racket/collects/mrflow/set-list.ss
Philippe Meunier f5fcc1ddec remove info.ss for now
svn: r4186
2006-08-29 09:23:24 +00:00

348 lines
15 KiB
Scheme

; sets implementation, using lists.
; - value equality based on eq? by default, uses equal? if given the 'equal flag
; - raises exn:set:value-not-found if value not in set when trying
; to remove a value.
; - raise exn:set:duplicate-value by default when trying to add a value to a
; set where it already exists
; - strange things might happen if you use set-union, set-intersection,
; or set-difference with two sets that don't use the same comparaison
; function: you might end up with duplicate values in some sets.
;
; Note: lots of set! and tail-recursive loops in this code, for speed
(module set-list (lib "mrflow.ss" "mrflow")
(require
(lib "list.ss") ; for foldr
(lib "etc.ss") ; for opt-lambda
"set-exn.ss" ; no prefix so we can re-provide
)
; table = (listof (cons value value))
(define-struct set (=? cardinality table))
(provide/contract
(exn:set? (any/c . -> . boolean?))
(struct (exn:set:value-not-found exn:set) ((message (and/c string? immutable?))
(continuation-mark-set continuation-mark-set?)
(set set?)
(value any/c)))
(struct (exn:set:duplicate-value exn:set) ((message (and/c string? immutable?))
(continuation-mark-set continuation-mark-set?)
(set set?)
(value any/c)))
(set-make (() ((symbols 'equal)) . opt-> . set?))
(set-reset (set? . -> . set?))
(set? (any/c . -> . boolean?))
(set-set ((set? any/c) (boolean?) . opt-> . set?))
(set-in? (set? any/c . -> . boolean?))
(set-remove ((set? any/c) (boolean?) . opt-> . set?))
(set-cardinality (set? . -> . non-negative-exact-integer?))
(set-empty? (set? . -> . boolean?))
(set-copy (set? . -> . set?))
(set-map (set? (any/c . -> . any) . -> . (listof any/c)))
(set-fold (set? (any/c any/c . -> . any) any/c . -> . any))
(set-for-each (set? (any/c . -> . any) . -> . set?))
(set-for-each! (set? (any/c . -> . any) . -> . set?))
(set-filter ((set? (any/c . -> . boolean?)) ((symbols 'new 'same)) . opt-> . set?))
(set-union ((set? set?) ((symbols 'new 'first 'second)) . opt-> . set?))
(set-intersection ((set? set?) ((symbols 'new 'first 'second)) . opt-> . set?))
(set-difference ((set? set?) ((symbols 'new 'first 'second)) . opt-> . set?))
(set-subset? (set? set? . -> . boolean?))
)
; (opt 'equal) -> set
; we test the optional argument ourselves to preserve data abstraction even in the
; presence of an exception
(define set-make
(case-lambda
[() (make-set eq? 0 '())]
[(flag) (make-set equal? 0 '())]))
; set -> set
; doesn't change =?
(define (set-reset set)
(set-set-table! set '())
(set-set-cardinality! set 0)
set)
; value -> boolean
; set? comes from the structure definition
; set value (opt boolean) -> set
(define set-set
(opt-lambda (set value (exn? #t))
(let ([=? (set-=? set)]
[original-table (set-table set)])
(set-set-table! set (let loop ([table original-table])
(if (null? table)
(begin
(set-set-cardinality! set (add1 (set-cardinality set)))
(cons value original-table))
(if (=? (car table) value)
(if exn?
(raise-duplicate-value-exn "set-set" set value)
; silently ignore
original-table)
(loop (cdr table)))))))
set))
; set value -> boolean
(define (set-in? set value)
(let ([=? (set-=? set)])
(ormap (lambda (current-value)
(=? current-value value))
(set-table set))))
; set value (opt boolean) -> set
(define set-remove
(opt-lambda (set value (exn? #t))
(let ([=? (set-=? set)]
[original-table (set-table set)])
(set-set-table! set
(let loop ([table original-table]
[previous #f])
(if (null? table)
(if exn?
(raise-value-not-found-exn "set-remove" set value)
; silently ignore
original-table)
(if (=? (car table) value)
(begin
(set-set-cardinality! set (sub1 (set-cardinality set)))
(if previous
(begin
; return shortened table
(set-cdr! previous (cdr table))
original-table)
(cdr original-table)))
(loop (cdr table) table))))))
set))
; set -> exact-non-negative-integer
; set-cardinality comes from the structure definition
; set -> boolean
(define (set-empty? set)
(= 0 (set-cardinality set)))
; (listof value) (listof value) -> (listof value)
; creates a (reversed) copy of l1 (to prevent list sharing between sets) and prefixes l2 with it
(define (copy-reverse-and-prefix-lists l1 l2)
(let loop ([l1 l1]
[l2 l2])
(if (null? l1)
l2
(loop (cdr l1) (cons (car l1) l2)))))
; (listof value) -> (listof value)
(define (copy-list l)
(copy-reverse-and-prefix-lists l '()))
; set -> set
(define (set-copy set)
(make-set (set-=? set)
(set-cardinality set)
(copy-list (set-table set))))
; set (value -> value) -> (listof value)
(define (set-map set f)
(map f (set-table set)))
; set (value value -> value) value -> value
(define (set-fold set f acc)
(foldr f acc (set-table set)))
; set (value -> value) -> set
(define (set-for-each set f)
(for-each f (set-table set))
set)
; set (value -> value) -> set
; it's up to the user to make sure f is injective. Otherwise we might end up with
; duplicates in the set.
; we know lists are never shared between sets, so we can set-cdr!
