racket/collects/math/private/distributions/impl/binomial-random.rkt
Neil Toronto f2dc2027f6 Initial math library commit. The history for these changes is preserved
in the original GitHub fork:

  https://github.com/ntoronto/racket

Some things about this are known to be broken (most egregious is that the
array tests DO NOT RUN because of a problem in typed/rackunit), about half
has no coverage in the tests, and half has no documentation. Fixes and
docs are coming. This is committed now to allow others to find errors and
inconsistency in the things that appear to be working, and to give the
author a (rather incomplete) sense of closure.
2012-11-16 11:39:51 -07:00

94 lines
3.6 KiB
Racket
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#lang typed/racket/base
#|
Wolfgang Hormann. The Generation of Binomial Random Variates.
|#
(require math/base
math/flonum
"../normal-dist.rkt"
"../dist-struct.rkt")
(provide flbinomial-random)
(: flbinomial-random-small (Flonum Flonum -> Flonum))
;; For n*min(p,1-p) <= 30
(define (flbinomial-random-small n p)
(let-values ([(p q s?) (cond [(p . fl< . 0.5) (values p (fl- 1.0 p) #f)]
[else (values (fl- 1.0 p) p #t)])])
(define q^n (flexpt q n))
(define r (fl/ p q))
(define g (fl* r (fl+ n 1.0)))
(define k
(let: reject : Flonum ()
(let loop ([k 0.0] [f q^n] [u (random)])
(cond [(u . fl< . f) k]
[(k . fl> . 110.0) (reject)]
[else (let ([k (fl+ k 1.0)])
(loop k (fl* f (fl- (fl/ g k) r)) (fl- u f)))]))))
(if s? (fl- n k) k)))
(: flbinomial-random-hormann (Flonum Flonum -> Flonum))
;; For n*min(p,1-p) >= 10
(define (flbinomial-random-hormann n p)
(let-values ([(p q s?) (cond [(p . fl< . 0.5) (values p (fl- 1.0 p) #f)]
[else (values (fl- 1.0 p) p #t)])])
(define σ (flsqrt (* n p q)))
(define m (flfloor (fl* (fl+ n 1.0) p)))
(define b (fl+ 1.15 (fl* 2.53 σ)))
(define a (+ -0.0873 (fl* 0.0248 b) (fl* 0.01 p)))
(define c (fl+ 0.5 (fl* n p)))
(define α (fl* σ (fl+ 2.83 (fl/ 5.1 b))))
(define vr (fl- 0.92 (fl/ 4.2 b)))
(define k
(let: loop : Flonum ()
(define v (random))
(define u (fl- (random) 0.5))
(define us (fl- 0.5 (flabs u)))
(define k (flfloor (fl+ c (fl* u (fl+ b (fl/ (fl* 2.0 a) us))))))
(cond [(or (k . fl< . 0.0) (k . fl> . n)) (loop)]
[(and (us . fl>= . 0.07) (v . fl<= . vr)) k]
[else
(let ([v (fl* v (fl/ α (fl+ b (fl/ a (fl* us us)))))])
(define h (+ (fllog-factorial m)
(fllog-factorial (fl- n m))
(- (fllog-factorial k))
(- (fllog-factorial (fl- n k)))
(fl* (fl- k m) (fllog (fl/ p q)))))
(cond [((fllog v) . fl<= . h) k]
[else (loop)]))])))
(if s? (fl- n k) k)))
(: flbinomial-random-normal (Flonum Flonum -> Flonum))
(define (flbinomial-random-normal n p)
(define q (fl- 1.0 p))
(define μ (fl- (fl* (fl+ n 1.0) p) 0.5))
(define σ (flsqrt (* (+ 1.0 n) p q)))
(define γ (fl/ (fl- q p) σ))
(let loop ()
(define z (flnormal-random 0.0 1.0))
(define k (flround (fl+ μ (fl* σ (fl+ z (fl/ (fl* γ (fl- (fl* z z) 1.0)) 6.0))))))
(if (and (k . fl>= . 0.0) (k . fl<= . n)) k (loop))))
(: flbinomial-normal-appx-error-bound (Flonum Flonum -> Flonum))
;; Returns a bound on the integrated difference between the normal and binomial cdfs
;; See the Berry-Esséen theorem
(define (flbinomial-normal-appx-error-bound n p)
(define q (fl- 1.0 p))
(fl/ (fl* 0.4784 (fl+ (fl* p p) (fl* q q))) (flsqrt (* n p q))))
(: flbinomial-random (Flonum Flonum -> Flonum))
(define (flbinomial-random n p)
(cond [(not (integer? n)) +nan.0]
[(n . fl<= . 0.0) (if (fl= n 0.0) 0.0 +nan.0)]
[(p . fl<= . 0.0) (if (fl= p 0.0) 0.0 +nan.0)]
[(p . fl>= . 1.0) (if (fl= p 1.0) n +nan.0)]
[(and (n . fl> . 1e8)
((flbinomial-normal-appx-error-bound n p) . fl< . (flexp -10.0)))
(flbinomial-random-normal n p)]
[((fl* n (flmin p (fl- 1.0 p))) . fl>= . 10.0)
(flbinomial-random-hormann n p)]
[else
(flbinomial-random-small n p)]))