racket/collects/syntax/parse/private/runtime-progress.rkt
2010-11-03 18:09:21 -06:00

267 lines
7.8 KiB
Racket

#lang racket/base
(require unstable/struct
syntax/stx
"minimatch.rkt")
(provide ps-empty
ps-add-car
ps-add-cdr
ps-add-post
ps-add-stx
ps-add-unbox
ps-add-unvector
ps-add-unpstruct
ps-add-opaque
ps->stx+index
ps-context-syntax
ps-difference
invert-ps
maximal/progress
progress->sexpr)
#|
Progress (PS) is a non-empty list of Progress Frames (PF).
A PF is one of
- stx ;; "Base" frame
- 'car
- nat ;; Represents that many repeated cdrs
- 'post
- 'opaque
stx frame introduced
- always at base (that is, by syntax-parse)
- if syntax-parse has #:context arg, then two stx frames at bottom:
(list to-match-stx context-stx)
- by #:with/~parse
- by #:fail-*/#:when/~fail & stx
Interpretation: Inner PS structures are applied first.
eg, (list 'car 1 #'___)
means ( car of ( cdr once of the term ) )
NOT apply car, then apply cdr once, then stop
|#
(define (ps-empty stx ctx)
(if (eq? stx ctx)
(list stx)
(list stx ctx)))
(define (ps-add-car parent)
(cons 'car parent))
(define (ps-add-cdr parent [times 1])
(if (zero? times)
parent
(match (car parent)
[(? exact-positive-integer? n)
(cons (+ times n) (cdr parent))]
[_
(cons times parent)])))
(define (ps-add-post parent)
(cons 'post parent))
(define (ps-add-stx parent stx)
(cons stx parent))
(define (ps-add-unbox parent)
(ps-add-car parent))
(define (ps-add-unvector parent)
(ps-add-car parent))
(define (ps-add-unpstruct parent)
(ps-add-car parent))
(define (ps-add-opaque parent)
(cons 'opaque parent))
;; ps-context-syntax : Progress -> syntax
(define (ps-context-syntax ps)
;; Bottom frame is always syntax
(car (reverse ps)))
;; ps->stx+index : Progress -> (values stx nat)
;; Gets the innermost stx that should have a real srcloc, and the offset
;; (number of cdrs) within that where the progress ends.
(define (ps->stx+index ps)
(define (interp ps)
(match ps
[(cons (? syntax? stx) _) stx]
[(cons 'car parent)
(let* ([d (interp parent)]
[d (if (syntax? d) (syntax-e d) d)])
(cond [(pair? d) (car d)]
[(vector? d) (vector->list d)]
[(box? d) (unbox d)]
[(prefab-struct-key d) (struct->list d)]
[else (error 'ps->stx+index "INTERNAL ERROR: unexpected: ~e" d)]))]
[(cons (? exact-positive-integer? n) parent)
(for/fold ([stx (interp parent)]) ([i (in-range n)])
(stx-cdr stx))]
[(cons 'post parent)
(interp parent)]))
(let ([ps (ps-truncate-opaque ps)])
(match ps
[(cons (? syntax? stx) _)
(values stx 0)]
[(cons 'car parent)
(values (interp ps) 0)]
[(cons (? exact-positive-integer? n) parent)
(values (interp parent) n)]
[(cons 'post parent)
(ps->stx+index parent)])))
;; ps-difference : PS PS -> nat
;; Returns N s.t. B = (ps-add-cdr^N A)
(define (ps-difference a b)
(define (whoops)
(error 'ps-difference "~e is not an extension of ~e"
(progress->sexpr b) (progress->sexpr a)))
(match (list a b)
[(list (cons (? exact-positive-integer? na) pa)
(cons (? exact-positive-integer? nb) pb))
(unless (equal? pa pb) (whoops))
(- nb na)]
[(list pa (cons (? exact-positive-integer? nb) pb))
(unless (equal? pa pb) (whoops))
nb]
[_
(unless (equal? a b) (whoops))
0]))
;; ps-truncate-opaque : PS -> PS
(define (ps-truncate-opaque ps)
(let/ec return
(let loop ([ps ps])
(cond [(null? ps)
null]
[(eq? (car ps) 'opaque)
;; Tricky! We only jump after loop returns,
;; so jump closest to end wins.
