racket/mats/misc.ms
dybvig 7d145e37a8 Various enhancements and fixes highlighted by profiling performance
and functionality improvements (including support for measuring
coverage), primitive argument-checking fixes, and object-file changes
resulting in reduced load times (and some backward incompatibility):
- annotations are now preserved in object files for debug
  only, for profiling only, for both, or not at all, depending
  on the settings of generate-inspector-information and
  compile-profile.  in particular, when inspector information
  is not enabled but profiling is, source information does
  not leak into error messages and inspector output, though it is
  still available via the profile tools.  The mechanics of this
  involved repurposing the fasl a? parameter to hold an annotation
  flags value when it is not #f and remaking annotations with
  new flags if necessary before emitting them.
    compile.ss, fasl.ss, misc.ms
- altered a number of mats to produce correct results even
  when the 's' directory is profiled.
    misc.ms, cp0.ms, record.ms
- profile-release-counters is now generation-friendly; that is,
  it doesn't look for dropped code objects in generations that have
  not been collected since the last call to profile-release-counters.
  also, it no longer allocates memory when it releases counters.
    pdhtml.ss,
    gc.c, gcwrapper.c, globals.h, prim5.c
- removed unused entry points S_ifile, S_ofile, and S_iofile
    alloc.c, externs.h
- mats that test loading profile info into the compiler's database
  to guide optimization now weed out preexisting entries, in case
  the 's' directory is profiled.
    4.ms, mat.ss, misc.ms, primvars.ms
- counters for dropped code objects are now released at the start
  of each mat group.
    mat.ss
- replaced ehc (enable-heap-check) option with hci (heap-check-interval)
  option that allows heap checks to be performed periodically rather
  than on each collection.  hci=0 is equivalent to ehc=f (disabling
  heap checks) and hci=1 is equivalent to ehc=t (enabling heap
  checks every collection), while hci=100 enables heap checks only
  every 100th collection.  allx and bullyx mats use this feature
  to reduce heap-checking overhead to a more reasonable level.  this
  is particularly important when the 's' directory is profiled,
  since the amount of static memory to be checked is greatly increased
  due to the counters.
    mats/Mf-base, mat.ss, primvars.ms
- added a mat that calls #%show-allocation, which was otherwise not
  being tested.
    misc.ms
- removed a broken primvars mat and updated two others.  in each case,
  the mat was looking for information about primitives in the wrong
  (i.e., old) place and silently succeeding when it didn't find any
  primitives to tests.  the revised mats (along with a few others) now
  check to make sure at least one identifier has the information they
  look for.  the removed mat was checking for library information that
  is now compiled in, so the mat is now unnecessary.  the others were
  (not) doing argument-error checks.  fixing these turned up a handful of
  problems that have also been fixed: a couple of unbound variables in the
  mat driver, two broken primdata declarations, a tardy argument check
  by profile-load-data, and a bug in char-ready?, which was requiring
  an argument rather than defaulting it to the current input port.
    primdata.ss, pdhtml.ss, io.ms,
    primdvars.ms, 4.ms, 6.ms, misc.ms, patch*
- added initial support for recording coverage information.  when the
  new parameter generate-covin-files is set, the compiler generates
  .covin files containing the universe of all source objects for which
  profile forms are present in the expander output.  when profiling
  and generation of covin files are enabled in the 's' directory, the
  mats optionally generate .covout files for each mat file giving
  the subset of the universe covered by the mat file, along with an
  all.covout in each mat output directory aggregating the coverage
  for the directory and another all.covout in the top-level mat
  directory aggregating the coverage for all directories.
    back.ss, compile.ss, cprep.ss, primdata.ss, s/Mf-base,
    mat.ss, mats/Mf-base, mats/primvars.ms
- support for generating covout files is now built in.  with-coverage-output
  gathers and dumps coverage information, and aggregate-coverage-output
  combines (aggregates) covout files.
    pdhtml.ss, primdata.ss, compile.ss,
    mat.ss, mats/Mf-base, primvars.ms
- profile-clear now adjusts active coverage trackers to avoid losing
  coverage information.
    pdhtml.ss,
    prim5.c
- nested with-coverage calls are now supported.
    pdhtml.ss
- switched to a more compact representation for covin and covout files;
  reduces disk space (compressed or not) by about a factor of four
  and read time by about a factor of two with no increase in write time.
    primdata.ss, pdhtml.ss, cprep.ss, compile.ss,
    mat.ss, mats/Mf-base
- added support for determining coverage for an entire run, including
  coverage for expressions hit during boot time.  'all' mats now produce
  run.covout files in each output directory, and 'allx' mats produce
  an aggregate run.covout file in the mat directory.
    pdhtml.ss,
    mat.ss, mats/Mf-base
- profile-release-counters now adjusts active coverage trackers to
  account for the counters that have been released.
    pdhtml.ss,
    prim5.c
- replaced the artificial "examples" target with a real "build-examples"
  target so make won't think it always has to mats that depend upon
  the examples directory having been compiled.  mats make clean now
  runs make clean in the examples directory.
    mats/Mf-base
  importing a library from an object file now just visits the object
  file rather than doing a full load so that the run-time code for
  the library is not retained.  The run-time code is still read
  because the current fasl format forces the entire file to be read,
  but not retaining the code can lower heap size and garbage-collection
  cost, particularly when many object-code libraries are imported.
  The downside is that the file must be revisited if the run-time
  code turns out to be required.   This change exposed several
  places where the code was failing to check if a revisit is needed.
    syntax.ss,
    7.ms, 8.ms, misc.ms, root-experr*
- fixed typos: was passing unquoted load rather than quoted load
  to $load-library along one path (where it is loading source code
  and therefore irrelevant), and was reporting src-path rather than
  obj-path in a message about failing to define a library.
    syntax.ss
- compile-file and friends now put all recompile information in
  the first fasl object after the header so the library manager can
  find it without loading the entire fasl file.  The library manager
  now does so.  It also now checks to see if library object files
  need to be recreated before loading them rather than loading them and
  possibly recompiling them after discovering they are out of date, since
  the latter requires loading the full object file even if it's out of
  date, while the former takes advantage of the ability to extract just
  recompile information.  as well as reducing overhead, this eliminates
  possibly undesirable side effects, such as creation and registration
  of out-of-date nongenerative record-type descriptors.  because the
  library manager expects to find recompile information at the front of
  an object file, it will not find all recompile information if object
  files are "catted" together.  also, compile-file has to hold in memory
  the object code for all expressions in the file so that it can emit the
  unified recompile information, rather than writing to the object file
  incrementally, which can significantly increase the memory required
  to compile a large file full of individual top-level forms.  This does
  not affect top-level programs, which were already handled as a whole,
  or a typical library file that contains just a single library form.
    compile.ss, syntax.ss
- the library manager now checks include files before library dependencies
  when compile-imported-libraries is false (as it already did when
  compile-imported-libraries is true) in case a source change affects
  the set of imported libraries.  (A library change can affect the set
  of include files as well, but checking dependencies before include
  files can cause unneeded libraries to be loaded.)  The include-file
  check is based on recompile-info rather than dependencies, but the
  library checks are still based on dependencies.
    syntax.ss
- fixed check for binding of scheme-version. (the check prevents
  premature treatment of recompile-info records as Lexpand forms
  to be passed to $interpret-backend.)
    scheme.c
- strip-fasl-file now preserves recompile-info when compile-time info
  is stripped.
    strip.ss
- removed include-req* from library/ct-info and ctdesc records; it
  is no longer needed now that all recompile information is maintained
  separately.
    expand-lang.ss, syntax.ss, compile.ss, cprep.ss, syntax.ss
- changed the fasl format and reworked a lot of code in the expander,
  compiler, fasl writer, and fasl reader to allow the fasl reader
  to skip past run-time information when it isn't needed and
  compile-time information when it isn't needed.  Skipping past
  still involves reading and decoding when encrypted, but the fasl
  reader no longer parses or allocates code and data in the portions
  to be skipped.  Side effects of associating record uids with rtds
  are also avoided, as are the side effects of interning symbols
  present only in the skipped data.  Skipping past code objects
  also reduces or eliminates the need to synchronize data and
  instruction caches.  Since the fasl reader no longer returns
  compile-time (visit) or run-time (revisit) code and data when not
  needed, the fasl reader no longer wraps these objects in a pair
  with a 0 or 1 visit or revisit marker.  To support this change,
  the fasl writer generates separate top-level fasl entries (and
  graphs) for separate forms in the same top-level source form
  (e.g., begin or library).  This reliably breaks eq-ness of shared
  structure across these forms, which was previously broken only
  when visit or revisit code was loaded at different times (this
  is an incompatible change).  Because of the change, fasl "groups"
  are no longer needed, so they are no longer handled.
    7.ss, cmacros.ss, compile.ss, expand-lang.ss, strip.ss,
    externs.h, fasl.c, scheme.c,
    hash.ms
- the change above is surfaced in an optional fasl-read "situation"
  argument (visit, revisit, or load).  The default is load.  visit
  causes it to skip past revisit code and data; revisit causes it
  to skip past visit code and data; and load causes it not to skip
  past either.  visit-revisit data produced by (eval-when (visit
  revisit) ---) is never skipped.
    7.ss, primdata.ss,
    io.stex
- to improve compile-time and run-time error checking, the
  Lexpand recompile-info, library/rt-info, library-ct-info, and
  program-info forms have been replaced with list-structured forms,
  e.g., (recompile-info ,rcinfo).
    expand-lang.ss, compile.ss, cprep.ss, interpret.ss, syntax.ss
- added visit-compiled-from-port and revisit-compiled-from-port
  to complement the existing load-compiled-from-port.
    7.ss, primdata.ss,
    7.ms,
    system.stex
- increased amount read when seeking an lz4-encrypted input
  file from 32 to 1024 bytes at a time
    compress-io.c
- replaced the fasl a? parameter value #t with an "all" flag value
  so it's value is consistently a mask.
    cmacros.ss, fasl.ss, compile.ss
- split off profile mats into a separate file
    misc.ms, profile.ms (new), root-experr*, mats/Mf-base
- added coverage percent computations to mat allx/bullyx output
    mat.ss, mats/Mf-base, primvars.ms
- replaced coverage tables with more generic and generally useful
  source tables, which map source objects to arbitrary values.
    pdhtml.ss, compile.ss, cprep.ss, primdata.ss,
    mat.ss, mats/Mf-base, primvars.ms, profile.ms,
    syntax.stex
- reduced profile counting overhead by using calls to fold-left
  instead of calls to apply and map and by using fixnum operations
  for profile counts on 64-bit machines.
    pdhtml.ss
- used a critical section to fix a race condition in the calculations
  of profile counts that sometimes resulted in bogus (including
  negative) counts, especially when the 's' directory is profiled.
    pdhtml.ss
- added discard flag to declaration for hashtable-size
    primdata.ss
- redesigned the printed representation of source tables and rewrote
  get-source-table! to read and store incrementally to reduce memory
  overhead.
    compile.ss
- added generate-covin-files to the set of parameters preserved
  by compile-file, etc.
    compile.ss,
    system.stex
- moved covop argument before the undocumented machine and hostop
  arguments to compile-port and compile-to-port.  removed the
  undocumented ofn argument from compile-to-port; using
  (port-name ip) instead.
    compile.ss, primdata.ss,
    7.ms,
    system.stex
- compile-port now tries to come up with a file position to supply
  to make-read, which it can do if the port's positions are character
  positions (presently string ports) or if the port is positioned
  at zero.
    compile.ss
- audited the argument-type-error fuzz mat exceptions and fixed a
  host of problems this turned up (entries follow).  added #f as
  an invalid argument for every type for which #f is indeed invalid
  to catch places where the maybe- prefix was missing on the argument
  type.  the mat tries hard to determine if the condition raised
  (if any) as the result of an invalid argument is appropriate and
  redirects the remainder to the mat-output (.mo) file prefixed
  with 'Expected error', causing them to show up in the expected
  error output so developers will be encouraged to audit them in
  the future.
    primvars.ms, mat.ss
- added an initial symbol? test on machine type names so we produce
  an invalid machine type error message rather than something
  confusing like "machine type #f is not supported".
    compile.ss
- fixed declarations for many primitives that were specified as
  accepting arguments of more general types than they actually
  accept, such as number -> real for various numeric operations,
  symbol -> endianness for various bytevector operations,
  time -> time-utc for time-utc->date, and list -> list-of-string-pairs
  for default-library-search-handler.   also replaced some of the
  sub-xxxx types with specific types such as sub-symbol -> endianness
  in utf16->string, but only where they were causing issues with
  the primvars argument-type-error fuzz mat.  (this should be done
  more generally.)
    primdata.ss
- fixed incorrect who arguments (was map instead of fold-right,
  current-date instead of time-utc->date); switched to using
  define-who/set-who! generally.
    4.ss, date.ss
- append! now checks all arguments before any mutation
    5_2.ss
- with-source-path now properly supplies itself as who for the
  string? argument check; callers like load now do their own checks.
    7.ss
- added missing integer? check to $fold-bytevector-native-ref whose
  lack could have resulted in a compile-time error.
    cp0.ss
- fixed typo in output-port-buffer-mode error message
    io.ss
- fixed who argument (was fx< rather than fx<?)
    library.ss
- fixed declaration of first source-file-descriptor argument (was
  sfd, now string)
    primdata.ss
- added missing article 'a' in a few error messages
    prims.ss
- fixed the copy-environment argument-type error message for the list
  of symbols argument.
    syntax.ss
- the environment procedure now catches exceptions that occur and
  reraises the exception with itself as who if the condition isn't
  already a who condition.
    syntax.ss
- updated experr and allx patch files for changes to argument-count
  fuzz mat and fixes for problems turned up by them.
    root-experr*, patch*
- fixed a couple of issues setting port sizes: string and bytevector
  output port put handlers don't need room to store the character
  or byte, so they now set the size to the buffer length rather
  than one less.  binary-file-port-clear-output now sets the index
  rather than size to zero; setting the size to zero is inappropriate
  for some types of ports and could result in loss of buffering and
  even suppression of future output.  removed a couple of redundant
  sets of the size that occur immediately after setting the buffer.
    io.ss
- it is now possible to return from a call to with-profile-tracker
  multiple times and not double-count (or worse) any counts.
    pdhtml.ss, profile.ms
- read-token now requires a file position when it is handed a
  source-file descriptor (since the source-file descriptor isn't
  otherwise useful), and the source-file descriptor argument can
  no longer be #f.  the input file position plays the same role as
  the input file position in get-datum/annotations.  these extra
  read-token arguments are now documented.
    read.ss,
    6.ms,
    io.stex
- the source-file descriptor argument to get-datum/annotations can
  no longer be #f.  it was already documented that way.
    read.ss
- read-token and do-read now look for the character-positions port
  flag before asking if the port has port-position, since the latter
  is slightly more expensive.
    read.ss
- rd-error now reports the current port position if it can be determined
  when fp isn't already set, i.e., when reading from a port without
  character positions (presently any non string port) and fp has not
  been passed in explicitly (to read-token or get-datum/annotations).
  the port position might not be a character position, but it should be
  better than nothing.
    read.ss
- added comment noting an invariant for s_profile_release_counters.
    prim5.c
- restored accidentally dropped fasl-write formdef and dropped
  duplicate fasl-read formdef
    io.stex
- added a 'coverage' target that tests the coverage of the Scheme-code
  portions of Chez Scheme by the mats.
    Makefile.in, Makefile-workarea.in
- added .PHONY declarations for all of the targets in the top-level
  and workarea make files, and renamed the create-bintar, create-rpm,
  and create-pkg targets bintar, rpm, and pkg.
    Makefile.in, Makefile-workarea.in
- added missing --retain-static-relocation command-line argument and
  updated the date
    scheme.1.in
- removed a few redundant conditional variable settings
    configure
- fixed declaration of condition wait (timeout -> maybe-timeout)
    primdata.ss

original commit: 88501743001393fa82e89c90da9185fc0086fbcb
2019-09-21 15:37:29 -07:00

4530 lines
161 KiB
Scheme

;;; misc.ms
;;; Copyright 1984-2017 Cisco Systems, Inc.
;;;
;;; Licensed under the Apache License, Version 2.0 (the "License");
;;; you may not use this file except in compliance with the License.
;;; You may obtain a copy of the License at
;;;
;;; http://www.apache.org/licenses/LICENSE-2.0
;;;
;;; Unless required by applicable law or agreed to in writing, software
;;; distributed under the License is distributed on an "AS IS" BASIS,
;;; WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
;;; See the License for the specific language governing permissions and
;;; limitations under the License.
