00
newrelease Makefile-csug.in install target is now consistent with the project 2018-03-28 09:25:20 -07:00
NOTICE - updated version to 9.5.1 2017-10-11 19:57:53 -04:00
README.md Changed the travis-ci monitoring image to match the current brnach (master). 2018-04-09 21:47:03 -04:00
scheme.1.in spelling 2017-12-04 09:35:31 +00:00
workarea attempt to stabilize timing tests let-values source-caching 2017-10-29 17:48:43 -04:00

Build Status

Chez Scheme is both a programming language and an implementation of that language, with supporting tools and documentation.

As a superset of the language described in the Revised6 Report on the Algorithmic Language Scheme (R6RS), Chez Scheme supports all standard features of Scheme, including first-class procedures, proper treatment of tail calls, continuations, user-defined records, libraries, exceptions, and hygienic macro expansion.

Chez Scheme also includes extensive support for interfacing with C and other languages, support for multiple threads possibly running on multiple cores, non-blocking I/O, and many other features.

The Chez Scheme implementation consists of a compiler, run-time system, and programming environment. Although an interpreter is available, all code is compiled by default. Source code is compiled on-the-fly when loaded from a source file or entered via the shell. A source file can also be precompiled into a stored binary form and automatically recompiled when its dependencies change. Whether compiling on the fly or precompiling, the compiler produces optimized machine code, with some optimization across separately compiled library boundaries. The compiler can also be directed to perform whole-program compilation, which does full cross-library optimization and also reduces a program and the libraries upon which it depends to a single binary.

The run-time system interfaces with the operating system and supports, among other things, binary and textual (Unicode) I/O, automatic storage management (dynamic memory allocation and generational garbage collection), library management, and exception handling. By default, the compiler is included in the run-time system, allowing programs to be generated and compiled at run time, and storage for dynamically compiled code, just like any other dynamically allocated storage, is automatically reclaimed by the garbage collector.

The programming environment includes a source-level debugger, a mechanism for producing HTML displays of profile counts and program "hot spots" when profiling is enabled during compilation, tools for inspecting memory usage, and an interactive shell interface (the expression editor, or "expeditor" for short) that supports multi-line expression editing.

The R6RS core of the Chez Scheme language is described in The Scheme Programming Language, which also includes an introduction to Scheme and a set of example programs. Chez Scheme's additional language, run-time system, and programming environment features are described in the Chez Scheme User's Guide. The latter includes a shared index and a shared summary of forms, with links where appropriate to the former, so it is often the best starting point.

Get started with Chez Scheme by Building Chez Scheme.

For more information see the Chez Scheme Project Page.