(return (loop (cdr ps)))]
[else
;; Either (loop _) jumps, or it is identity
(loop (cdr ps))
ps]))))
#|
Progress ordering
-----------------
Lexicographic generalization of partial order on frames
CAR < CDR < POST, stx incomparable except to self
Progress equality
-----------------
If ps1 = ps2 then both must "blame" the same term,
ie (ps->stx+index ps1) = (ps->stx+index ps2).
|#
;; An Inverted PS (IPS) is a PS inverted for easy comparison.
;; An IPS may not contain any 'opaque frames.
;; invert-ps : PS -> IPS
(define (invert-ps ps)
(reverse (ps-truncate-opaque ps)))
;; maximal/progress : (listof (cons A IPS)) -> (listof (listof A))
;; Returns a list of equivalence sets.
(define (maximal/progress items)
(cond [(null? items)
null]
[(null? (cdr items))
(list (list (car (car items))))]
[else
(let-values ([(rNULL rCAR rCDR rPOST rSTX leastCDR)
(partition/pf items)])
(append (maximal/pf rNULL rCAR rCDR rPOST leastCDR)
(if (pair? rSTX)
(maximal/stx rSTX)
null)))]))
;; partition/pf : (listof (cons A IPS)) -> (listof (cons A IPS))^5 & nat/+inf.0
(define (partition/pf items)
(let ([rNULL null]
[rCAR null]
[rCDR null]
[rPOST null]
[rSTX null]
[leastCDR #f])
(for ([a+ips (in-list items)])
(let ([ips (cdr a+ips)])
(cond [(null? ips)
(set! rNULL (cons a+ips rNULL))]
[(eq? (car ips) 'car)
(set! rCAR (cons a+ips rCAR))]
[(exact-positive-integer? (car ips))
(set! rCDR (cons a+ips rCDR))
(set! leastCDR
(if leastCDR
(min leastCDR (car ips))
(car ips)))]
[(eq? (car ips) 'post)
(set! rPOST (cons a+ips rPOST))]
[(syntax? (car ips))
(set! rSTX (cons a+ips rSTX))]
[else
(error 'syntax-parse "INTERNAL ERROR in partition/pf: ~e" ips)])))
(values rNULL rCAR rCDR rPOST rSTX leastCDR)))
;; maximal/pf : (listof (cons A IPS))^4 & nat/+inf.0-> (listof (listof A))
(define (maximal/pf rNULL rCAR rCDR rPOST leastCDR)
(cond [(pair? rPOST)
(maximal/progress (rmap pop-item-ips rPOST))]
[(pair? rCDR)
(maximal/progress
(rmap (lambda (a+ips)
(let ([a (car a+ips)] [ips (cdr a+ips)])
(cond [(= (car ips) leastCDR)
(cons a (cdr ips))]
[else
(cons a (cons (- (car ips) leastCDR) (cdr ips)))])))
rCDR))]
[(pair? rCAR)
(maximal/progress (rmap pop-item-ips rCAR))]
[(pair? rNULL)
(list (map car rNULL))]
[else
null]))
;; maximal/stx : (listof (cons A IPS)) -> (listof (listof A))
(define (maximal/stx rSTX)
(let ([stxs null]
[table (make-hasheq)])
(for ([a+ips (in-list rSTX)])
(let* ([ips (cdr a+ips)]
[entry (hash-ref table (car ips) null)])
(when (null? entry)
(set! stxs (cons (car ips) stxs)))
(hash-set! table (car ips) (cons a+ips entry))))
(apply append
(map (lambda (key)
(maximal/progress (map pop-item-ips (hash-ref table key))))
stxs))))
;; pop-item-ips : (cons A IPS) -> (cons A IPS)
(define (pop-item-ips a+ips)
(let ([a (car a+ips)]
[ips (cdr a+ips)])
(cons a (cdr ips))))
(define (rmap f xs)
(let rmaploop ([xs xs] [accum null])
(cond [(pair? xs)
(rmaploop (cdr xs) (cons (f (car xs)) accum))]
[else
accum])))
;; == Debugging ==
(provide progress->sexpr)
(define (progress->sexpr ps)
(for/list ([pf (in-list (invert-ps ps))])
(match pf
[(? syntax? stx) 'stx]
['car 'car]
['post 'post]
[(? exact-positive-integer? n) n]
['opaque 'opaque])))