;;; regression and other tests that don't fit somewhere more logical
(define-syntax biglet
(lambda (x)
(syntax-case x ()
((_ n bindings e)
(let ((nv (datum n)))
(if (= nv 0)
(syntax (let bindings e))
(with-syntax ((m (- nv 1)))
(syntax (biglet m ((g n) . bindings) (+ g e))))))))))
(define-syntax biglambda
(lambda (x)
(syntax-case x ()
((_ n vars e)
(let ((nv (datum n)))
(if (= nv 0)
(syntax (lambda vars e))
(with-syntax ((m (- nv 1)))
(syntax (biglambda m (g . vars) (+ g e))))))))))
(mat cycle
(let ((x '#1=(a b . #1#)))
(eqv? x x))
(let-syntax ((a (lambda (y)
(let ((x (list 'quote '*)))
(set-car! (cdr x) x)
(datum->syntax (syntax a) x)))))
(let ((a (a))) (and (pair? a) (eq? (cadr a) a))))
(let-syntax ((a (lambda (y)
(let ((x (list 1 '*)))
(set-car! (cdr x) x)
(with-syntax ((l (datum->syntax (syntax a) x)))
(syntax (quote l)))))))
(let ((a (a))) (and (pair? a) (eq? (car a) 1) (eq? (cadr a) a))))
; (let ((x '(#2=(#2#) . #2#)))
; (and (eq? (car x) (caar x)) (eq? (car x) (cdr x))))
)
(mat overflow ; attempt to force dooverflow, dooverflood, apply_dooverflood
;; this should test dooverflow
(eqv? (let f ((n 100000))
(if (= n 0)
0
(+ (f (- n 1)) 1)))
100000)
;; this should test dooverflow
(eqv? (let f ((n 10000) (m 0))
(if (= n 0)
m
(f (call/cc (lambda (k) (- n 1)))
(call/cc (lambda (k) (+ (k (+ m 1)) 1))))))
10000)
;; this should test dooverflood
(eqv? (let f ((n 10000))
(if (= n 0)
0
(let ((m (biglet 100 () 0)))
(+ m (f (- n 1))))))
(* 10000 (let f ((n 100) (m 0)) (if (= n 0) m (f (- n 1) (+ m n))))))
;; this should test apply_dooverflood
(= (length (apply list (make-list 100000))) 100000)
;; this should test apply_dooverflood
(eqv? (let ((a (biglambda 100 () 0))
(ls (make-list 100 1)))
(let f ((n 10000))
(if (= n 0)
0
(let ((m (apply a ls)))
(+ m (f (- n 1)))))))
(* 100 10000))
; this should test overflow w/mrvs
(let-syntax ((first (syntax-rules ()
((_ e)
(call-with-values
(lambda () e)
(lambda (x . args) x))))))
(eqv? (first (let f ((n 100000))
(if (fx= n 0)
(values 1 1)
(values (fx+ (first (f (fx- n 1))) 1) 1))))
100001))
; test overflow w/lots of values to large frame
(eqv? (let-syntax ((first (syntax-rules ()
((_ e1 e2 ...)
(call-with-values
(lambda () e1 e2 ...)
(lambda (x . args) x))))))
(biglet 100 () (first (apply values (make-list 10000 0)))))
5050)
(eq?
(let ()
(define foo
(lambda ()
(define-syntax a
(lambda (x)
(syntax-case x ()
[(_ n)
(with-syntax ([(g ...) (generate-temporaries (make-list (datum n)))])
#'(let ([g 3] ...) (list g ...)))])))
(a 1000)))
(define (q n)
(call/1cc
(lambda (k0)
((call/1cc
(lambda (k1)
(call/1cc
(lambda (k2)
(k1 (lambda () (let f ([n n]) (foo) (unless (fx= n 0) (f (- n 1)))) (k2)))))
(k0 'done)))))))
(q 1000))
'done)
; regression test for np-place-overflow-and-trap treating test part of
; if-expr as tail when if-expr is tail
(begin
(define $poat-if-bug
(lambda (x)
(if (or (#3%fx= x 0) ($poat-if-bug (#3%fx- x 1)))
'yes
'no)))
#t)
(eq? ($poat-if-bug 20000) 'yes)
)
(begin
(define ls0 '())
(define ls1 '(a))
(define ls2 '(a b))
(define ls3 '(a b c))
(define-syntax relop-length-test
(lambda (x)
(syntax-case x ()
[(_ op)
(with-syntax (((exp ...)
(map (lambda (ls)
(with-syntax ((ls ls)
((n ...) '(0 1 2 3 4 5)))
#'(list (op (length ls) n) ...)))
(list #'ls0 #'ls1 #'ls2 #'ls3))))
(with-syntax ((exp #'(list exp ...)))
(with-syntax ((ans (datum->syntax #'* (interpret (datum exp)))))
#'(equal? exp 'ans))))]))))
(mat relop-length ; test (relop (length e) n)
(eqv? (pretty-print (expand (relop-length-test =))) (void))
(relop-length-test <)
(relop-length-test >)
(relop-length-test <=)
(relop-length-test >=)
(relop-length-test fx=)
(relop-length-test fx<)
(relop-length-test fx>)
(relop-length-test fx<=)
(relop-length-test fx>=)
)
(mat compiler1
(error? ; unbound variable
(i-am-not-bound))
(begin
(define i-am-bound-but-not-to-a-procedure 'oops)
#t)
(error? ; non-procedure
(i-am-bound-but-not-to-a-procedure))
;; test cpr1 code to avoid loading closer pointer for direct rec calls
;; make sure closure is loaded for value ref of g
(letrec ((g (lambda (x)
(if (eq? x 'b)
(let ((h g)) (h 'c))
(if (eq? x 'a)
(g 'b)
'okay)))))
(eq? (g 'a) 'okay))
;; make sure closure is loaded for closure containing g
(letrec ((g (lambda (x)
(if (eq? x 'b)
(let ((h (lambda (x) (g x)))) (h 'c))
(if (eq? x 'a)
(g 'b)
'okay)))))
(eq? (g 'a) 'okay))
;; test for incorrect call screwing up nocp code
(error? (letrec ((g (lambda () (g (list))))) (g)))
;; test for rest list avoidance code being fooled by assignment conversion
(begin
(define (rest-test x . y)
(set! y y)
y)
(equal?
(rest-test 1 2)
'(2)))
;; test for bogus conversion of direct lambda calls with rest arguments
(equal? ((lambda x x) 1 2 3 4) '(1 2 3 4))
;; test for register allocator bug
(let ()
(define (foo return) (return 'foo))
(define (goo return)
(foo (lambda (y)
(let ((x 'goo))
(return x y '() '())))))
(equal? (goo list) '(goo foo () ())))
(let ()
(define (foo return) (return 'foo))
(define (goo return)
(foo (lambda (y)
(let ((x 'goo))
(return x y 'hoo '() '())))))
(equal? (goo list) '(goo foo hoo () ())))
(eq? (let ((f (lambda x x))) ((begin 'a f))) '())
(error? (letrec ((a (lambda (v) v))) ((begin 'foo a))))
(equal? (let ((f (case-lambda ((x) 'a) ((x y) 'b) (z z))))
((begin 'c f) 3 4 5 6))
'(3 4 5 6))
(equal? (let ((f (lambda x x)))
(call-with-values (lambda () ((begin 'a f))) list))
'(()))
(equal? (let ((f (lambda x x)))
(call-with-values (lambda () ((begin 'a f)))
(lambda args args)))
'(()))
(eqv?
(let () ; mvlet in 5.0c & before were branching to domvleterr call
(define id-var-name
(lambda ()
(define-syntax first
(syntax-rules ()
((_ e) (#2%call-with-values
(lambda () e)
(lambda (x . ignore) x)))))
(let ((f (lambda () (or (first (values #f 2)) 3))))
(f))))
(id-var-name))
3)
(begin (define string->color (lambda (x) (values 1 2))) (procedure? string->color))
(eqv? (call-with-values
(lambda () (string->color #f))
(lambda (x y) x))
1)
; test for cp2-store handling of binary dest with singleton next
(procedure?
(lambda (s end)
(let ([end (or (if s end #f) end)])
(if end s #f))))
; make sure case-lambda clause ordering is observed
(equal?
(let ((f (case-lambda
[(x) (* x x)]
[(x y) (+ x x)]
[(x . r) (- x x)])))
(list (f 5) (f 5 4) (f 5 4 3)))
'(25 10 0))
; make sure irreducible flow graph doesn't choke the compiler
(procedure?
(rec q
(case-lambda
[() (q 0)]
[(x) (q)])))
; regression tests for non-tail-call mref lvalue destination
(begin
(define (c1-f a)
(let ([x (fxvector 0)])
(lambda (v) (fxvector-set! x 0 (modulo v a)) x)))
#t)
(equal? ((c1-f 7) 10) #vfx(3))
(begin
(define (c1-id x) x)
(define (c1-g x) (vector-set-fixnum! x 0 (c1-id 17)))
#t)
(equal? (let ([v (vector 3)]) (c1-g v) v) '#(17))
)
(mat compiler2 ; random tests
(eqv? (((lambda (x) (lambda (y) (- x y))) 3) 4) -1)
(equal? (let ((f (lambda (x) (lambda (y) (- x y)))))
(cons ((f 3) 4) ((f 4) 3)))
'(-1 . 1))
(eqv? (letrec ((f (lambda (a) a))
(g (lambda (b) (if b (begin (f b) (g (not b))) 17))))
(g #f))
17)
(eqv? (letrec ((f (lambda (a) a))
(g (lambda (b) (if b (begin (f b) (g (not b))) 13))))
(g #t))
13)
(eqv? (letrec ((f (lambda (a) a))
(g (lambda (b) (if b (begin (f b) (g #f)) 11))))
(g #f))
11)
(eqv? (letrec ((f (lambda (a) a))
(g (lambda (b) (if b (begin (f b) (g #f)) 9))))
(g #t))
9)
(eqv? (let ((f (lambda (x) (+ x x))))
(let ((g (lambda () f f)))
(g) ((g) 3)))
6)
(eqv? (letrec ((f (lambda (x) (+ x x))))
(letrec ((g (lambda () f f)))
(g) ((g) 3)))
6)
(equal? (apply (lambda (x y) (list y x)) 'a 'b '()) '(b a))
(equal? (apply (lambda (x . r) (list r x)) '(a b c)) '((b c) a))
(equal? (apply list '(1 2 3)) '(1 2 3))
(eqv? (apply + '(1 2 3)) 6)
(let ([f (lambda x x)]) (equal? (f) '()))
(eq? (let ()
(define *current-gensym* 0)
(define (generate-symbol)
(set! *current-gensym* (+ *current-gensym* 1))
(string->symbol (number->string *current-gensym*)))
(define f (lambda (x) x))
(f 3))
3)
(eqv? (let f ((x 0)) (if (= x 0) 1 (* x (f (- x 1))))) 1)
(error? (let ((f (lambda () (let ((x 3)) (lambda (y z) (or (= y 3) x))))))
(begin ((f) 3 (+ 'a 3))) 0))
(eqv? (let ((f (lambda () (let ((x 3)) (lambda (y z) (or (= y 3) x))))))
(begin ((f) 3 (+ 3 4)) 0))
0)
(let ((f (lambda () (lambda (y z) (or (= y 3) z))))) ((f) 3 (+ 3 4)))
(let ((f (lambda () (lambda (y z) (or (= z 7) z))))) ((f) 3 (+ 3 4)))
(let ((f (lambda (y z) (or (= y 3) z)))) (f 3 (+ 3 4)))
(error? (let ((f (lambda (x) (+ x x)))) (f 3 4)))
(error? ; invalid argument count in call to car
(cons (car 1 2)))
(error? ; invalid argument count in call to cons
(let loop () (loop (cons 1 2 3))))
(equal?
(call/cc
(lambda (k)
(cons (k '(a b c)))))
'(a b c))
(equal?
(call/cc
(lambda (k)
(let loop () (loop (k '(a b c))))))
'(a b c))
(equal?
(call/cc
(lambda (k)
(letrec ([sum (lambda (n) (if (= n 0) 1 (+ n (sum (- n 1)))))])
(cons (sum (k '(a . b)) 15)))))
'(a . b))
(equal?
(call/cc
(lambda (k)
(letrec ([sum (lambda (n) (if (= n 0) 1 (+ n (sum (k '(a . b)) (- n 1)))))])
(cons (sum 15)))))
'(a . b))
(equal?
(call/cc
(lambda (k)
(letrec* ([a (lambda () c)]
[b (k "hi")]
[c (pair? k 1)])
(errorf 'oops "shouldn't reach here ~s" (list a b)))))
"hi")
; make sure we set up the stack properly before call-error
(or (= (optimize-level) 3)
(call/cc
(lambda (k)
(with-exception-handler
(lambda (c) (collect) (k #t))
(rec p (lambda () (('spam 1 2))))))))
; make sure return-address is set properly and stack is otherwise
; well-formed when we go through call-error for invalid consumer
(begin
(define ($foo$ x y z w p) w)
#t)
(or (= (optimize-level) 3)
(call/cc
(lambda (k)
(with-exception-handler (lambda (c) (collect) (k #t))
(lambda ()
(let ([x (list (lambda () (sort < '(3 2 5 7 9)) (values 1 2 3)))])
($foo$ 1 2 3 4 5)
(call-with-values (car x) x)))))))
; make sure return-address is set properly and stack is otherwise
; well-formed when we go through values-error
(begin
(define $values (lambda () (printf "hello!\n") (values 1 2 3 4 5 6 7 8)))
#t)
(or (= (optimize-level) 3)
(eqv?
(call/cc
(lambda (k)
(with-exception-handler
(lambda (c) (collect) (k 'okay))
(lambda () (if ($values) 3 4)))))
'okay))
(or (= (optimize-level) 3)
(eqv?
(call/cc
(lambda (k)
(with-exception-handler
(lambda (c) (collect) (k 'okay))
(lambda ()
(let ([x (random 10)])
(if ($values) x 4))))))
'okay))
; make sure return-address is set properly and stack is otherwise
; well-formed when we go through mvlet-error
(or (= (optimize-level) 3)
(eqv?
(call/cc
(lambda (k)
(with-exception-handler
(lambda (c) (collect) (k 'okay))
(lambda ()
(let ([x (random 10)])
(call-with-values $values
(lambda (x y) 'oops)))))))
'okay))
(or (= (optimize-level) 3)
(eqv?
(call/cc
(lambda (k)
(with-exception-handler
(lambda (c) (collect) (k 'okay))
(lambda ()
(define f (case-lambda))
(let ([x (random 10)])
(call-with-values $values f))))))
'okay))
(or (= (optimize-level) 3)
(eqv?
(call/cc
(lambda (k)
(with-exception-handler
(lambda (c) (collect) (k 'okay))
(lambda ()
(let ([x (random 10)])
(call-with-values
(lambda () ($values) (values 1 2 3))
(lambda (x y) 'oops)))))))
'okay))
; make sure compiler doesn't bomb trying to borrow a closure
; whose name isn't already free
(equal?
(let ([ls '()])
(let ([v (((parameterize ([run-cp0 (lambda (cp0 x) x)])
(eval '(lambda (x y)
(let ((av (lambda () (x y))))
(av)
(lambda ()
(let ((tt (lambda () (x y))))
(begin (tt) 3)))))))
(lambda (z) (set! ls (cons z ls)))
17))])
(cons v ls)))
'(3 17 17))
; for good measure, some where borrowing can occur
; tt borrow av
(equal?
(let ([ls '()])
(let ([v (((parameterize ([run-cp0 (lambda (cp0 x) x)])
(eval '(lambda (x y)
(let ((av (lambda () (x y))))
(lambda ()
(av)
(let ((tt (lambda () (x y))))
(begin (tt) 3)))))))
(lambda (z) (set! ls (cons z ls)))
17))])
(cons v ls)))
'(3 17 17))
; tt borrow av (which happens to be free in tt)
(equal?
(let ([ls '()])
(let ([v (((parameterize ([run-cp0 (lambda (cp0 x) x)])
(eval '(lambda (x y)
(let ((av (lambda () (x y))))
(lambda ()
(let ((tt (lambda () (av) (x y))))
(begin (tt) 3)))))))
(lambda (z) (set! ls (cons z ls)))
17))])
(cons v ls)))
'(3 17 17))
; tt borrow av, zz borrow av
(equal?
(let ([ls '()])
(let ([v ((((parameterize ([run-cp0 (lambda (cp0 x) x)])
(eval '(lambda (x y)
(let ((av (lambda () (x y))))
(lambda ()
(av)
(let ((tt (lambda () (av) (x y))))
(lambda ()
(tt)
(let ([zz (lambda () (x y))])
(begin (zz) 3)))))))))
(lambda (z) (set! ls (cons z ls)))
17)))])
(cons v ls)))
'(3 17 17 17 17))
; tt borrow av, zz borrow av
(equal?
