84 lines
3.3 KiB
Racket
84 lines
3.3 KiB
Racket
#lang scribble/doc
|
|
|
|
@(require scribble/manual "shared.ss"
|
|
(for-label scheme
|
|
teachpack/htdp/matrix
|
|
lang/posn))
|
|
|
|
@teachpack["matrix"]{Matrix Operations}
|
|
|
|
The experimental teachpack supports matrices and matrix operations. A
|
|
matrix is just a rectangle of 'objects'. It is displayed as an image, just
|
|
like the images from @secref["image"]. Matrices are images and, indeed,
|
|
scenes in the sense of the @secref["world"].
|
|
|
|
@emph{No educational materials involving matrices exist.}
|
|
|
|
The operations access a matrix in the usual (school-mathematics) manner:
|
|
row first, column second.
|
|
|
|
The operations aren't tuned for efficiency so don't expect to build
|
|
programs that process lots of data.
|
|
|
|
@declare-exporting[teachpack/htdp/matrix]
|
|
|
|
@deftech{Rectangle}
|
|
A Rectangle (of X) is a non-empty list of lists containing X where all
|
|
elements of the list are lists of equal (non-zero) length.
|
|
|
|
@defproc[(matrix? [o any/c]) boolean?]{
|
|
determines whether the given object is a matrix?}
|
|
|
|
@defproc[(matrix-rows [m matrix?]) natural-number/c]{
|
|
determines how many rows this matrix @scheme[m] has}
|
|
|
|
@defproc[(matrix-cols [m matrix?]) natural-number/c]{
|
|
determines ow many columns this matrix @scheme[m] has}
|
|
|
|
@defproc[(rectangle->matrix [r (unsyntax @tech{Rectangle})]) matrix?]{
|
|
creates a matrix from the given @tech{Rectangle}}
|
|
|
|
@defproc[(matrix->rectangle [m matrix?]) (unsyntax @tech{Rectangle})]{
|
|
creates a rectangle from this matrix @scheme[m]}
|
|
|
|
@defproc[(make-matrix [n natural-number/c][m natural-number/c][l (Listof X)]) matrix?]{
|
|
creates an @scheme[n] by @scheme[m] matrix from @scheme[l]
|
|
|
|
NOTE: @scheme[make-matrix] would consume an optional number of entries, if
|
|
it were like @scheme[make-vector]}
|
|
|
|
@defproc[(build-matrix
|
|
[n natural-number/c][m natural-number/c]
|
|
[f (-> (and/c natural-number/c (</c m))
|
|
(and/c natural-number/c (</c n))
|
|
any/c)])
|
|
matrix?]{
|
|
creates an @scheme[n] by @scheme[m] matrix by applying @scheme[f] to @scheme[(0,0)],
|
|
@scheme[(0,1)], ..., (@scheme[(sub1 m),(sub1 n)])}
|
|
|
|
@defproc[(matrix-ref [m matrix?][i (and/c natural-number/c (</c (matrix-rows m)))][j (and/c natural-number/c (</c (matrix-rows m)))]) any/c]{
|
|
retrieve the item at (@scheme[i],@scheme[j]) in matrix @scheme[m]}
|
|
|
|
@defproc[(matrix-set [m matrix?][i (and/c natural-number/c (</c (matrix-rows m)))][j (and/c natural-number/c (</c (matrix-rows m)))]
|
|
[x any/c])
|
|
matrix?]{
|
|
creates a new matrix with @scheme[x] at (@scheme[i],@scheme[j]) and all
|
|
other places the same as in @scheme[m]}
|
|
|
|
@defproc[(matrix-where? [m matrix?] [pred? (-> any/c boolean?)]) (listof posn?)]{
|
|
@scheme[(matrix-where? M P)] produces a list of @scheme[(make-posn i j)]
|
|
such that @scheme[(P (matrix-ref M i j))] holds}
|
|
|
|
@defproc[(matrix-render [m matrix?]) (unsyntax @tech{Rectangle})]{
|
|
renders this matrix @scheme[m] as a rectangle of strings}
|
|
|
|
@defproc[(matrix-minor [m matrix?][i (and/c natural-number/c (</c (matrix-rows m)))][j (and/c natural-number/c (</c (matrix-rows m)))])
|
|
matrix?]{
|
|
creates a matrix minor from @scheme[m] at (@scheme[i],@scheme[j])}
|
|
|
|
@defproc[(matrix-set! [m matrix?][i (and/c natural-number/c (</c (matrix-rows m)))][j (and/c natural-number/c (</c (matrix-rows m)))]
|
|
[x any/c])
|
|
matrix?]{
|
|
like @scheme[matrix-set] but uses a destructive update}
|
|
|