(define (set-for-each! set f)
(let loop ([table (set-table set)])
(unless (null? table)
(set-car! table (f (car table)))
(loop (cdr table))))
set)
; set (value -> boolean) (opt (union 'new 'same)) -> set
(define set-filter
(let (; set (value -> boolean) -> set
[filter-into-new-set
(lambda (set tester)
(let loop ([table (set-table set)]
[new-table '()]
[count 0])
(if (null? table)
(make-set (set-=? set) count new-table)
(let ([value (car table)])
(if (tester value)
(loop (cdr table) (cons value new-table) (add1 count))
(loop (cdr table) new-table count))))))])
(opt-lambda (set tester (which-set 'new))
(let ([new-set (filter-into-new-set set tester)])
(case which-set
[(new) new-set]
[(same)
(set-set-table! set (set-table new-set))
(set-set-cardinality! set (set-cardinality new-set))
set])))))
; set set (opt (union 'new 'first 'second)) -> set
(define set-union
(opt-lambda (set1 set2 (which-set 'new))
(let* ([=? (set-=? set1)]
[new-set
(let loop ([table1 (set-table set1)]
; we shouldn't modify the original list
[table2 (copy-list (set-table set2))]
[count1 (set-cardinality set1)]
[count2 (set-cardinality set2)]
[acc '()]
[count 0])
(if (null? table1)
; we have already copied table2, so we can destructively modify it
(make-set =? (+ count count2)
(append! table2 acc))
(if (null? table2)
(make-set =? (+ count count1)
(copy-reverse-and-prefix-lists table1 acc))
(let ([value1 (car table1)])
; search table2 for same value
(let loop-set2 ([t2 table2]
[previous #f])
(if (null? t2)
(begin
(set! acc (cons value1 acc))
(set! count (add1 count))
(set! table1 (cdr table1))
(set! count1 (sub1 count1)))
(if (=? value1 (car t2))
(begin
(set! acc (cons value1 acc))
(set! count (add1 count))
(set! table1 (cdr table1))
(set! count1 (sub1 count1))
(if previous
(set-cdr! previous (cdr t2))
(set! table2 (cdr table2)))
(set! count2 (sub1 count2)))
(loop-set2 (cdr t2) t2))))
(loop table1 table2 count1 count2 acc count)))))])
(case which-set
[(new) new-set]
[(first)
(set-set-cardinality! set1 (set-cardinality new-set))
(set-set-table! set1 (set-table new-set))
set1]
[(second)
(set-set-cardinality! set2 (set-cardinality new-set))
(set-set-table! set2 (set-table new-set))
set2]))))
; set set (opt (union 'new 'first 'second)) -> set
(define set-intersection
(opt-lambda (set1 set2 (which-set 'new))
(let* ([=? (set-=? set1)]
[new-set
(let loop ([table1 (set-table set1)]
; we shouldn't modify the original list
[table2 (copy-list (set-table set2))]
[count1 (set-cardinality set1)]
[count2 (set-cardinality set2)]
[acc '()]
[count 0])
(if (null? table1)
(make-set =? count acc)
(if (null? table2)
(make-set =? count acc)
(let ([value1 (car table1)])
; search table2 for same value
(let loop-set2 ([t2 table2]
[previous #f])
(if (null? t2)
(begin
(set! table1 (cdr table1))
(set! count1 (sub1 count1)))
(if (=? value1 (car t2))
(begin
(set! acc (cons value1 acc))
(set! count (add1 count))
(set! table1 (cdr table1))
(set! count1 (sub1 count1))
(if previous
(set-cdr! previous (cdr t2))
(set! table2 (cdr table2)))
(set! count2 (sub1 count2)))
(loop-set2 (cdr t2) t2))))
(loop table1 table2 count1 count2 acc count)))))])
(case which-set
[(new) new-set]
[(first)
(set-set-cardinality! set1 (set-cardinality new-set))
(set-set-table! set1 (set-table new-set))
set1]
[(second)
(set-set-cardinality! set2 (set-cardinality new-set))
(set-set-table! set2 (set-table new-set))
set2]))))
; set set (opt (union 'new 'first 'second)) -> set
(define set-difference
(opt-lambda (set1 set2 (which-set 'new))
(let* ([=? (set-=? set1)]
[new-set
(let loop ([table1 (set-table set1)]
; we shouldn't modify the original list
[table2 (copy-list (set-table set2))]
[count1 (set-cardinality set1)]
[count2 (set-cardinality set2)]
[acc '()]
[count 0])
(if (null? table1)
(make-set =? count acc)
(if (null? table2)
(make-set =? (+ count count1)
(copy-reverse-and-prefix-lists table1 acc))
(let ([value1 (car table1)])
; search table2 for same value
(let loop-set2 ([t2 table2]
[previous #f])
(if (null? t2)
(begin
(set! acc (cons value1 acc))
(set! count (add1 count))
(set! table1 (cdr table1))
(set! count1 (sub1 count1)))
(if (=? value1 (car t2))
(begin
(set! table1 (cdr table1))
(set! count1 (sub1 count1))
(if previous
(set-cdr! previous (cdr t2))
(set! table2 (cdr table2)))
(set! count2 (sub1 count2)))
(loop-set2 (cdr t2) t2))))
(loop table1 table2 count1 count2 acc count)))))])
(case which-set
[(new) new-set]
[(first)
(set-set-cardinality! set1 (set-cardinality new-set))
(set-set-table! set1 (set-table new-set))
set1]
[(second)
(set-set-cardinality! set2 (set-cardinality new-set))
(set-set-table! set2 (set-table new-set))
set2]))))
; set set -> boolean
(define (set-subset? set1 set2)
(andmap (lambda (value)
(set-in? set2 value))
(set-table set1)))
)