(let ([ls '()])
(let ([v ((((parameterize ([run-cp0 (lambda (cp0 x) x)])
(eval '(lambda (x y)
(let ((av (lambda () (x y))))
(lambda ()
(av)
(let ((tt (lambda () (av) (x y))))
(lambda ()
(tt)
(let ([zz (lambda () (x y))])
(begin (zz) 3)))))))))
(lambda (z) (set! ls (cons z ls)))
17)))])
(cons v ls)))
'(3 17 17 17 17))
; zz borrow av (tt goes away)
(equal?
(let ([ls '()])
(let ([v ((((parameterize ([run-cp0 (lambda (cp0 x) x)])
(eval '(lambda (x y)
(let ((av (lambda () (x y))))
(lambda ()
(av)
(let ((tt (lambda () (av) (x y))))
(lambda ()
(av)
(let ([zz (lambda () (x y))])
(begin (zz) 3)))))))))
(lambda (z) (set! ls (cons z ls)))
17)))])
(cons v ls)))
'(3 17 17 17))
; tt borrow av, zz borrow av
(equal?
(let ([ls '()])
(let ([v ((((parameterize ([run-cp0 (lambda (cp0 x) x)])
(eval '(lambda (x y)
(let ((av (lambda () (x y))))
(lambda ()
(av)
(let ((tt (lambda () (av) (x y))))
(lambda ()
(tt)
(av)
(let ([zz (lambda () (x y))])
(begin (zz) 3)))))))))
(lambda (z) (set! ls (cons z ls)))
17)))])
(cons v ls)))
'(3 17 17 17 17 17))
; tt borrow av, zz borrow av
(equal?
(let ([ls '()])
(let ([v ((((parameterize ([run-cp0 (lambda (cp0 x) x)])
(eval '(lambda (x y)
(let ((av (lambda () (x y))))
(lambda ()
(av)
(let ((tt (lambda () (av) (x y))))
(lambda ()
(let ([zz (lambda () (tt) (x y))])
(begin (zz) 3)))))))))
(lambda (z) (set! ls (cons z ls)))
17)))])
(cons v ls)))
'(3 17 17 17 17))
; tt borrow av, zz can't borrow
(equal?
(let ([ls '()])
(let ([v ((((parameterize ([run-cp0 (lambda (cp0 x) x)])
(eval '(lambda (x y)
(let ((av (lambda () (x y))))
(lambda ()
(av)
(let ((tt (lambda () (av) (x y))))
(tt)
(lambda ()
(let ([zz (lambda () (x y))])
(begin (zz) 3)))))))))
(lambda (z) (set! ls (cons z ls)))
17)))])
(cons v ls)))
'(3 17 17 17 17))
; tt goes away, zz can't borrow
(equal?
(let ([ls '()])
(let ([v ((((parameterize ([run-cp0 (lambda (cp0 x) x)])
(eval '(lambda (x y)
(let ((av (lambda () (x y))))
(lambda ()
(av)
(let ((tt (lambda () (av) (x y))))
(lambda ()
(let ([zz (lambda () (x y))])
(begin (zz) 3)))))))))
(lambda (z) (set! ls (cons z ls)))
17)))])
(cons v ls)))
'(3 17 17))
; regression test for bug in which $flonum-exponent read past mapped memory
(eq?
(do ([n 2000 (- n 1)] [ls (iota 2000)])
((= n 0) 'fini)
(map (lambda (x) (let ([x (exact (sqrt -2.0))]) x)) ls))
'fini)
)
(mat compiler3
;; test cpr0 code to avoid bombing with compile-time error for apparent
;; arg count mismatch in direct call
;; need to add tests for mvcall and mvlet as well.
(equal?
(let ((ip (open-input-string "#f")))
(let ((consumer (lambda (x) (list x))))
(if (read ip) (consumer 1 2) (consumer 4))))
'(4))
;; error message should come at run time, warning at compile time.
(guard (c [(warning? c) #t])
(with-output-to-file "testfile.ss"
(lambda ()
(pretty-print
'(let ([ip (open-input-string "#t")])
(let ([consumer (lambda (x) (list x))])
(if (read ip) (consumer 1 2) (consumer 4))))))
'replace)
(load "testfile.ss")
#f)
(error? ; incorrect argument count
(load "testfile.ss"))
(error?
(let ((ip (open-input-string "#t")))
(let ((consumer (lambda (x) (list x))))
(if (read ip) (consumer 1 2) (consumer 4)))))
; test proper nonprocedure-procedure handling; goto is used as a symbol
; but not given a value in compiler boot file. we had been failing to
; run retrofit_nonprocedure_procedure after loading the second (compiler)
; boot file.
(begin
(define $goto (lambda () (goto)))
#t)
(error? ($goto))
; check for nonprocedure-procedure handling when procedure is bound
; to something other than a procedure
(error? (3 4))
(error? ((cons 'a 'b) 4))
; check to make sure rest list is created after arguments are evaluated
(begin
(define non-eq-spines?
(lambda (x)
(let f ([ls1 (car x)] [ls2 (cdr x)])
(if (null? ls1)
(null? ls2)
(and (not (eq? ls1 ls2))
(eq? (car ls1) (car ls2))
(f (cdr ls1) (cdr ls2)))))))
#t)
(non-eq-spines?
(let ()
(define *k*)
(define (f)
(define (f . args) args)
(let ([ls (f (call/cc values) 1 2 3)]) (*k* ls)))
(define ls1 (call/cc (lambda (k) (set! *k* k) (f))))
(define ls2 (call/cc (lambda (k) (set! *k* k) ((car ls1) (car ls1)))))
(cons ls1 ls2)))
(non-eq-spines?
(let ()
(define *k*)
(define (f)
(define (f a . args) (cons a args))
(let ([ls (f (call/cc values) 1 2 3)]) (*k* ls)))
(define ls1 (call/cc (lambda (k) (set! *k* k) (f))))
(define ls2 (call/cc (lambda (k) (set! *k* k) ((car ls1) (car ls1)))))
(cons ls1 ls2)))
(non-eq-spines?
(let ()
(define *k*)
(define (f)
(define (f . args) args)
(let ([ls (f 1 (call/cc values) 2 3)]) (*k* ls)))
(define ls1 (call/cc (lambda (k) (set! *k* k) (f))))
(define ls2 (call/cc (lambda (k) (set! *k* k) ((cadr ls1) (cadr ls1)))))
(cons ls1 ls2)))
(non-eq-spines?
(let ()
(define *k*)
(define (f)
(define (f a . args) (cons a args))
(let ([ls (f 1 (call/cc values) 2 3)]) (*k* ls)))
(define ls1 (call/cc (lambda (k) (set! *k* k) (f))))
(define ls2 (call/cc (lambda (k) (set! *k* k) ((cadr ls1) (cadr ls1)))))
(cons ls1 ls2)))
(non-eq-spines?
(let ()
(define *k*)
(define (f)
(define (f a . args) (cons a args))
(let ([ls (f 1 2 (call/cc values) 3)]) (*k* ls)))
(define ls1 (call/cc (lambda (k) (set! *k* k) (f))))
(define ls2 (call/cc (lambda (k) (set! *k* k) ((caddr ls1) (caddr ls1)))))
(cons ls1 ls2)))
(non-eq-spines?
(let ()
(define *k*)
(define (f)
(define (f . args) args)
(let ([ls (f 1 2 3 (call/cc values))]) (*k* ls)))
(define ls1 (call/cc (lambda (k) (set! *k* k) (f))))
(define ls2 (call/cc (lambda (k) (set! *k* k) ((cadddr ls1) (cadddr ls1)))))
(cons ls1 ls2)))
(non-eq-spines?
(let ()
(define *k*)
(define (f)
(define (f a . args) (cons a args))
(let ([ls (f 1 2 3 (call/cc values))]) (*k* ls)))
(define ls1 (call/cc (lambda (k) (set! *k* k) (f))))
(define ls2 (call/cc (lambda (k) (set! *k* k) ((cadddr ls1) (cadddr ls1)))))
(cons ls1 ls2)))
; same thing, with direct lambda applications (should complete the set)
(non-eq-spines?
(let ()
(define *k*)
(define (f)
(let ([ls ((lambda (a . args) (cons a args)) (call/cc values) 1 2 3)]) (*k* ls)))
(define ls1 (call/cc (lambda (k) (set! *k* k) (f))))
(define ls2 (call/cc (lambda (k) (set! *k* k) ((car ls1) (car ls1)))))
(cons ls1 ls2)))
; same thing, with let-values (should complete the set)
(non-eq-spines?
(let ()
(define *k*)
(define (f)
(let ([ls (let-values ([(a . args) (values (call/cc values) 1 2 3)]) (cons a args))]) (*k* ls)))
(define ls1 (call/cc (lambda (k) (set! *k* k) (f))))
(define ls2 (call/cc (lambda (k) (set! *k* k) ((car ls1) (car ls1)))))
(cons ls1 ls2)))
; make sure trivial cwv produces same code as let
((lambda (s1 s2)
(call-with-port
(open-string-input-port s1)
(lambda (p1)
(call-with-port
(open-string-input-port s2)
(lambda (p2)
(let loop ()
(if (eof-object? (get-line p1))
(eof-object? (get-line p2))
(and (not (eof-object? (get-line p2)))
(loop)))))))))
(with-output-to-string
(lambda ()
(parameterize ([gensym-count 0] [print-gensym #f] [#%$assembly-output #t] [#%$suppress-primitive-inlining #f])
(eval '(lambda (x)
(let ()
(import scheme)
(call-with-values (lambda () (x)) (lambda (y) (x y)))))))))
(with-output-to-string
(lambda ()
(parameterize ([gensym-count 0] [print-gensym #f] [#%$assembly-output #t])
(eval '(lambda (x) (let ([y (x)]) (x y))))))))
)
(mat compiler4
; check for overly loose loop recognition
(eq? (let ([f (lambda (t)
((letrec ([merge
(case-lambda [(t) (merge t t)] [(i t) 'yes])])
merge)
t))])
(f 3))
'yes)
(eq? (let ([f (lambda (t)
(define merge (case-lambda [(t) (merge t t)] [(i t) 'yes]))
(merge t))])
(f 3))
'yes)
; original program from Bob Burger for overly loose loop recognition
(equal?
(let ()
(define (consolidate T)
(define merge
(case-lambda
[(T) (if (null? T) '() (merge (car T) (cdr T)))]
[(I T)
(if (null? T) (cons I '()) (merge I (car T) (cdr T)))]
[(I J T)
(let ([I-hi (cdr I)])
(if (<= (car J) I-hi)
(let ([J-hi (cdr J)])
(if (<= J-hi I-hi)
(merge I T)
(merge (cons (car I) J-hi) T)))
(cons I (merge J T))))]))
(merge T))
(consolidate '((1 . 2) (2 . 5))))
'((1 . 5)))
)
(mat argcnt-check
(eqv? (let ((f (lambda (x) #t))) (set! f (lambda (x y) x)) (f 1 2)) 1)
(error? (let ((f (lambda (x) x))) (f 1 2)))
(let ((f (case-lambda ((x) x) ((x y) #t)))) (f 1 2))
(error? (let ((f (case-lambda ((x) x) ((x y) x)))) (f 1 2 3)))
(let ((f (case-lambda ((x) x) ((x . y) #t)))) (f 1 2 3))
(error? (let ((f (lambda (x y z . r) x))) (f)))
(error? (let ((f (lambda (x y z . r) x))) (f 1)))
(error? (let ((f (lambda (x y z . r) x))) (f 1 2)))
(eqv? (let ((f (lambda (x y z . r) x))) (f 1 2 3)) 1)
(eqv? (let ((f (lambda (x y z . r) x))) (f 1 2 3 4)) 1)
(eqv? (let ((f (lambda (x y z . r) x))) (f 1 2 3 4 5)) 1)
(let ((f (case-lambda ((x . r) x) ((x y . r) y)))) (f #t))
(let ((f (case-lambda ((x y . r) y) ((x . r) x)))) (f #t))
(error? (let f ((x 3)) (f)))
(let f ((x #f)) (or x (f #t)))
(let f ((x #f) (y #t)) (or x (f y x)))
(error? (let f ((x #f) (y #t)) (or x (f #t))))
(let ((f (or (lambda (x) x) (lambda (x y) x)))) (f #t))
(error? (let ((f (or 3 (lambda (x) x)))) (f #t)))
(guard (c [(equal? (condition-message c) "incorrect argument count in call ~a") #t]
[else (raise c)])
(let loop ([x 1])
(if (fx= x 0)
x
(loop)))
#f)
(begin
(with-output-to-file "testfile-argcnt-check-loop.ss"
(lambda ()
(pretty-print
'(let loop ([x 1])
(if (fx= x 0)
x
(loop)))))
'replace)
#t)
(guard (c [(equal? (condition-message c) "possible incorrect argument count in call ~a") #t]
[else #f])
(load "testfile-argcnt-check-loop.ss")
#f)
(guard (c [(equal? (condition-message c) "possible incorrect argument count in call ~a") #t]
[else #f])
(compile-library "testfile-argcnt-check-loop.ss")
#f)
(begin
(define foo
(lambda ()
(let loop ([x 1])
(if (fx= x 0)
x
(loop)))))
#t)
(guard (c [(equal? (condition-message c) "incorrect argument count in call ~a") #t]
[else (raise c)])
(foo)
#f)
(begin
(with-output-to-file "testfile-argcnt-check-foo.ss"
(lambda ()
(pretty-print
'(define foo
(lambda ()
(let loop ([x 1])
(if (fx= x 0)
x
(loop)))))))
'replace)
#t)
(guard (c [(equal? (condition-message c) "possible incorrect argument count in call ~a") #t]
[else #f])
(load "testfile-argcnt-check-foo.ss"))
(guard (c [(equal? (condition-message c) "possible incorrect argument count in call ~a") #t]
[else #f])
(compile-library "testfile-argcnt-check-foo.ss"))
(begin
(library (argcnt-check-r)
(export foo)
(import (chezscheme))
(define foo
(lambda ()
(let f ([x 1])
(if (fx= x 0)
x
(list (f)))))))
#t)
(guard (c [(equal? (condition-message c) "incorrect argument count in call ~a") #t]
[else (raise c)])
(let ()
(import (argcnt-check-r))
(foo)
#f))
(begin
(library (argcnt-check-s)
(export foo foo1 foo2)
(import (chezscheme))
(define foo
(lambda ()
(let loop ([x 1])
(if (fx= x 0)
x
(loop)))))
(define foo1 (lambda () (foo) (foo) (foo) (foo) (foo)))
(define foo2 (lambda () (foo))))
#t)
(guard (c [(equal? (condition-message c) "incorrect argument count in call ~a") #t]
[else (raise c)])
(let ()
(import (argcnt-check-s))
(foo)
#f))
(guard (c [(equal? (condition-message c) "incorrect argument count in call ~a") #t]
[else (raise c)])
(let ()
(import (argcnt-check-s))
(foo1)
#f))
(guard (c [(equal? (condition-message c) "incorrect argument count in call ~a") #t]
[else (raise c)])
(let ()
(import (argcnt-check-s))
(foo2)
#f))
(begin
(with-output-to-file "testfile-argcnt-check-s.ss"
(lambda ()
(pretty-print
'(library (testfile-argcnt-check-s)
(export foo)
(import (chezscheme))
(define foo
(lambda ()
(let loop ([x 1])
(if (fx= x 0)
x
(loop))))))))
'replace)
#t)
(guard (c [(equal? (condition-message c) "possible incorrect argument count in call ~a") #t]
[else (raise c)])
(eval '(import (testfile-argcnt-check-s)))
#f)
(guard (c [(equal? (condition-message c) "possible incorrect argument count in call ~a") #t]
[else (raise c)])
(load "testfile-argcnt-check-s.ss")
#f)
(guard (c [(equal? (condition-message c) "possible incorrect argument count in call ~a") #t]
[else (raise c)])
(compile-library "testfile-argcnt-check-s.ss")
#f)
)
(mat direct-call
(let ()
(define f (let ((x 3)) (lambda (y) (+ x y))))
(define g (lambda () (f 4)))
(eq? (g) 7))
)
(mat inspect ; need lots more
(eq? ((call/cc inspect/object) 'type) 'continuation)
(eq? ((call/1cc inspect/object) 'type) 'continuation)
(integer? ((call/cc inspect/object) 'depth))
(integer? ((call/1cc inspect/object) 'depth))
(error? ((inspect/object '#(1)) 'ref))
(or (equal? (current-eval) interpret)
(let ()
(define $f (lambda (x) (let ([o (call/cc inspect/object)]) (cons x o))))
(let ([q ($f (cons 'a 'b))])
(eq? ((cdr q) 'eval 'x) (car q)))))
(error? ; invalid message
((inspect/object (cons 'car 'cdr)) 'creep))
(error? ; incorrect number of arguments
((inspect/object (cons 'car 'cdr)) 'size))
(error? ; invalid generation
((inspect/object (cons 'car 'cdr)) 'size 'oops))
(<= ((inspect/object (cons 'car 'cdr)) 'size 0) (fx* (ftype-sizeof uptr) 2))
(eqv? ((inspect/object (cons 0 0)) 'size 'static) (fx* (ftype-sizeof uptr) 2))
(equal?
