
* bernoulli -> bernoulli-number * farey -> farey-sequence * fibonacci/mod -> modular-fibonacci * order -> unit-group-order * orders -> unit-group-orders Documented `make-fibonacci' and `make-modular-fibonacci' Reworked text about loading external libraries in docs for `math/bigfloat' Removed type aliases like Z, Q, Prime (I like them, but TR was printing them in unexpected places like array return types)
206 lines
7.4 KiB
Racket
206 lines
7.4 KiB
Racket
#lang typed/racket/base
|
|
|
|
#|
|
|
Algorithm for the majority of eta's domain from
|
|
|
|
P. Borwein. An Efficient Algorithm for the Riemann Zeta Function.
|
|
|#
|
|
|
|
(require racket/fixnum
|
|
"../../flonum.rkt"
|
|
"../../base.rkt"
|
|
"../number-theory/factorial.rkt"
|
|
"../number-theory/bernoulli.rkt"
|
|
"../polynomial/chebyshev.rkt"
|
|
"gamma.rkt"
|
|
"stirling-error.rkt")
|
|
|
|
(provide fleta flzeta
|
|
eta zeta)
|
|
|
|
(define +eta-max.0 53.99999999955306)
|
|
(define +zeta-max.0 53.000000000670404)
|
|
|
|
;; Error <= 1 ulp for 0 <= x <= 0.04
|
|
(define fleta-taylor-0
|
|
(make-flpolyfun
|
|
(0.5
|
|
+2.25791352644727432363097614947441071785897339e-1
|
|
-3.05145718840280522586220206685108673985433522e-2
|
|
-3.91244691530275106760124536428014526534772501e-3
|
|
+2.08483152359513300940797999527700394516178740e-3
|
|
-3.12274485703922093874348990729689586909277588e-4
|
|
+4.77866286231754699184106581473688337626826621e-6
|
|
+6.81492916627787647157234076681326635240242752e-6)))
|
|
|
|
(define fleta-cheby-0-1
|
|
(inline-chebyshev-flpoly-fun
|
|
0.0 1.0
|
|
(1.201451085000215786341948016934590750096
|
|
0.09659235221993630986901377398183709103273
|
|
-0.004162536123697811956855631042802249558704
|
|
-1.823459118570897951644789418281880496971e-5
|
|
1.057437661524516894212763161453537729375e-5
|
|
-5.276357969271112185781725261857608168314e-7
|
|
9.552883431770909233660820857569776676994e-9
|
|
2.861275947684961245106758674027061705788e-10
|
|
-2.592164434350750739588078107978177224236e-11
|
|
8.915497281646523022154515860475428889141e-13
|
|
-1.447759589742495761488938114822542491701e-14
|
|
-1.629339340198539399979819526388023402444e-16
|
|
1.846901346319333008905200116299163652954e-17)))
|
|
|
|
(define fleta-cheby-neg-1.5-0
|
|
(inline-chebyshev-flpoly-fun
|
|
-1.5 0.0
|
|
(0.6249707175603271538769600167574752420857
|
|
0.1919290294856821784120025035346336182627
|
|
-0.003267513343418322858117903176882496211178
|
|
-0.001266607295556663909608241164197267248528
|
|
1.229333530745096620548304292135771666374e-4
|
|
-2.895947350460977592953532943362896903995e-6
|
|
-3.416581692876350748659539557978633940172e-7
|
|
3.837933497475585903016599027301413075615e-8
|
|
-1.775011660163000411058608111537020096243e-9
|
|
1.823510907947069149164464718906140458455e-11
|
|
3.270513023690372128256583347736563273382e-12
|
|
-2.650468446042741339295818711051485655948e-13
|
|
1.078303611477515364506213006324611739967e-14
|
|
-1.971960766890138166024311496731213878603e-16
|
|
-5.923220277992641912614957330192473539923e-18)))
|
|
|
|
|
|
(: make-ds (Positive-Index -> FlVector))
|
|
(define (make-ds n)
|
|
(define ds
|
|
(cdr
|
|
(reverse
|
|
(for/fold: ([lst : (Listof Real) (list 0)]) ([i (in-range (+ n 1))])
|
|
(cons (+ (car lst)
|
|
(/ (* n (factorial (+ n i -1)) (expt 4 i))
|
|
(* (factorial (- n i)) (factorial (* 2 i)))))
|
|
lst)))))
|
|
(apply flvector (map fl ds)))
|
|
|
|
(define n 22) ; 21 is enough to get about 16 digits; one more plays it safe
|
|
(define ds (make-ds n))
|
|
(define dn (flvector-ref ds n))
|
|
|
|
(: fleta-borwein (Flonum -> Flonum))
|