(let ([ls (list 0 0)])
(set-cdr! (cdr ls) ls)
(let ([x (inspect/object ls)])
(let* ([size1 (x 'size 'static)] [size2 ((x 'cdr) 'size 'static)])
(cons size1 size2))))
(cons
(fx* (ftype-sizeof uptr) 4)
(fx* (ftype-sizeof uptr) 2)))
)
(mat compute-size
(error? (compute-size 0 -1))
(error? (compute-size 0 'dynamic))
(eqv? (compute-size 0) 0)
(eqv? (compute-size (cons 0 0)) (fx* (ftype-sizeof uptr) 2))
(eqv? (compute-size 'cons) 0)
; from the user's guide
(eqv?
(compute-size 0)
0)
(eqv?
(compute-size (cons 0 0))
(* (ftype-sizeof uptr) 2))
(eqv?
(compute-size (cons (vector #t #f) 0))
(* (ftype-sizeof uptr) 6))
(eqv?
(compute-size
(let ([x (cons 0 0)])
(set-car! x x)
(set-cdr! x x)
x))
(* (ftype-sizeof uptr) 2))
(>=
(let ()
(define-record-type frob (fields x))
(compute-size
(let ([x (make-frob 0)])
(cons x x))))
(* (ftype-sizeof uptr) 16))
(eqv?
(parameterize ([collect-request-handler void])
(let ()
(define-record-type frob (fields x))
(collect 1 1)
(compute-size
(let ([x (make-frob 0)])
(cons x x))
0)))
(* (ftype-sizeof uptr) 4))
; make sure we don't venture into the undefined fields of a shot 1-shot continuation
(fixnum? (let ([k (call/1cc (lambda (k) k))]) (collect) (compute-size k)))
)
(mat compute-composition
(error? (compute-composition 0 -1))
(error? (compute-composition 0 "static"))
(equal? (compute-composition 0) '())
(equal?
(sort (lambda (x y) (fx> (cadr x) (cadr y)))
(compute-composition (cons (fxvector 1) (vector (fxvector 2) (fxvector 3) (list (fxvector 4))))))
`((fxvector . (4 . ,(fx* 4 (ftype-sizeof uptr) 2))) (pair . (2 . ,(fx* 2 (ftype-sizeof uptr) 2))) (vector . (1 . ,(fx* 4 (ftype-sizeof uptr))))))
(equal? (compute-composition 'cons) '())
; from the user's guide
(begin
(define $same-elements?
(lambda (ls1 ls2)
(and (equal? (length ls1) (length ls2))
(let f ([ls1 ls1])
(or (null? ls1)
(and (member (car ls1) ls2)
(f (cdr ls1))))))))
#t)
(equal?
(compute-composition 0)
'())
($same-elements?
(compute-composition (cons 0 0))
`((pair 1 . ,(* (ftype-sizeof uptr) 2))))
(equal?
(compute-composition (cons (vector #t #f) 0))
`((pair 1 . ,(* (ftype-sizeof uptr) 2))
(vector 1 . ,(* (ftype-sizeof uptr) 4))))
(equal?
(compute-composition
(let ([x (cons 0 0)])
(set-car! x x)
(set-cdr! x x)
x))
`((pair 1 . ,(* (ftype-sizeof uptr) 2))))
(>=
(let ()
(define-record-type frob (fields x))
(length
(compute-composition
(let ([x (make-frob 0)])
(cons x x)))))
4) ; pair, rtd, record, fields vector, name
(let ()
(define-record-type frob (fields x))
($same-elements?
(parameterize ([collect-request-handler void])
(let ()
(collect 1 1)
(compute-composition
(let ([x (make-frob 0)])
(cons x x))
0)))
`((pair 1 . ,(* (ftype-sizeof uptr) 2))
(,(record-type-descriptor frob) 1 . ,(* (ftype-sizeof uptr) 2)))))
; make sure we don't venture into the undefined fields of a shot 1-shot continuation
(list? (let ([k (call/1cc (lambda (k) k))]) (collect) (compute-composition k)))
)
(mat make-object-finder
(begin
(define $fo
(lambda args
(let ([find-next (apply make-object-finder args)])
(cond
[(find-next) =>
(lambda (path)
(unless (list? path)
(errorf '$fo-all "~s is not a list" path))
path)]
[else #f]))))
(define $fo-all
(lambda args
(let ([find-next (apply make-object-finder args)])
(let f ()
(cond
[(find-next) =>
(lambda (path)
(unless (list? path)
(errorf '$fo-all "~s is not a list" path))
(cons path (f)))]
[else '()])))))
(define set-equal?
(lambda (s1 s2)
(and (= (length s1) (length s2))
(andmap (lambda (x) (member x s2)) s1)
#t)))
#t)
(error? ; not a procedure
(make-object-finder 17))
(error? ; invalid generation
(make-object-finder not 'q (+ (collect-maximum-generation) 1)))
(error? ; invalid generation
(make-object-finder not 'q 'oldgen))
(error? ; invalid generation
(make-object-finder not 'q -1))
(error? ; invalid number of arguments
((make-object-finder fixnum? 1) 'a))
(not ($fo (let ([ctr 0]) (lambda (x) (set! ctr (+ ctr 1)) (when (= (mod ctr 4000) 0) (pretty-print ctr)) #f))))
(pair? ($fo symbol?))
(not ($fo symbol? (list 1 2 3)))
(equal?
($fo symbol? (list 1 'a-symbol-probably-not-static 3))
'(a-symbol-probably-not-static (a-symbol-probably-not-static 3) (1 a-symbol-probably-not-static 3)))
(equal?
($fo symbol? (list 1 'a 3))
'(a (a 3) (1 a 3)))
(equal?
($fo symbol? (list 'a-symbol-probably-not-static 2 3))
'(a-symbol-probably-not-static (a-symbol-probably-not-static 2 3)))
(equal?
($fo symbol? (list 'a 2 3))
'(a (a 2 3)))
(equal?
($fo flonum? (list 1 3.14 3))
'(3.14 (3.14 3) (1 3.14 3)))
(not ($fo symbol? (vector 1 2 3)))
(equal?
($fo symbol? (vector 1 'a-symbol-probably-not-static 3))
'(a-symbol-probably-not-static #(1 a-symbol-probably-not-static 3)))
(equal?
($fo flonum? (vector 1 3.14 3))
'(3.14 #(1 3.14 3)))
(equal?
($fo fixnum? (vector 1 'a-symbol-probably-not-static 3))
'(1 #(1 a-symbol-probably-not-static 3)))
(equal?
($fo-all fixnum? 1)
'((1)))
(set-equal?
($fo-all fixnum? (vector 1 'a-symbol-probably-not-static 3))
'((1 #(1 a-symbol-probably-not-static 3)) (3 #(1 a-symbol-probably-not-static 3))))
(set-equal?
($fo-all fixnum? (list 1 'a-symbol-probably-not-static 3))
'((1 (1 a-symbol-probably-not-static 3)) (3 (3) (a-symbol-probably-not-static 3) (1 a-symbol-probably-not-static 3))))
(let-values ([(g path*) (parameterize ([generate-inspector-information #f]
[compile-profile #f]
[current-eval compile]
[enable-cp0 #f])
(eval `(let ()
(define f (lambda (x) (lambda (y) (cons x '#(4 5)))))
(define g (f '#(a b)))
(values g ($fo-all vector? g)))))])
(set-equal?
path*
`((#(4 5) ,(#%$closure-code g) ,g)
(#(a b) ,g))))
(not ($fo (lambda (x) (and (string? x) (string=? x "cons"))) 'cons 0))
(list? ($fo (lambda (x) (and (string? x) (string=? x "cons"))) 'cons 'static))
; make sure we don't venture into the undefined fields of a shot 1-shot continuation
(not (let ([k (call/1cc (lambda (k) k))]) (collect) ($fo (lambda (x) #f) k)))
)
(mat print-vector-length
(not (print-vector-length))
(let ([p (open-output-string)])
(write '#(1 2 3) p)
(string=? (get-output-string p) "#(1 2 3)"))
(let ([p (open-output-string)])
(parameterize ([print-vector-length #t])
(write '#(1 2 3) p))
(string=? (get-output-string p) "#3(1 2 3)"))
)
(mat print-brackets
(print-brackets)
(let ([p (open-output-string)])
(pretty-print '(let ([x x]) x) p)
(string=? (get-output-string p) (format "(let ([x x]) x)~%")))
(let ([p (open-output-string)])
(parameterize ([print-brackets #f])
(pretty-print '(let ([x x]) x) p))
(string=? (get-output-string p) (format "(let ((x x)) x)~%")))
)
(mat subset
(not (subset-mode))
(error? (subset-mode 'ieee))
(error? (subset-mode 'r4rs))
(error? (subset-mode 'r5rs))
(error? (subset-mode #t))
(begin (subset-mode #f) (not (subset-mode)))
)
(mat eval
(eq? (eval '(let ((x 3)) x)) 3)
(eq? (eval '(let ((x 3)) x) (interaction-environment)) 3)
(eq? (eval '(let ((x 3)) x) (scheme-report-environment 5)) 3)
(eq? (eval '(let ((x 3)) x) (ieee-environment)) 3)
(eq? (eval '(let ((x 3)) x) (null-environment 5)) 3)
(eq? (eval '(let ((p (delay 3))) (force p))) 3)
(eq? (eval '(let ((p (delay 3))) (force p)) (interaction-environment)) 3)
(eq? (eval '(let ((p (delay 3))) (force p)) (scheme-report-environment 5)) 3)
(error? (eval '(let ((p (delay 3))) (force p)) (null-environment 5)))
(error? (eval '(let ((p (delay 3))) (force p)) (ieee-environment)))
(error? (eval '(cons 1 2) (null-environment 5)))
(error? (eval '(sort < '(3 2 4)) (scheme-report-environment 5)))
(error? (eval '(sort < '(3 2 4)) (ieee-environment)))
(error? (eval '(sort < '(3 2 4)) (null-environment 5)))
)
(mat eval2
(eq? (eval '(let ((x 3)) x)) 3)
(eq? (eval '(let ((x 3)) x) (interaction-environment)) 3)
(eq? (eval '(let ((x 3)) x) (scheme-report-environment 5)) 3)
(eq? (eval '(let ((x 3)) x) (null-environment 5)) 3)
(eq? (eval '(let ((x 3)) x) (ieee-environment)) 3)
(eq? (eval 'list) list)
(eq? (eval 'list (interaction-environment)) list)
(eq? (eval 'list (scheme-report-environment 5)) list)
(error? (eval 'list (null-environment 5)))
(eq? (eval 'list (ieee-environment)) list)
(eq? (eval 'force) force)
(eq? (eval 'force (interaction-environment)) force)
(eq? (eval 'force (scheme-report-environment 5)) force)
(error? (eval 'force (null-environment 5)))
(error? (eval 'force (ieee-environment)))
(eq? (force (eval '(delay 17))) 17)
(eq? (force (eval '(delay 17) (interaction-environment))) 17)
(eq? (force (eval '(delay 17) (scheme-report-environment 5))) 17)
(eq? (force (eval '(delay 17) (null-environment 5))) 17)
(error? (eval '(delay 17) (ieee-environment)))
(error? (eval '(set! + -) (scheme-report-environment 5)))
(error? (eval '(set! + -) (null-environment 5)))
(error? (eval '(set! + -) (ieee-environment)))
(error? (eval '(define x -) (scheme-report-environment 5)))
(error? (eval '(define x -) (null-environment 5)))
(error? (eval '(define x -) (ieee-environment)))
(error? (eval '(define-syntax x list) (scheme-report-environment 5)))
(error? (eval '(define-syntax x list) (null-environment 5)))
(error? (eval '(define-syntax x list) (ieee-environment)))
(error? (eval '(define-syntax x (syntax-rules () ((_) 4)))
(ieee-environment)))
(eq? (eval '(syntax-case 3 () (_ 4))) 4)
(eq? (eval '(syntax-case 3 () (_ 4)) (interaction-environment)) 4)
(error? (eval '(syntax-case 3 () (_ 4)) (scheme-report-environment 5)))
(error? (eval '(syntax-case 3 () (_ 4)) (null-environment 5)))
(error? (eval '(syntax-case 3 () (_ 4)) (ieee-environment)))
)
(mat getenv/putenv
(procedure? getenv)
(procedure? putenv)
(or (embedded?)
(string? (or (getenv "HOME") (getenv "HOMEPATH"))))
(not (getenv "FUBULYFRATZ"))
(eq? (putenv "FUBULY" "FRATZ") (void))
(not (getenv "FUBULYFRATZ"))
(equal? (getenv "FUBULY") "FRATZ")
(eq? (putenv "FUBULY" "fratz") (void))
(equal? (getenv "FUBULY") "fratz")
(error? (getenv 'hello))
(error? (putenv 'hello "goodbye"))
(error? (putenv "hello" 'goodbye))
)
(mat source-directories
(equal? (source-directories) '("."))
(equal? (parameterize ((source-directories (cons "/a" (source-directories))))
(source-directories))
'("/a" "."))
(error? (source-directories 'a))
(error? (source-directories "a"))
(error? (source-directories '("a" . "b")))
(error? (source-directories '(3)))
(error? ; invalid exports list---not "testfile.ss not found in source directories"
(begin
(with-output-to-file "testfile.ss"
(lambda () (pretty-print '(module (a 3) (define a 3))))
'replace)
(parameterize ([source-directories '("." "probably not there")])
(load "testfile.ss"))))
)
(mat queries
(boolean? (threaded?))
(boolean? (petite?))
(let ([pid (get-process-id)])
(and (integer? pid) (exact? pid)))
(eqv? (get-thread-id) 0)
(eqv? (get-process-id) (get-process-id))
(eqv? (get-thread-id) (get-thread-id))
)
(mat cpletrec
(eq? (letrec ((x 3)) x) 3)
(eq? (letrec ((x 3)) 4) 4)
(eq? (letrec ((x (let ((y 4)) (lambda (x) (+ x y))))) (x 7)) 11)
(eq? (letrec ((x (letrec ((y 4)) (lambda (x) (+ x y))))) (x 7)) 11)
(eq? (letrec ((x 4)) (set! x 3)) (void))
(eq? (letrec ((x 4)) (set! x (begin (write 'hi) 3))) (void))
(eq? (letrec ((x (letrec ((y (lambda (z) (+ z z))))
(lambda (x) (y x)))))
(x 3))
6)
(equal? (letrec ((foo (rec f (lambda (x ls) (list x ls))))) (foo 1 2))
'(1 2))
(eq? (letrec ((x (let ((a (+ 3 4))) (let ((b (+ a a))) b)))) x) 14)
(eq? (letrec ((x (let ((a (lambda (x) (+ x 1))))
(let ((b (lambda (y) (+ (a y) y))))
(lambda (z) (* (b z) z))))))
(x 3))
21)
(equal?
(let ()
(define next
(let ((cnt 0))
(lambda () (set! cnt (+ cnt 1)) cnt)))
(define list-next
(lambda ()
(list (next) (next))))
(sort < (cons (next) (list-next))))
'(1 2 3))
(record?
((let ()
(define-record foo (a b c))
make-foo)
1 2 3))
(record?
((let ()
(define-record foo (a b c) (((mutable d) (+ a b))))
make-foo)
1 2 3))
(record?
((let ()
(define-record foo (a b c))
make-foo)
1 2 3))
(error? (letrec ((x (foreign-procedure "foo" () void))) (x 17)))
(equal?
(letrec ((x (let ((a 3)
(b (letrec ((e (lambda (y) (eq? y x))))
(lambda () (e x))))
(d (let ((c 4)) (lambda () (+ 5 c)))))
(lambda ()
(list a (b) (d))))))
(x))
'(3 #t 9))
(equal?
(letrec ((x (let ((a 3)
(b (letrec ((e (lambda (y) (eq? y x))))
(lambda () (e x))))
(d (let ((c 4)) (lambda () (+ 5 c)))))
(lambda ()
(set! a (+ a 1))
(list a (b) (d))))))
(x))
'(4 #t 9))
(equal?
(letrec ((x (let ((a 3))
(letrec ((b (lambda (x) (+ x 2)))
(d (lambda (y) (* y y))))
(lambda ()
(set! a (+ a 1))
(list a (b a) (d a)))))))
(x))
'(4 6 16))
(equal?
(letrec ((x (let ((a 3))
(let ((b (letrec ((e (lambda (y) (eq? y x))))
(lambda () (e x))))
(d (let ((c 4)) (lambda () (+ a c)))))
(lambda ()
(set! a (+ a 1))
(list a (b) (d)))))))
(x))
'(4 #t 8))
#;(warning?
(begin
(define unknown (lambda (x) x))
(letrec ([foo (unknown (lambda () bar))]
[bar (lambda () foo)])
foo)))
#;(warning?
(mat/cf
(begin
(define unknown (lambda (x) x))
(letrec ([foo (unknown (lambda () bar))]
[bar (unknown (lambda () foo))])
foo))))
(error?
(eval '(letrec* ([f (lambda () q)] [g (f)] [q 17]) g)))
(error?
(eval '(begin
(define unknown (lambda (x) (x)))
(letrec ([foo (unknown (lambda () bar))]
[bar (lambda () foo)])
foo))))
(error?
(eval '(mat/cf
(begin
(define unknown (lambda (x) (x)))
(letrec ([foo (unknown (lambda () bar))]
[bar (unknown (lambda () foo))])
foo)))))
; test cpvalid/undefer interaction
(error? ; attempt to reference undefined variable b
(letrec* ([d (letrec ([a (lambda () c)] [b 1] [c b]) 2)]) 3))
(error? ; attempt to reference undefined variable b
(letrec* ([d (letrec ([a (lambda () 0)] [b 1] [c b]) 2)]) 3))
(error? ; attempt to reference undefined variable a
(letrec* ([d (letrec ([a (lambda () 1)] [c a]) 2)]) 3))
(error? ; attempt to reference undefined variable b
(letrec* ([d (letrec* ([a (lambda () 1)] [c b] [b 4]) 2)]) 3))
(error? ; attempt to reference undefined variable b
(letrec* ([d (letrec ([a (set! b (lambda () 0))] [b 1]) 2)]) 3))
(eqv?
(letrec* ([d (letrec ([a (lambda () 1)] [c (if #f a)]) 2)]) 3)
3)
(eqv?
(letrec* ([d (letrec* ([a (lambda () 1)] [c (if #f b)] [b 4]) 2)]) 3)
3)
(eqv?
(letrec* ([d (letrec ([a (if #f (set! b (lambda () 0)))] [b 1]) 2)]) 3)
3)
(eqv?
(letrec* ([d (letrec ([a (lambda () 0)] [b 1] [c 2]) 2)]) 3)
3)
(procedure? (letrec* ([bar (letrec* ([f (lambda (x) f)]) f)]) bar))
(eqv?
(letrec* ([d (letrec* ([a 0] [b (set! a (lambda () 1))]) 2)]) 3)
3)
; make sure we don't get valid check(s)
(equivalent-expansion?
(parameterize ([run-cp0 (lambda (cp0 x) (cp0 x))]
[optimize-level 2])
(expand/optimize
'(let ()
(define f (lambda () (g)))
(define g (lambda () 17))
(define x (f))
x)))
'17)
; check for regression: cpvalid leaving behind a cpvalid-defer form
(equivalent-expansion?
(parameterize ([run-cp0 (lambda (cp0 x) x)]
[optimize-level 2])
(expand/optimize '(letrec* ([f (letrec ([x x]) (lambda () x))]) 0)))
'(let ([f (let ([valid? #f])
(let ([x (#2%void)])
(set! x
(begin
(if valid?
(#2%void)
(#2%$source-violation #f #f #t
"attempt to reference undefined variable ~s" 'x))
x))
(set! valid? #t)
(lambda () x)))])
0))
)
(mat generate-procedure-source-information
(begin
(define the-source
(let ([sfd (make-source-file-descriptor "the-source.ss" (open-bytevector-input-port '#vu8()))])
(make-source-object sfd 10 20)))
(define (make-proc full-inspect?)
(parameterize ([generate-inspector-information full-inspect?]
[generate-procedure-source-information #t])
(let ([e '(lambda (x) x)])
(compile (make-annotation e the-source e)))))
(define proc-i (make-proc #t))
(define proc-n (make-proc #f))
(and (procedure? proc-i)
(procedure? proc-n)))
(equal? (((inspect/object proc-i) 'code) 'source-object)
the-source)
(equal? (((inspect/object proc-n) 'code) 'source-object)
the-source)
(equal? ((((inspect/object proc-i) 'code) 'source) 'value)
'(lambda (x) x))
(equal? (((inspect/object proc-n) 'code) 'source)
#f)
)
(mat strip-fasl-file
(error?
(fasl-strip-options ratfink profile-source))
(error? ; not a string
(strip-fasl-file (fasl-strip-options profile-source) "testfile.so" (fasl-strip-options profile-source)))
(error? ; not a string
(strip-fasl-file "testfile.so" (fasl-strip-options profile-source) (fasl-strip-options profile-source)))
(error? ; not a fasl-strip-options object
(strip-fasl-file "testfile.so" "testfile.so" "testfile.so"))
(enum-set? (fasl-strip-options))
(enum-set? (fasl-strip-options inspector-source))
(enum-set? (fasl-strip-options inspector-source compile-time-information))
(begin
(define object-file-size
(lambda (path)
(bytevector-length (call-with-port (open-file-input-port path (file-options compressed)) get-bytevector-all))))
(define strip-and-check
(lambda (in out options)
(let ([n (object-file-size in)])
(strip-fasl-file in out options)
(< (object-file-size out) n))))
#t)
; plain libraries
(begin
(with-output-to-file "testfile-sff-1a.ss"
(lambda ()
(pretty-print
'(library (testfile-sff-1a)
(export a x)
(import (chezscheme))
(define-syntax a (identifier-syntax (x 5)))
(define x (lambda (n) (if (= n 0) 1 (* n (x (- n 1)))))))))
'replace)
(with-output-to-file "testfile-sff-1b.ss"
(lambda ()
(pretty-print
'(library (testfile-sff-1b)
(export b y)
(import (chezscheme) (testfile-sff-1a))
(define-syntax b (syntax-rules () [(_ k) (k y)]))
(define y (x 4)))))
'replace)
(with-output-to-file "testfile-sff-1c.ss"
(lambda ()
(pretty-print '(define preexisting-entries (length (profile-dump))))
(pretty-print '(eval-when (compile) (import (add-prefix (testfile-sff-1a) sff-1a-))))
(pretty-print '(eval-when (compile) (import (add-prefix (testfile-sff-1b) sff-1b-))))
(pretty-print '(pretty-print (list (sff-1a-x 3) sff-1b-y)))
(pretty-print '(pretty-print (not (((inspect/object sff-1a-x) 'code) 'source))))
(pretty-print '(pretty-print (= (length (profile-dump)) preexisting-entries))))
'replace)
(separate-compile
'(lambda (x)
(parameterize ([generate-inspector-information #t]
[compile-profile #t]
[compile-imported-libraries #t])
(compile-file x)))
'sff-1c)
#t)
(begin
(define (go)
(separate-eval
'(define preexisting-entries
(with-exception-handler
(lambda (c) (unless (warning? c) (raise-continuable c)))
(lambda () (length (profile-dump-list)))))
'(import (testfile-sff-1a))
'(import (testfile-sff-1b))
'(define-syntax so?
(lambda (x)
(syntax-case x ()
[(_ q) (and (syntax->annotation #'q) #t)])))
'(list a (b so?) (x 3) y)
'(not (((inspect/object x) 'code) 'source))
'(define all-entries
(with-exception-handler
(lambda (c) (unless (warning? c) (raise-continuable c)))
(lambda () (length (profile-dump-list)))))
'(= all-entries preexisting-entries)))
#t)
(equal?
(go)
"(120 #t 6 24)\n#f\n#f\n")
(strip-and-check "testfile-sff-1a.so" "testfile-sff-1a.so"
(fasl-strip-options inspector-source))
(strip-and-check "testfile-sff-1b.so" "testfile-sff-1b.so"
(fasl-strip-options inspector-source))
(equal?
(go)
"(120 #t 6 24)\n#t\n#f\n")
(strip-and-check "testfile-sff-1a.so" "testfile-sff-1a.so"
(fasl-strip-options profile-source))
(strip-and-check "testfile-sff-1b.so" "testfile-sff-1b.so"
(fasl-strip-options profile-source))
(equal?
(go)
"(120 #t 6 24)\n#t\n#t\n")
(strip-and-check "testfile-sff-1a.so" "testfile-sff-1a.so"
(fasl-strip-options source-annotations))
(strip-and-check "testfile-sff-1b.so" "testfile-sff-1b.so"
(fasl-strip-options source-annotations))
(equal?
(go)
"(120 #f 6 24)\n#t\n#t\n")
(strip-and-check "testfile-sff-1a.so" "testfile-sff-1a.so"
(fasl-strip-options compile-time-information))
(strip-and-check "testfile-sff-1b.so" "testfile-sff-1b.so"
(fasl-strip-options compile-time-information))
(strip-and-check "testfile-sff-1c.so" "testfile-sff-1c.so"
(fasl-strip-options profile-source))
(equal?
(separate-eval
'(guard (c [else (display-condition c) (newline) #t]) (eval '(import (testfile-sff-1b))))
'(guard (c [else (display-condition c) (newline) #t]) (eval '(import (testfile-sff-1a))))
'(expand 'a)
'(expand 'b)
'(load "testfile-sff-1c.so")
'(guard (c [else (display-condition c) (newline) #t]) (eval '(import (testfile-sff-1b)))))
"Exception: loading testfile-sff-1b.so did not define library (testfile-sff-1b)\n#t\n\
Exception: loading testfile-sff-1a.so did not define library (testfile-sff-1a)\n#t\n\
a\nb\n\
(6 24)\n#t\n#t\n\
Exception: loading testfile-sff-1b.so did not define compile-time information for library (testfile-sff-1b)\n#t\n\
")
; scripts
(begin
(with-output-to-file "testfile-sff.ss"
(lambda ()
(printf "#! ../bin/~a/scheme --script\n" (machine-type))
(pretty-print '(define (hello) (import (chezscheme)) (printf "hello\n")))
(pretty-print '(hello)))
'replace)
(parameterize ([generate-inspector-information #t])
(compile-script "testfile-sff"))
#t)
(strip-and-check "testfile-sff.so" "testfile-sff-stripped.so"
(fasl-strip-options inspector-source))
(equal?
(separate-eval
'(load "testfile-sff.so")
'(and (((inspect/object hello) 'code) 'source) #t))
"hello\n#t\n")
(equal?
(separate-eval
'(load "testfile-sff-stripped.so")
'(and (((inspect/object hello) 'code) 'source) #t))
"hello\n#f\n")
(equal?
(run-script "./testfile-sff.so")
"hello\n")
(equal?
(run-script "./testfile-sff-stripped.so")
"hello\n")
; non-library compile-time-information
(begin
(with-output-to-file "testfile-sff-3.ss"
(lambda ()
(pretty-print '(define cons vector))
(pretty-print '(define-syntax + (identifier-syntax -))))
'replace)
(separate-compile 'sff-3)
(define $orig-size (object-file-size "testfile-sff-3.so"))
#t)
(equal?
(separate-eval
'(load "testfile-sff-3.so")
'(cons 3 4)
'(+ 3 4))
"#(3 4)\n-1\n")
(strip-and-check "testfile-sff-3.so" "testfile-sff-3.so"
(fasl-strip-options compile-time-information))
(< (object-file-size "testfile-sff-3.so") $orig-size)
(equal?
(separate-eval
'(load "testfile-sff-3.so")
'(cons 3 4)
'(+ 3 4))
"(3 . 4)\n7\n")
(let ([n (object-file-size "testfile-sff-3.so")])
(strip-fasl-file "testfile-sff-3.so" "testfile-sff-3.so"
(fasl-strip-options compile-time-information))
(= (object-file-size "testfile-sff-3.so") n))
)
(mat $fasl-file-equal?
(begin
(parameterize ([generate-inspector-information #t])
(compile-file "../examples/fatfib.ss" "testfile-fatfib1.so"))
(parameterize ([generate-inspector-information #t])
(compile-file "../examples/fatfib.ss" "testfile-fatfib2.so"))
(parameterize ([generate-inspector-information #f])
(compile-file "../examples/fatfib.ss" "testfile-fatfib3.so"))
#t)
(error? ; not a string
(#%$fasl-file-equal? 'testfile-fatfib1.so "testfile-fatfib2.so"))
(error? ; not a string
(#%$fasl-file-equal? 'testfile-fatfib1.so "testfile-fatfib2.so" #t))
(error? ; not a string
(#%$fasl-file-equal? "testfile-fatfib1.so" 13.4))
(error? ; not a string
(#%$fasl-file-equal? "testfile-fatfib1.so" 13.4 #f))
(error? ; file doesn't exist
(#%$fasl-file-equal? "testfile-fatfib1.so" "probably-does-not-exist"))
(error? ; file doesn't exist
(#%$fasl-file-equal? "testfile-fatfib1.so" "probably-does-not-exist" #f))
(error? ; file doesn't exist
(#%$fasl-file-equal? "probably-does-not-exist" "testfile-fatfib2.so"))
(error? ; file doesn't exist
(#%$fasl-file-equal? "probably-does-not-exist" "testfile-fatfib2.so" #t))
(#%$fasl-file-equal? "testfile-fatfib1.so" "testfile-fatfib2.so")
(not (#%$fasl-file-equal? "testfile-fatfib1.so" "testfile-fatfib3.so"))
(error? (#%$fasl-file-equal? "testfile-fatfib1.so" "testfile-fatfib3.so" #t))
)
(mat cost-center
(error? ; wrong number of arguments
(make-cost-center 'foo))
(error? ; foo is not a cost center
(with-cost-center 'foo (lambda () 5)))
(error? ; bar is not a procedure
(with-cost-center (make-cost-center) 'bar))
(error? ; 5 is not a cost center
(cost-center-instruction-count 5))
(error? ; "test" is not a cost center
(cost-center-allocation-count "test"))
(error? ; 4.7 is not a cost center
(cost-center-time 4.7))
(error? ; #\c is not a cost center
(reset-cost-center! #\c))
(let ([cc (make-cost-center)])
(cost-center? cc))
;;; instruction cost center tests
((lambda (x)
(<= 5 x 50))
(let ([cc (make-cost-center)])
(with-cost-center cc
(lambda ()
(parameterize ([generate-instruction-counts #t]
[compile-interpret-simple #f]
[enable-cp0 #f])
(compile '(let ([p (cons 'a 'b)]) (car p))))))
(cost-center-instruction-count cc)))
(begin
(define $cc-sum-1
(parameterize ([generate-instruction-counts #t])
(compile
'(lambda (ls)
(let f ([ls ls])
(if (null? ls)
0
(+ (car ls) (f (cdr ls)))))))))
#t)
((lambda (x)
(<= 100 x 1000))
(let ([cc (make-cost-center)])
(with-cost-center cc (lambda () ($cc-sum-1 (iota 10))))
(cost-center-instruction-count cc)))
((lambda (x)
(<= 1000 x 10000))
(let ([cc (make-cost-center)])
(with-cost-center cc (lambda () ($cc-sum-1 (iota 100))))
(cost-center-instruction-count cc)))
(begin
(define $cc-1 (make-cost-center))
(define $cc-sum-2
(parameterize ([generate-instruction-counts #t])
(compile
'(lambda (ls)
(let f ([ls ls])
(with-cost-center $cc-1
(lambda ()
(if (null? ls)
0
(+ (car ls) (f (cdr ls)))))))))))
#t)
((lambda (x)
(<= 100 x 1500))
(begin
($cc-sum-2 (iota 10))
(cost-center-instruction-count $cc-1)))
(begin
(reset-cost-center! $cc-1)
#t)
((lambda (x)
(<= 1000 x 15000))
(begin
($cc-sum-2 (iota 100))
(cost-center-instruction-count $cc-1)))
(begin
(reset-cost-center! $cc-1)
#t)
(let ([cc (make-cost-center)])
(with-cost-center cc (lambda () ($cc-sum-2 (iota 10))))
(<= (cost-center-instruction-count $cc-1) (cost-center-instruction-count cc)))
(begin
(define-syntax when-threaded
(lambda (x)
(syntax-case x ()
[(_ e0 e1 ...)
(if (threaded?)
#'(begin e0 e1 ...)