|
;; Error <= 4 ulp for s > 0
|
|
(define (fleta-borwein s)
|
|
(let: loop : Flonum ([y : Flonum 0.0]
|
|
[sgn : Flonum 1.0]
|
|
[k : Nonnegative-Fixnum 0])
|
|
(cond [(k . fx< . n)
|
|
(define dy (fl/ (fl* sgn (fl- dn (flvector-ref ds k)))
|
|
(fl* dn (flexp (fl* s (fllog (+ (fl k) 1.0)))))))
|
|
(define new-y (fl+ y dy))
|
|
(cond [((flabs dy) . fl<= . (fl* (fl* 0.5 epsilon.0) (flabs new-y)))
|
|
new-y]
|
|
[else
|
|
(loop new-y (fl* sgn -1.0) (fx+ k 1))])]
|
|
[else y])))
|
|
|
|
(define pi.64 14488038916154245685/4611686018427387904)
|
|
(define euler.64 12535862302449814171/4611686018427387904)
|
|
(define pi.128 267257146016241686964920093290467695825/85070591730234615865843651857942052864)
|
|
|
|
(: flexppi (Flonum -> Flonum))
|
|
(define flexppi (make-flexp/base pi.128))
|
|
|
|
(require math/bigfloat)
|
|
(: fleta (Flonum -> Flonum))
|
|
(define (fleta s)
|
|
(cond [(s . fl> . 0.0)
|
|
(cond [(s . fl> . +eta-max.0) 1.0]
|
|
[(s . fl> . 1.0) (fleta-borwein s)]
|
|
[(s . fl> . 0.04) (fleta-cheby-0-1 s)]
|
|
[else (fleta-taylor-0 s)])]
|
|
[(s . fl< . 0.0)
|
|
(cond [(s . fl= . -inf.0) +nan.0]
|
|
[(s . fl< . -224.5)
|
|
(cond [(fleven? s) 0.0]
|
|
[(fleven? (fltruncate (* 0.5 s))) +inf.0]
|
|
[else -inf.0])]
|
|
[(s . fl< . -171.0)
|
|
(define f (make-flexp/base (/ (* euler.64 pi.64) (inexact->exact (- s)))))
|
|
(* (/ 4.0 pi)
|
|
(flexp-stirling (- s))
|
|
(flsqrt (/ pi (* -0.5 s)))
|
|
(f (* 0.5 s))
|
|
(* s 0.5 (flsinpix (* s 0.5)))
|
|
(f (* 0.5 s)))]
|
|
[(s . fl< . -54.0)
|
|
(* (/ 4.0 pi)
|
|
(flexppi s)
|
|
(* s 0.5 (flsinpix (* s 0.5)))
|
|
(flgamma (- s)))]
|
|
[(s . fl< . -1.5)
|
|
(define 2^s-1 (- (flexpt 2.0 s) 1.0))
|
|
(* (/ 4.0 pi)
|
|
(flexppi s)
|
|
(* s 0.5 (flsinpix (* s 0.5)))
|
|
(flgamma (- s))
|
|
(fleta-borwein (- 1.0 s))
|
|
(/ (* 0.5 (- 2^s-1 1.0)) 2^s-1))]
|
|
[(s . fl< . -0.05)
|
|
(fleta-cheby-neg-1.5-0 s)]
|
|
[else
|
|
(fleta-taylor-0 s)])]
|
|
[(s . fl= . 0.0) 0.5]
|
|
[else +nan.0]))
|
|
|
|
(: flzeta (Flonum -> Flonum))
|
|
(define (flzeta s)
|
|
(cond [(s . fl> . +zeta-max.0) 1.0]
|
|
[(s . fl> . -171.0)
|
|
(define c
|
|
(cond [(s . fl< . -1.0) (- (- (fl/ 2.0 (flexpt 2.0 s)) 1.0))]
|
|
[else (- (flexpm1 (fl* (fl- 1.0 s) (fllog 2.0))))]))
|
|
(fl/ (fleta s) c)]
|
|
[(and (s . fl> . -266.5) (s . fl< . 0.0)) ; s < 0 keeps TR happy
|
|
(define f (make-flexp/base (/ (* euler.64 pi.64) (inexact->exact (- s)))))
|
|
(* (/ 4.0 pi)
|
|
(flexp-stirling (- s))
|
|
(flsqrt (/ pi (* -0.5 s)))
|
|
(f (* 0.5 s))
|
|
(* s 0.5 (flsinpix (* s 0.5)))
|
|
(* (flexpt 2.0 (- s 1.0))
|
|
(- (flexpt 2.0 s) 1.0))
|
|
(f (* 0.5 s)))]
|
|
[(s . fl> . -inf.0)
|
|
(cond [(fleven? s) 0.0]
|
|
[(fleven? (fltruncate (* 0.5 s))) -inf.0]
|
|
[else +inf.0])]
|
|
[else +nan.0]))
|
|
|
|
(: eta (case-> (Nonpositive-Integer -> Exact-Rational)
|
|
(Flonum -> Flonum)
|
|
(Real -> Real)))
|
|
(define (eta s)
|
|
(cond [(flonum? s) (fleta s)]
|
|
[(single-flonum? s) (fleta (fl s))]
|
|
[(integer? s)
|
|
(cond [(zero? s) 1/2]
|
|
[(negative? s) (define k (- 1 s))
|
|
(* (/ (bernoulli-number k) k) (- (expt 2 k) 1))]
|
|
[else (fleta (fl s))])]
|
|
[else
|
|
(fleta (fl s))]))
|
|
|
|
(: zeta (case-> (Nonpositive-Integer -> Exact-Rational)
|
|
(Flonum -> Flonum)
|
|
(Real -> Real)))
|
|
(define (zeta s)
|
|
(cond [(flonum? s) (flzeta s)]
|
|
[(single-flonum? s) (flzeta (fl s))]
|
|
[(integer? s)
|
|
(cond [(zero? s) -1/2]
|
|
[(negative? s) (define k (- 1 s))
|
|
(- (/ (bernoulli-number k) k))]
|
|
[(eqv? s 1) (raise-argument-error 'zeta "Real, not One" s)]
|
|
[else (flzeta (fl s))])]
|
|
[else
|
|
(flzeta (fl s))]))
|