#'(begin #t))])))
#t)
(when-threaded
; copied from thread.ms
(begin
(define $threads (foreign-procedure "(cs)threads" () scheme-object))
(define $nthreads 1)
(define $yield
(let ([t (make-time 'time-duration 1000 0)])
(lambda () (sleep t))))
(define $thread-check
(lambda ()
(let loop ([n 10] [nt (length ($threads))])
(cond
[(<= nt $nthreads)
(set! $nthreads nt)
(collect)]
[else
($yield)
(let* ([ls ($threads)] [nnt (length ls)])
(cond
[(< nnt nt) (loop n nnt)]
[(= n 0)
(set! $nthreads nnt)
(errorf #f "extra threads running ~s" ls)]
[else (loop (- n 1) nnt)]))]))
#t))
($thread-check)))
(when-threaded
((lambda (x)
(<= 200 x 2000))
(let ([cc (make-cost-center)]
[finished #f]
[finished-mutex (make-mutex)]
[finished-condition (make-condition)])
(define sum-th
(lambda ()
(with-cost-center cc (lambda () ($cc-sum-1 (iota 10))))
(with-mutex finished-mutex
(if finished
(condition-signal finished-condition)
(set! finished #t)))))
(with-mutex finished-mutex
(fork-thread sum-th)
(fork-thread sum-th)
(condition-wait finished-condition finished-mutex))
(cost-center-instruction-count cc))))
(when-threaded ($thread-check))
(when-threaded
(reset-cost-center! $cc-1)
((lambda (x)
(<= 200 x 3000))
(let ([finished #f]
[finished-mutex (make-mutex)]
[finished-condition (make-condition)])
(define sum-th
(lambda ()
($cc-sum-2 (iota 10))
(with-mutex finished-mutex
(if finished
(condition-signal finished-condition)
(set! finished #t)))))
(with-mutex finished-mutex
(fork-thread sum-th)
(fork-thread sum-th)
(condition-wait finished-condition finished-mutex))
(cost-center-instruction-count $cc-1))))
(when-threaded ($thread-check))
(when-threaded
(reset-cost-center! $cc-1)
(let ([cc (make-cost-center)]
[finished #f]
[finished-mutex (make-mutex)]
[finished-condition (make-condition)])
(define sum-th
(lambda ()
(with-cost-center cc (lambda () ($cc-sum-2 (iota 10))))
(with-mutex finished-mutex
(if finished
(condition-signal finished-condition)
(set! finished #t)))))
(with-mutex finished-mutex
(fork-thread sum-th)
(fork-thread sum-th)
(condition-wait finished-condition finished-mutex))
(<= (cost-center-instruction-count $cc-1)
(cost-center-instruction-count cc))))
(when-threaded ($thread-check))
(begin
(define $cc-fibonacci
(let ([fib
(parameterize ([generate-instruction-counts #t])
(compile
'(rec fib
(lambda (i)
(cond
[(= i 0) 0]
[(= i 1) 1]
[else (+ (fib (- i 1))
(fib (- i 2)))])))))])
(lambda (n) (with-cost-center $cc-1 (lambda () (fib n))))))
#t)
(let ([normal-count (begin
(reset-cost-center! $cc-1)
($cc-fibonacci 10)
(cost-center-instruction-count $cc-1))]
[eng-count (begin
(reset-cost-center! $cc-1)
(let f ([eng (make-engine (lambda () ($cc-fibonacci 10)))])
(eng 50 (lambda args (cost-center-instruction-count $cc-1)) f)))])
; range because when running in an engine the trap check might
; be taken, and it will slightly increase the instruction count
(<= normal-count eng-count (+ normal-count 100)))
;;; allocation cost center tests
(eqv?
(case (fixnum-width)
[(30) 24]
[(61) 48])
(let ([cc (make-cost-center)])
(with-cost-center cc
(lambda ()
(parameterize ([generate-allocation-counts #t]
[compile-interpret-simple #f])
(compile '(#%list 'a 'b 'c)))))
(cost-center-allocation-count cc)))
((lambda (count) ; range for rand call done to test variable alloc case and 64-bit words
(<= 16 count 120))
(let ([cc (make-cost-center)])
(with-cost-center cc
(lambda ()
(parameterize ([generate-allocation-counts #t] [compile-interpret-simple #f])
(compile `(let ([x (fx+ 3 (random 10))])
(#3%make-vector x))))))
(cost-center-allocation-count cc)))
(begin
(define $cc-reverse-1
(parameterize ([generate-allocation-counts #t])
(compile
'(lambda (ls)
(let f ([ls ls] [rls '()])
(if (null? ls)
rls
(f (cdr ls) (#%cons (car ls) rls))))))))
#t)
(eqv?
(case (fixnum-width)
[(30) 80]
[(61) 160])
(let ([cc (make-cost-center)])
(with-cost-center cc (lambda () ($cc-reverse-1 (make-list 10))))
(cost-center-allocation-count cc)))
(eqv?
(case (fixnum-width)
[(30) 800]
[(61) 1600])
(let ([cc (make-cost-center)])
(with-cost-center cc (lambda () ($cc-reverse-1 (make-list 100))))
(cost-center-allocation-count cc)))
(begin
(define $cc-2 (make-cost-center))
(define $cc-reverse-2
(parameterize ([generate-allocation-counts #t])
(compile
'(lambda (ls)
(let f ([ls ls] [rls '()])
(with-cost-center $cc-2
(lambda ()
(if (null? ls)
rls
(f (cdr ls) (#%cons (car ls) rls))))))))))
#t)
((lambda (x) ; wide range to accommodate both 4-byte and 8-byte words
(<= 80 x 480))
(begin
($cc-reverse-2 (make-list 10))
(cost-center-allocation-count $cc-2)))
(begin
(reset-cost-center! $cc-2)
#t)
((lambda (x) ; wide range to accommodate both 4-byte and 8-byte words
(<= 800 x 4800))
(begin
($cc-reverse-2 (make-list 100))
(cost-center-allocation-count $cc-2)))
(begin
(reset-cost-center! $cc-2)
#t)
(let ([cc (make-cost-center)])
(with-cost-center cc (lambda () ($cc-reverse-2 (make-list 10))))
(<= (cost-center-allocation-count $cc-2) (cost-center-allocation-count cc)))
(begin
(define $cc-reverse-3
(let ([rev (parameterize ([generate-allocation-counts #t])
(compile
'(rec rev
(lambda (ls rls)
(if (null? ls)
rls
(rev (cdr ls) (#%cons (car ls) rls)))))))])
(lambda (ls)
(with-cost-center $cc-2 (lambda () (rev ls '()))))))
#t)
(eqv?
(begin
(reset-cost-center! $cc-2)
($cc-reverse-3 (iota 10))
(cost-center-allocation-count $cc-2))
(begin
(reset-cost-center! $cc-2)
(let f ([eng (make-engine (lambda () ($cc-reverse-3 (iota 10))))])
(eng 10 (lambda args (cost-center-allocation-count $cc-2)) f))))
(when-threaded
(eqv?
(case (fixnum-width)
[(30) 160]
[(61) 320])
(let ([cc (make-cost-center)]
[finished #f]
[finished-mutex (make-mutex)]
[finished-condition (make-condition)])
(define reverse-th
(lambda ()
(with-cost-center cc (lambda () ($cc-reverse-1 (iota 10))))
(with-mutex finished-mutex
(if finished
(condition-signal finished-condition)
(set! finished #t)))))
(with-mutex finished-mutex
(fork-thread reverse-th)
(fork-thread reverse-th)
(condition-wait finished-condition finished-mutex))
(cost-center-allocation-count cc))))
(when-threaded ($thread-check))
(when-threaded
(reset-cost-center! $cc-2)
((lambda (x) ; wide range to accommodate both 4-byte and 8-byte words
(<= 160 x 960))
(let ([finished #f]
[finished-mutex (make-mutex)]
[finished-condition (make-condition)])
(define reverse-th
(lambda ()
($cc-reverse-2 (iota 10))
(with-mutex finished-mutex
(if finished
(condition-signal finished-condition)
(set! finished #t)))))
(with-mutex finished-mutex
(fork-thread reverse-th)
(fork-thread reverse-th)
(condition-wait finished-condition finished-mutex))
(cost-center-allocation-count $cc-2))))
(when-threaded ($thread-check))
(when-threaded
(reset-cost-center! $cc-2)
(let ([cc (make-cost-center)]
[finished #f]
[finished-mutex (make-mutex)]
[finished-condition (make-condition)])
(define reverse-th
(lambda ()
(with-cost-center cc (lambda () ($cc-reverse-2 (iota 10))))
(with-mutex finished-mutex
(if finished
(condition-signal finished-condition)
(set! finished #t)))))
(with-mutex finished-mutex
(fork-thread reverse-th)
(fork-thread reverse-th)
(condition-wait finished-condition finished-mutex))
(<= (cost-center-instruction-count $cc-2)
(cost-center-instruction-count cc))))
(when-threaded ($thread-check))
;;; instruction with allocation cost center tests
((lambda (x)
(<= 10 x 50))
(let ([cc (make-cost-center)])
(with-cost-center cc
(lambda ()
(parameterize ([generate-allocation-counts #t]
[generate-instruction-counts #t]
[compile-interpret-simple #f]
[enable-cp0 #f])
(compile '(let ([p (cons 'a 'b)]) (car p))))))
(cost-center-instruction-count cc)))
(begin
(define $cc-sum-1
(parameterize ([generate-allocation-counts #t]
[generate-instruction-counts #t])
(compile
'(lambda (ls)
(let f ([ls ls])
(if (null? ls)
0
(+ (car ls) (f (cdr ls)))))))))
#t)
((lambda (x)
(<= 100 x 1000))
(let ([cc (make-cost-center)])
(with-cost-center cc (lambda () ($cc-sum-1 (iota 10))))
(cost-center-instruction-count cc)))
((lambda (x)
(<= 1000 x 10000))
(let ([cc (make-cost-center)])
(with-cost-center cc (lambda () ($cc-sum-1 (iota 100))))
(cost-center-instruction-count cc)))
(begin
(define $cc-1 (make-cost-center))
(define $cc-sum-2
(parameterize ([generate-allocation-counts #t]
[generate-instruction-counts #t])
(compile
'(lambda (ls)
(let f ([ls ls])
(with-cost-center $cc-1
(lambda ()
(if (null? ls)
0
(+ (car ls) (f (cdr ls)))))))))))
#t)
((lambda (x)
(<= 100 x 1500))
(begin
($cc-sum-2 (iota 10))
(cost-center-instruction-count $cc-1)))
(begin
(reset-cost-center! $cc-1)
#t)
((lambda (x)
(<= 1000 x 15000))
(begin
($cc-sum-2 (iota 100))
(cost-center-instruction-count $cc-1)))
(begin
(reset-cost-center! $cc-1)
#t)
(let ([cc (make-cost-center)])
(with-cost-center cc (lambda () ($cc-sum-2 (iota 10))))
(<= (cost-center-instruction-count $cc-1) (cost-center-instruction-count cc)))
;; allocation with instruction counts
(eqv?
(case (fixnum-width)
[(30) 24]
[(61) 48])
(let ([cc (make-cost-center)])
(with-cost-center cc
(lambda ()
(parameterize ([generate-allocation-counts #t]
[generate-instruction-counts #t]
[compile-interpret-simple #f])
(compile '(#%list 'a 'b 'c)))))
(cost-center-allocation-count cc)))
(let ([x (fx+ 3 (random 10))])
((lambda (count) ; range for padding on 32-bit and to accomadate 64-bit words
(<= (fxsll (fx+ x 1) 2) count (fxsll (fx+ x 2) 3)))
(let ([cc (make-cost-center)])
(with-cost-center cc
(lambda ()
(parameterize ([generate-allocation-counts #t]
[generate-instruction-counts #t]
[compile-interpret-simple #f])
(compile `(#%make-vector ,x)))))
(cost-center-allocation-count cc))))
(begin
(define $cc-reverse-1
(parameterize ([generate-allocation-counts #t]
[generate-instruction-counts #t])
(compile
'(lambda (ls)
(let f ([ls ls] [rls '()])
(if (null? ls)
rls
(f (cdr ls) (#%cons (car ls) rls))))))))
#t)
(eqv?
(case (fixnum-width)
[(30) 80]
[(61) 160])
(let ([cc (make-cost-center)])
(with-cost-center cc (lambda () ($cc-reverse-1 (make-list 10))))
(cost-center-allocation-count cc)))
(eqv?
(case (fixnum-width)
[(30) 800]
[(61) 1600])
(let ([cc (make-cost-center)])
(with-cost-center cc (lambda () ($cc-reverse-1 (make-list 100))))
(cost-center-allocation-count cc)))
(begin
(define $cc-2 (make-cost-center))
(define $cc-reverse-2
(parameterize ([generate-allocation-counts #t]
[generate-instruction-counts #t])
(compile
'(lambda (ls)
(let f ([ls ls] [rls '()])
(with-cost-center $cc-2
(lambda ()
(if (null? ls)
rls
(f (cdr ls) (#%cons (car ls) rls))))))))))
#t)
((lambda (x) ; wide range to accommodate both 4-byte and 8-byte words
(<= 80 x 480))
(begin
($cc-reverse-2 (make-list 10))
(cost-center-allocation-count $cc-2)))
(begin
(reset-cost-center! $cc-2)
#t)
((lambda (x) ; wide range to accommodate both 4-byte and 8-byte words
(<= 800 x 4800))
(begin
($cc-reverse-2 (make-list 100))
(cost-center-allocation-count $cc-2)))
(> (cost-center-allocation-count $cc-2) 0)
(> (cost-center-instruction-count $cc-2) 0)
(begin
(reset-cost-center! $cc-2)
#t)
(fx= (cost-center-allocation-count $cc-2) 0)
(fx= (cost-center-instruction-count $cc-2) 0)
(let ([cc (make-cost-center)])
(with-cost-center cc (lambda () ($cc-reverse-2 (make-list 10))))
(<= (cost-center-allocation-count $cc-2) (cost-center-allocation-count cc)))
(begin
(define $fib (lambda (x) (if (< x 2) 1 (+ ($fib (- x 1)) ($fib (- x 2))))))
#t)
;; timing information (no instrumentation needed)
((lambda (x)
(and (time<? (make-time 'time-duration 0 0) x)
(time<? x (make-time 'time-duration 0 10))))
(let ([cc (make-cost-center)])
(with-cost-center #t cc
(lambda ()
(let ([t0 (current-time 'time-thread)])
(let f ()
(when (time=? (current-time 'time-thread) t0)
($fib 10)
(f))))))
(cost-center-time cc)))
(let ([cc1 (make-cost-center)] [cc2 (make-cost-center)])
(with-cost-center #t cc1
(lambda ()
(let f ([n 10])
(with-cost-center #t cc2
(lambda ()
(cond
[(= n 0) 1]
[(= n 1) 1]
[else (+ (f (- n 1)) (f (- n 2)))]))))))
(time<=? (cost-center-time cc2) (cost-center-time cc1)))
(begin
(define $cc-3 (make-cost-center))
(define $cc-fib
(parameterize ([generate-allocation-counts #t]
[generate-instruction-counts #t])
(compile
'(let ()
(define (n->peano n)
(if (zero? n)
'()
(cons 'succ (n->peano (- n 1)))))
(define peano->n length)
(define (peano-sub1 n)
(if (null? n)
(error 'peano-sub "cannot subtract 1 from 0")
(cdr n)))
(define peano-zero '())
(define (peano-add1 n) (#%cons 'succ n))
(define (peano+ n1 n2)
(if (eq? n1 peano-zero)
n2
(peano-add1 (peano+ (peano-sub1 n1) n2))))
(lambda (n)
(with-cost-center #t $cc-3
(lambda ()
(peano->n
(let f ([n (n->peano n)])
(cond
[(equal? n peano-zero) (peano-add1 peano-zero)]
[(equal? n (peano-add1 peano-zero)) (peano-add1 peano-zero)]
[else
(let ([n (peano-sub1 n)])
(peano+ (f n) (f (peano-sub1 n))))]))))))))))
#t)
(fx= (cost-center-instruction-count $cc-3) 0)
(fx= (cost-center-allocation-count $cc-3) 0)
(time=? (cost-center-time $cc-3) (make-time 'time-duration 0 0))
((lambda (x)
(and (time<? (make-time 'time-duration 0 0) x)
(or (time<? x (make-time 'time-duration 0 20))
(#%$enable-check-heap))))
(begin
($cc-fib 30)
(cost-center-time $cc-3)))
(> (cost-center-instruction-count $cc-3) 0)
(> (cost-center-allocation-count $cc-3) 0)
(time>? (cost-center-time $cc-3) (make-time 'time-duration 0 0))
(begin
(reset-cost-center! $cc-3)
#t)
(fx= (cost-center-instruction-count $cc-3) 0)
(fx= (cost-center-allocation-count $cc-3) 0)
(time=? (cost-center-time $cc-3) (make-time 'time-duration 0 0))
)
(mat lock-object
(begin
(define $locked-objects (foreign-procedure "(cs)locked_objects" () ptr))
#t)
(let ([ls ($locked-objects)])
(unless (null? ls) (errorf #f "found locked objects ~s" ls))
#t)
(let ()
(define-record user-event (x))
(do ([n 20 (- n 1)])
((= n 0))
(for-each unlock-object
(map (lambda (x) (lock-object x) x)
(map make-user-event
(make-list 10000)))))
#t)
(let ([ls ($locked-objects)])
(unless (null? ls) (errorf #f "found locked objects ~s" ls))
#t)
(let ()
(define-record user-event (x))
(do ([n 20 (- n 1)])
((= n 0))
(for-each unlock-object
(map (lambda (x)
(let ([x (case x
[(0) (lambda () x)]
[(1) (cons x x)]
[(2) (vector x)]
[(3) (vector x x)]
[(4) (string #\a #\b)]
[(5) (box (cons 3 4))]
[(6) (/ 8 17)]
[(7) (exact (sin 3.0))]
[(8) (exact (sqrt -73.0))]
[(9) (call/cc values)]
[(10) (make-user-event x)])])
(lock-object x)
x))
(map random (make-list 2000 11)))))
#t)
(let ([ls ($locked-objects)])
(unless (null? ls) (errorf #f "found locked objects ~s" ls))
#t)
(eqv?
(let ()
(define (pick ls) (list-ref ls (random (length ls))))
; we don't pick then remq-first because the picked element may be
; an unlocked flonum and may be cloned into two copies by the
; collector between the pick and the remq-first
(define (pick-rem ls)
(let f ([ls ls] [i (random (length ls))])
(if (fx= i 0)
(values (car ls) (cdr ls))
(let-values ([(x d) (f (cdr ls) (fx- i 1))])
(values x (cons (car ls) d))))))
(module (random-tree)
(define leaves
`(,(lambda () '())
,(lambda () 0)
,(lambda () #f)
,(lambda () #t)
,(lambda () #\q)
,(lambda () (* 3.4 5))
,(lambda () (* 15/16 5))
,(lambda () (* 1+2i 5))
,(lambda () (* 3.0-2.5i 5))
,(lambda () (pick (oblist)))
,gensym
,(lambda () (make-string (random 10) (pick '(#\$ #\! #\*))))
))
(define nodes
`(,(lambda (th) (cons (th) (th)))
,(lambda (th) (weak-cons (th) (th)))
,(lambda (th) (list->vector (map (lambda (x) (th)) (make-list (+ 1 (random 4))))))
,(lambda (th)
(define-record frob ((immutable x) (immutable y)))
(record-reader 'frob1 (type-descriptor frob))
(make-frob (th) (th)))
,(lambda (th)
(define-record frob ((immutable x) (mutable y)))
(record-reader 'frob2 (type-descriptor frob))
(make-frob (th) (th)))
,(lambda (th)
(define-record frob ((immutable x) (immutable integer-32 y)))
(record-reader 'frob3 (type-descriptor frob))
(make-frob (th) (random 200000)))
,(lambda (th)
(define-record frob ((immutable x) (mutable integer-32 y)))
(record-reader 'frob4 (type-descriptor frob))
(make-frob (th) (random 200000)))
,(lambda (th)
(let ([x (th)] [y (th)])
(let ([f (lambda () (cons x y))])
(values f (#%$closure-code f)))))
,(lambda (th)
(let ([x (th)] [y (th)])
(call/cc
(lambda (k)
(call/cc (lambda (k1) (k k1)))
(cons x y)))))
))
(define random-tree
(lambda (n)
(let ([objects '()])
(let ([t (let f ([n n])
(let-values ([t* (if (= n 0)
((pick leaves))
((pick nodes) (lambda () (f (- n 1)))))])
(set! objects (append t* objects))
(car t*)))])
objects)))))
(define (chew n)
(let f ([ls (make-list n)])
(if (< (length ls) 2)
(random-tree 2)
(append (f (cddr ls)) (f (cdr ls))))))
(define (randomize ls)
(if (null? ls)
'()
(let-values ([(a d) (pick-rem ls)])
(cons a (randomize d)))))
(define (split ls)
(if (null? ls)
(values '() '())
(let-values ([(a ls) (pick-rem ls)])
(let-values ([(ls1 ls2) (split ls)])
(if (= (random 2) 0)
(values (cons a ls1) ls2)
(values ls1 (cons a ls2)))))))
(define (locktest)
(define m 5)
(let f ([n 100] [l0 '()] [l1 '()] [l2 '()])
(let ([l1addr (map #%$fxaddress l1)] [l2addr (map #%$fxaddress l2)])
(chew 15)
(let ([bad (remq f
(map (lambda (x a) (if (fx= (#%$fxaddress x) a) f x))
(append l1 l2)
(append l1addr l2addr)))])
(unless (andmap flonum? bad)
(errorf 'locktest "locked object address(es) changed for ~s" bad))))
(if (= n 0)
(begin
(for-each unlock-object l1)
(for-each unlock-object l2)
(for-each unlock-object l2)
'yippee!)
(let-values ([(l0drop l0keep) (split l0)]
[(l1drop l1keep) (split l1)]
[(l2drop l2keep) (split l2)])
(for-each unlock-object l1drop)
(for-each unlock-object l2drop)
(for-each unlock-object l2drop)
(let-values ([(l0stay l0up) (split l0keep)]
[(l1down l1up) (split l1keep)]
[(l2down l2stay) (split l2keep)])
(for-each lock-object l0up)
(for-each lock-object l1up)
(for-each unlock-object l1down)
(for-each unlock-object l2down)
(f (- n 1)
(randomize (append l0stay l1down))
(let ([l1new (random-tree m)])
(for-each lock-object l1new)
(randomize (append l0up l2down l1new)))
(randomize (append l1up l2stay))))))))
(locktest))
'yippee!)
(let ([ls ($locked-objects)])
(unless (null? ls) (errorf #f "found locked objects ~s" ls))
#t)
(eqv?
(let ()
(define-record frob ((immutable x) (immutable y))
([(immutable hash) (hash-frob x y)]))
(define leaves
`(,(lambda () '())
,(lambda () 0)
,(lambda () #f)
,(lambda () #t)
,(lambda () #\q)
,(lambda () (* 3.4 5))
,(lambda () (* 15/16 5))
,(lambda () (* 1+2i 5))
,(lambda () (* 3.0-2.5i 5))
,(lambda () (pick (oblist)))
,gensym
,(lambda () (make-string (random 10) (pick '(#\$ #\! #\*))))
))
(define (hash-frob x y) (+ 13 (ash (hash x) 4) (* (hash y) 7)))
(define (hash x)
(case x
[(()) 1]
[(0) 2]
[(#f) 3]
[(#t) 4]
[(#\q) 5]
[(17.0) 6]
[(75/16) 7]
[(5+10i) 8]
[(15.0-12.5i) 9]
[else
(cond
[(gensym? x) (+ 10 (ash (hash-string (symbol->string x)) 4))]
[(symbol? x) (+ 11 (ash (hash-string (symbol->string x)) 4))]
[(string? x) (+ 12 (ash (hash-string x) 4))]
[(frob? x) (hash-frob (frob-x x) (frob-y x))]
[else (errorf 'hash "unexpected object ~s" x)])]))
(define (hash-string s)
(apply logxor (map char->integer (string->list s))))
(define (check-hash x)
(let ([h (hash x)]) ; run regardless for error check
(when (frob? x)
(unless (= (hash x) (frob-hash x))
(errorf 'check-hash "hash mismatch for ~s" x)))))
(define (pick ls) (list-ref ls (random (length ls))))
; we don't pick then remq-first because the picked element may be
; an unlocked flonum and may be cloned into two copies by the
; collector between the pick and the remq-first
(define (pick-rem ls)
(let f ([ls ls] [i (random (length ls))])
(if (fx= i 0)
(values (car ls) (cdr ls))
(let-values ([(x d) (f (cdr ls) (fx- i 1))])
(values x (cons (car ls) d))))))
(define random-tree
(lambda (n)
(let ([objects '()])
(let ([t (let f ([n n])
(let-values ([t* (if (= n 0)
((pick leaves))
(make-frob (f (- n 1)) (f (- n 1))))])
(set! objects (append t* objects))
(car t*)))])
objects))))
(define (chew n)
(let f ([ls (make-list n)])
(if (< (length ls) 2)
(random-tree 2)
(append (f (cddr ls)) (f (cdr ls))))))
(define (randomize ls)
(if (null? ls)
'()
(let-values ([(a d) (pick-rem ls)])
(cons a (randomize d)))))
(define (split ls)
(if (null? ls)
(values '() '())
(let-values ([(a ls) (pick-rem ls)])
(let-values ([(ls1 ls2) (split ls)])
(if (= (random 2) 0)
(values (cons a ls1) ls2)
(values ls1 (cons a ls2)))))))
(define (locktest)
(define m 5)
(let f ([n 100] [l0 '()] [l1 '()] [l2 '()])
(let ([l1addr (map #%$fxaddress l1)] [l2addr (map #%$fxaddress l2)])
(chew 15)
(let ([bad (remq f
(map (lambda (x a) (if (fx= (#%$fxaddress x) a) f x))
(append l1 l2)
(append l1addr l2addr)))])
(unless (andmap flonum? bad)
(errorf 'locktest "locked object address(es) changed for ~s" bad))))
(for-each check-hash l0)
(for-each check-hash l1)
(for-each check-hash l2)
(if (= n 0)
(begin
(for-each unlock-object l1)
(for-each unlock-object l2)
(for-each unlock-object l2)
'yippee!)
(let-values ([(l0drop l0keep) (split l0)]
[(l1drop l1keep) (split l1)]
[(l2drop l2keep) (split l2)])
(for-each unlock-object l1drop)
(for-each unlock-object l2drop)
(for-each unlock-object l2drop)
(let-values ([(l0stay l0up) (split l0keep)]
[(l1down l1up) (split l1keep)]
[(l2down l2stay) (split l2keep)])
(for-each lock-object l0up)
(for-each lock-object l1up)
(for-each unlock-object l1down)
(for-each unlock-object l2down)
(f (- n 1)
(randomize (append l0stay l1down))
(let ([l1new (random-tree m)])
(for-each lock-object l1new)
(randomize (append l0up l2down l1new)))
(randomize (append l1up l2stay))))))))
(locktest))
'yippee!)
(let ([ls ($locked-objects)])
(unless (null? ls) (errorf #f "found locked objects ~s" ls))
#t)
(parameterize ([collect-request-handler void])
(define x (cons 3 4))
(lock-object x)
(collect 1 1) ; should leave segment containing x with locked bit
(set-cdr! x (cons 0 0)) ; should mark the card containing x in the segment dirty
(collect 0 0) ; should crash if sweep_dirty doesn't ignore locked objects
(unlock-object x)
#t)
(let ([ls ($locked-objects)])
(unless (null? ls) (errorf #f "found locked objects ~s" ls))
#t)
; shouldn't include immediates in locked-object lists
(begin
(lock-object -17)
(lock-object #f)
(lock-object #!eof)
(lock-object #\newline)
(let ([ls ($locked-objects)])
(unless (null? ls) (errorf #f "found locked objects ~s" ls))
#t))
; cons should be static, and shouldn't include static objects in locked-object lists
(begin
(lock-object 'cons)
(let ([ls ($locked-objects)])
(unless (null? ls) (errorf #f "found locked objects ~s" ls))
#t))
; locked objects promoted to static generation are listed in the static-generation locked list
; so mutated locked objects are properly swept (and the cards they're in, which might contain
; random stuff, aren't)
#;(parameterize ([collect-request-handler void])
(define x (cons 3 4))
(lock-object x)
(collect (collect-maximum-generation) 'static)
(let ([ls ($locked-objects)])
(unless (null? ls) (errorf #f "found locked objects ~s" ls))
#t))
)
(mat eval-order
(eqv? (call/cc (lambda (k) (0 (k 1)))) 1)
(eqv? (let ([zero 0]) (call/cc (lambda (k) (zero (k 1))))) 1)
(begin
(define $notproc (cons 'not 'proc))
(not (procedure? $notproc)))
(eqv? (call/cc (lambda (k) ($notproc (k 1)))) 1)
)
(define eval-test
(lambda (s)
(with-output-to-file "testfile.ss"
(lambda () (display s))
'replace)
(parameterize ([#%$suppress-primitive-inlining #f])
(load "testfile.ss" (lambda (x) (eval x))))
#t))
(define load-test
(lambda (s)
(with-output-to-file "testfile.ss"
(lambda () (display s))
'replace)
(parameterize ([#%$suppress-primitive-inlining #f])
(load "testfile.ss"))
#t))
(define compile-test
(lambda (s)
(with-output-to-file "testfile.ss"
(lambda () (display s))
'replace)
(parameterize ([#%$suppress-primitive-inlining #f])
(compile-file "testfile.ss"))
(load "testfile.so")
#t))
(define-syntax error/warning-mat
(syntax-rules ()
[(_ what string ...)
(begin
; removed primitive argcnt warnings when no source is available
; to avoid warnings followed immediately by errors in the repl
; and warnings in run-time calls to eval
#;(mat (what eval-warning) (warning? (eval-test string)) ...)
(mat (what eval-error) (error? (eval-test string)) ...)
(mat (what load-warning) (warning? (load-test string)) ...)
(mat (what load-error) (error? (load-test string)) ...)
(mat (what compile-warning) (warning? (compile-test string)) ...)
(mat (what compile-error) (error? (compile-test string)) ...))]))
(define-syntax error-mat
(syntax-rules ()
[(_ what string ...)
(begin
(mat (what eval-error) (error? (eval-test string)) ...)
(mat (what load-error) (error? (load-test string)) ...)
(mat (what compile-error) (error? (compile-test string)) ...))]))
(error/warning-mat argcnt
"; cp1in argument-count error\n\n(define f (lambda () (import scheme) (car)))\n(f)\n"
"; cp1in argument-count error\n\n(define f (lambda () (import scheme) (car '(a b) '(c d))))\n(f)\n"
"; cp1in argument-count error\n\n(define f (lambda () (let ([g (lambda () 0)]) (g 7))))\n(f)\n"
"; cp1in argument-count error\n\n(define f (lambda () (let ([g (lambda (x) 0)]) (g))))\n(f)\n"
)
(error-mat syntax
"; eval-when syntax error\n\n(eval-when (compile load eval))"
"; eval-when syntax error\n\n(eval-when (never) 3)"
"; begin syntax error\n\n(begin 3 . 4)"
"; application syntax error\n\n(f 1 2 . 3)"
"; define syntax error\n\n(define foo 3 4)"
"; define-syntax syntax error\n\n(define-syntax (foo x y) z)"
"; cond syntax error\n\n(cond . 17)"
"; lambda syntax error\n\n(lambda (x 3 y) 3)"
)
(mat sci-bug
(equal? (expt 10.0 (- 21)) 1e-21)
(equal? (flexpt 10.0 (- 21.0)) 1e-21)
)
(mat apropos
(error? (apropos 3))
(error? (apropos '(hit me)))
(error? (apropos 'a 'b))
(error? (apropos 'a 'b 'c))
(error? (apropos))
(let ([ls (apropos-list 'str)])
(and (memq 'string=? ls)
(memq 'display-string ls)
(memq 'record-constructor ls)
(not (memq 'cons ls))
(not (memq 'straightjacket ls))))
(let ([ls (apropos-list "str")])
(and (memq 'string=? ls)
(memq 'display-string ls)
(memq 'record-constructor ls)
(not (memq 'cons ls))
(not (memq 'straightjacket ls))))
(equal?
(with-output-to-string (lambda () (apropos 'substring)))
"interaction environment:\n substring, substring-fill!\n(chezscheme):\n substring, substring-fill!\n(rnrs):\n substring\n(rnrs base):\n substring\n(scheme):\n substring, substring-fill!\n")
(equal?
(with-output-to-string (lambda () (apropos "substring")))
"interaction environment:\n substring, substring-fill!\n(chezscheme):\n substring, substring-fill!\n(rnrs):\n substring\n(rnrs base):\n substring\n(scheme):\n substring, substring-fill!\n")
(equal?
(with-output-to-string (lambda () (apropos 'substring (copy-environment (scheme-environment) #t '(substring-fill!)))))
"supplied environment:\n substring-fill!\n(chezscheme):\n substring, substring-fill!\n(rnrs):\n substring\n(rnrs base):\n substring\n(scheme):\n substring, substring-fill!\n")
(null? (apropos-list 'thisshouldntbefound))
(equal?
(apropos-list 'apropos)
'(apropos apropos-list
((chezscheme) apropos apropos-list)
((scheme) apropos apropos-list)))
(equal? (apropos-list '$apropos-unbound1) '())
(error? (eval '$apropos-unbound1))
(equal? (apropos-list '$apropos-unbound1) '())
(equal? (apropos-list '$apropos-bound1) '())
(eq? (eval '(set! $apropos-bound1 17)) (void))
(equal? (apropos-list '$apropos-bound1) '($apropos-bound1))
(begin (define $apropos-env (copy-environment (scheme-environment)))
(environment? $apropos-env))
(equal? (apropos-list '$apropos-unbound2 $apropos-env) '())
(error? (eval '$apropos-unbound2 $apropos-env))
(equal? (apropos-list '$apropos-unbound2 $apropos-env) '())
(equal? (apropos-list '$apropos-bound2 $apropos-env) '())
(eq? (eval '(set! $apropos-bound2 17) $apropos-env) (void))
(equal? (apropos-list '$apropos-bound2 $apropos-env) '($apropos-bound2))
)
(mat p423 ; tests for p423 compiler
(equal?
(list
'()
75
(- 2 4)
(* -6 7)
(cons 0 '())
(cons (cons 0 '()) (cons 1 '()))
(cdr (cons 16 32))
(void)
(if #f 3)
(let () 3)
(let ((x 0)) x)
(let ([x 0]) x x)
(let ([x 17]) (+ x x))
(let ([q (add1 (add1 2))]) q)
(+ 20 (if #t 122))
(let ((x 16)
(y 128))
(* x y))
(if #t
(+ 20
(if #t 122))
10000)
(let ([x 3])
(let ([y (+ x (quote 4))])
(+ x y)))
(let ((x '(#(1 2 (3 #(4))) #() 3 #t))) x)
(not (if #f #t (not #f)))
(let ([x 0] [y 4000]) x)
(let ((x (cons 16 32))) (pair? x))
(begin (if #f 7) 3)
(begin (< 1 2) 3)
(begin '(1 . 2) 3)
(begin (if (zero? 4) 7) 3)
(let ([x 0]) (begin (if (zero? x) 7) x))
(let ([x 0]) (begin (if (zero? x) (begin x 7)) x))
(let ([x 0] [z 9000])
(begin (if (zero? x) (begin x 7)) z))
(let ([x 0] [z 9000])
(begin (if (zero? x) (begin (set! x x) 7))
(+ x z)))
(let ([x 4]) (begin (+ (begin (set! x 17) 3) 4) x))
(let ([x (cons 0 '())])
(begin (if x (set-car! x (car x))) x))
(let ([x (cons 0 '())])
(begin (if x (set-car! x (+ (car x) (car x)))) x))
(let ([x (cons 0 '())])
(if (zero? (car x)) (begin (set-car! x x) 7) x))
(let ([x (cons 0 '())])
(let ([q x]) (if (zero? (car x)) (begin (set-car! q x) 7) x)))
(let ([x 0]) (if (zero? x) (begin (set! x (+ x 5000)) x) 20))
(let ([y 0]) (begin (if #t (set! y y)) y))
(begin (if #t #t #t) #f)
(begin (if (if #t #t #f) (if #t #t #f) (if #t #t #f)) #f)
(let
([x 0]
[y 4000]
[z 9000])
(let ((q (+ x z)))
(begin
(if (zero? x) (begin (set! q (+ x x)) 7))
(+ y y)
(+ x z))))
(let ([x (let ([y 2]) y)]
[y 5])
(add1 x))
(let ([y 4000]) (+ y y))
((lambda (y) y) 4000)
(let ([f (lambda (x) x)])
(add1 (f 0)))
(let ([f (lambda (y) y)]) (f (f 4)))
((lambda (f) (f (f 4))) (lambda (y) y))
((let ([a 4000])
(lambda (b) (+ a b)))
5000)
(((lambda (a)
(lambda (b)
(+ a b)))
4000)
5000)
(let ([f (lambda (x) (add1 x))]) (f (f 0)))
((lambda (f) (f (f 0))) (lambda (x) (add1 x)))
(let ([x 0] [f (lambda (x) x)])
(let ([a (f x)] [b (f x)] [c (f x)]) (+ (+ a b) c)))
(let ([x 0] [y 1] [z 2] [f (lambda (x) x)])
(let ([a (f x)] [b (f y)] [c (f z)])
(+ (+ a b) c)))
(let ([f (lambda (x y) x)])
(f 0 1))
(let ([f (lambda (x y) x)])
(let ([a (f 0 1)]) (f a a)))
(let ([x 0] [y 1] [z 2] [f (lambda (x y z) x)])
(let ([a (f x y z)]) (f a a a)))
(let ([x 0] [y 1] [z 2] [f (lambda (x y z) x)])
(let ([a (f x y z)] [b y] [c z]) (f a b c)))
(let ([f (lambda (a b c d)
(+ a d))])
(f 0 1 2 3))
(let ([f (lambda (x) x)])
(+ (f 0)
(let ([a 0] [b 1] [c 2])
(+ (f a) (+ (f b) (f c))))))
(let ([f (lambda (x) x)])
(+ (f 0)
(let ([a 0] [b 1] [c 2])
(add1 (f a)))))
(let ([f (lambda (x) x)])
(let ([a 1])
(* (+ (f a) a) a)))
(let ([k (lambda (x y) x)])
(let ([b 17])
((k (k k 37) 37) b (* b b))))
(let ([f (lambda ()
(let ([n 256])
(let ([v (make-vector n)])
(vector-set! v 32 n)
(vector-ref v 32))))])
(pair? (f)))
(let ((w 4) (x 8) (y 16) (z 32))
(let ((f (lambda ()
(+ w (+ x (+ y z))))))
(f)))
(let ([f (lambda (x) x)])
(+ (f 0) (let ([a 0] [b 1] [c 2] [d 3])
(+ (f a)
(+ (f b)
(+ (f c)
(f d)))))))
; test use of keywords/primitives as variables
(let ([quote (lambda (x) x)]
[let (lambda (x y) (- y x))]
[if (lambda (x y z) (cons x z))]
[cons (lambda (x y) (cons y x))]
[+ 16])
(set! + (* 16 2))
(cons (let ((quote (lambda () 0))) +)
(if (quote (not #f))
720000
-1)))
(letrec () 3)
(let ([a 0]) (letrec ([a (lambda () 0)] [b (lambda () 11)]) (set! a 11)))
(let ([a 0]) (letrec ([a (lambda () (set! a 0))] [b 11]) (a)))
(let ([a 0]) (let ([a (set! a 0)] [b 11]) a))
(let ([a 5]) (let ([a 0] [b (set! a (+ a 11))]) a))
(let ([x (lambda () 4)])
(letrec ([y (lambda () (z))] [z x]) (y)))
(letrec ([a (lambda () 0)]) (a))
(letrec ([a (lambda () 0)] [b (lambda () 11)]) (a))
(let ([z 4])
(letrec ([f (lambda (x)
(letrec ([g (lambda (y)
(if (= y 0) 0
(f (- y 1))))])
(g x)))])
(f z)))
(let ([x 0]) (letrec ([a (lambda () 0)] [b (lambda () 11)]) (set! x 11)))
(let ([a 0]) (let ([b (set! a 0)]) a))
(let ([a 0]) (let ([a (set! a 0)]) (let ([b 11]) a)))
(let ([a 0]) (let ([a 0]) (let ([b (set! a 11)]) a)))
(let ([a 0]) (let ([a 0]) (let ([b 11]) (set! a 11))))
(let ([f (let ([x 1]) (lambda (y) (+ x y)))])
(let ([x 0]) (f (f x))))
((let ([t (lambda (x) (+ x 50))])
(lambda (f) (t (f 1000))))
(lambda (y) (+ y 2000)))
(let ([x 0])
(let ([f (let ([x 1]
[z x])
(lambda (y)
(+ x (+ z y))))])
(f (f x))))
(((lambda (t)
(lambda (f) (t (f 1000))))
(lambda (x) (+ x 50)))
(lambda (y) (+ y 2000)))
((let ([t 50])
(lambda (f)
(+ t (f))))
(lambda () 2000))
(((lambda (t)
(lambda (f)
(+ t (f))))
50)
(lambda () 2000))
((let ([x 300])
(lambda (y) (+ x y)))
400)
(let ([x 3] [f (lambda (x y) x)])
(f (f 0 0) x))
(let ([x 3] [f (lambda (x y) x)])
(if (f 0 0) (f (f 0 0) x) 0))
(let ([x02 3] [f01 (lambda (x04 y03) x04)])
(if (not x02) (f01 (f01 0 0) x02) 0))
(let ((f (lambda (x) (if (if (pair? x) (not (eq? (car x) 0)) #f) x #f))))
(f (cons 0 0)))
(let ((f (lambda (x)
(if (if x (not (if (pair? x) (not (eq? (car x) 0)) #f)) #f)
x #f))))
(f 0))
(let ((f (lambda (x) (if (if (pair? x) #t (null? x)) x '()))))
(f 0))
(let ([y 4])
(let ([f (lambda (y) y)])
(f (f y))))
(let ([y 4])
(let ([f (lambda (x y) 0)])
(f (f y y) (f y y))))
(let ([y 4])
(let ([f (lambda (x y) 0)])
(f (f y y) (f y (f y y)))))
(let ([y 4])
(let ([f (lambda (x y) 0)])
(f (f y (f y y)) (f y (f y y)))))
((lambda (y) ((lambda (f) (f (f y))) (lambda (y) y))) 4)
(let ([f (lambda (x) (+ x x))]) (f 4000))
(let ((x (if 1000 2000 3000)))
x)
(let ([f (lambda (x) x)])
(add1 (if #f 1 (f 22))))
(let ([f (lambda (x) x)])
(if (f (zero? 23)) 1 22))
(let ([f (lambda (x) (if x (not x) x))]
[f2 (lambda (x) (* 10 x))]
[x 23])
(add1 (if (f (zero? x)) 1 (* x (f2 (sub1 x))))))
(let ([f (lambda () 0)])
(let ([x (f)])
1))
(let ([f (lambda () 0)])
(begin (f) 1))
(let ([f (lambda (x) x)])
(if #t (begin (f 3) 4) 5))
(let ([f (lambda (x) x)])
(begin (if #t (f 4) 5) 6))
(let ([f (lambda (x) x)])
(begin
(if (f #t)
(begin
(f 3)
(f 4))
(f 5))
(f 6)))
(let ([f (lambda (x) (add1 x))])
(f (let ([f 3]) (+ f 1))))
(let ((x 15)
(f (lambda (h v) (* h v)))
(k (lambda (x) (+ x 5)))
(g (lambda (x) (add1 x))))
(k (g (let ((g 3)) (f g x)))))
(let ([x 4])
(let ([f (lambda () x)])
(set! x 5)
(f)))
(let ([x (let ([y 2])
y)])
x)
(let ([x (if #t (let ([y 2])
y)
1)])
x)
(let ([x (let ([y (let ([z 3])
z)])
y)])
x)
(let ([x (if #t (let ([y (if #t (let ([z 3])
z)
2)])
y)
1)])
x)
(+ (let ([x 3])
(add1 x))
4)
(+ (let ([x 3] [y 4])
(* x y))
4)
(let ([x (add1 (let ([y 4]) y))]) x)
(let ([x (add1 (letrec ([y (lambda () 4)]) (y)))]) x)
(let ([x (+ (let ([y 4]) y) (let ([y 4]) y))]) (add1 x))
(let ([z 0])
(let ([x z])
z
x))
(let ([z 0])
(let ([x (begin (let ([y 2]) (set! z y)) z)])
x))
(let ([x (begin (let ([y 2]) (set! y y)) (let ([z 3]) z))])
x)
(letrec ([one (lambda (n) (if (zero? n) 1 (one (sub1 n))))])
(one 13))
(letrec
((even (lambda (x) (if (zero? x) #t (odd (sub1 x)))))
(odd (lambda (x) (if (zero? x) #f (even (sub1 x))))))
(odd 13))
(let ([t #t]
[f #f])
(letrec
((even (lambda (x) (if (zero? x) t (odd (sub1 x)))))
(odd (lambda (x) (if (zero? x) f (even (sub1 x))))))
(odd 13)))
(let ((even (lambda (x) x)))
(even
(letrec
((even (lambda (x) (if (zero? x) #t (odd (sub1 x)))))
(odd (lambda (x) (if (zero? x) #f (even (sub1 x))))))
(odd 13))))
(letrec ((fact (lambda (n) (if (zero? n) 1 (* n (fact (sub1 n)))))))
(fact 5))
(letrec ([remq (lambda (x ls)
(if (null? ls)
'()
(if (eq? (car ls) x)
(remq x (cdr ls))
(cons (car ls) (remq x (cdr ls))))))])
(remq 3 '(3 1 3)))
(let ([x 5])
(letrec
([a
(lambda (u v w) (if (zero? u) (b v w) (a (- u 1) v w)))]
[b
(lambda (q r)
(let ([p (* q r)])
(letrec
([e (lambda (n) (if (zero? n) (c p) (o (- n 1))))]
[o (lambda (n) (if (zero? n) (c x) (e (- n 1))))])
(e (* q r)))))]
[c (lambda (x) (* 5 x))])
(a 3 2 1)))
(let ([f (lambda () 80)])
(let ([a (f)] [b (f)])
0))
(let ([f (lambda () 80)])
(let ([a (f)] [b (f)])
(* a b)))
(let ([f (lambda () 80)]
[g (lambda () 80)])
(let ([a (f)] [b (g)])
(* a b)))
(let ((f (lambda (x) (add1 x)))
(g (lambda (x) (sub1 x)))
(t (lambda (x) (add1 x)))
(j (lambda (x) (add1 x)))
(i (lambda (x) (add1 x)))
(h (lambda (x) (add1 x)))
(x 80))
(let ((a (f x)) (b (g x)) (c (h (i (j (t x))))))
(* a (* b (+ c 0)))))
(let ((x 3000))
(if (integer? x)
(let ((y (cons x '())))
(if (if (pair? y) (null? (cdr y)) #f)
(+ x 5000)
(- x 3000)))))
(let ((x (cons 1000 2000)))
(if (pair? x)
(let ((temp (car x)))
(set-car! x (cdr x))
(set-cdr! x temp)
(+ (car x) (cdr x)))
10000000))
(let ((v (make-vector 3)))
(vector-set! v 0 10)
(vector-set! v 1 20)
(vector-set! v 2 30)
(if (vector? v)
(+ (+ (vector-length v) (vector-ref v 0))
(+ (vector-ref v 1) (vector-ref v 2)))
10000))
(let ([fact
(lambda (fact n)
(if (zero? n) 1 (* (fact fact (sub1 n)) n)))])
(fact fact 5))
(let ([f (lambda (x) (+ x 1000))])
(if (zero? (f -2)) (f 6000) (f (f 8000))))
(let ([f (lambda (x) (+ x 1000))])
(if (zero? (f -1)) (f 6000) (f (f 8000))))
(let ((f (lambda (x y) (+ x 1000))))
(+ (if (f 3000 (begin 0 0 0)) (f (f 4000 0) 0) 8000) 2000))
((((lambda (x)
(lambda (y)
(lambda (z)
(+ x (+ y (+ z y))))))
5) 6) 7)
((((((lambda (x)
(lambda (y)
(lambda (z)
(lambda (w)
(lambda (u)
(+ x (+ y (+ z (+ w u)))))))))
5) 6) 7) 8) 9)
(let ((f (lambda (x) x)))
(if (procedure? f)
#t
#f))
(let ((sum (lambda (sum ls)
(if (null? ls)
0
(+ (car ls) (sum sum (cdr ls)))))))
(sum sum (cons 1 (cons 2 (cons 3 '())))))
(let ((v (make-vector 5))
(w (make-vector 7)))
(vector-set! v 0 #t)
(vector-set! w 3 #t)
(if (boolean? (vector-ref v 0))
(vector-ref w 3)
#f))
(let ((a 5) (b 4))
(if (< b 3)
(eq? a (+ b 1))
(if (<= b 3)
(eq? (- a 1) b)
(= a (+ b 2)))))
(let ((a 5) (b 4))
(if #f
(eq? a (+ b 1))
(if #f
(eq? (- a 1) b)
(= a (+ b 2)))))
(((lambda (a)
(lambda ()
(+ a (if #t 200))
1500))
1000))
(((lambda (b)
(lambda (a) (set! a (if 1 2)) (+ a b)))
100)
200)
((((lambda (a)
(lambda (b)
(set! a (if b 200))
(lambda (c)
(set! c (if 300 400))
(+ a (+ b c)))))
1000)
2000)
3000)
((((lambda (a) (lambda (b) (lambda (c) (+ a (+ b c))))) 10) 20) 30)
(+ 2 3)
((lambda (a) (+ 2 a)) 3)
(((lambda (b) (lambda (a) (+ b a))) 3) 2)
((lambda (b) ((lambda (a) (+ b a)) 2)) 3)
((lambda (f) (f (f 5))) (lambda (x) x))
((let ((f (lambda (x) (+ x 3000))))
(lambda (y) (f (f y))))
2000)
(let ((n 17) (s 18) (t 19))
(let ((st (make-vector 5)))
(vector-set! st 0 n)
(vector-set! st 1 s)
(vector-set! st 2 t)
(if (not (vector? st))
10000
(vector-length st))))
(let ((s (make-vector 1)))
(vector-set! s 0 82)
(if (eq? (vector-ref s 0) 82) 1000 2000))
(not 17)
(not #f)
(let ([fact
(lambda (fact n acc)
(if (zero? n) acc (fact fact (sub1 n) (* n acc))))])
(fact fact 5 1))
((lambda (b c a)
(let ((b (+ b a))
(a (+ a (let ((a (+ b b))
(c (+ c c)))
(+ a a)))))
(* a a)))
2 3 4)
(let ((f (lambda (x) (lambda () (x))))) ((f (lambda () 3))))
(letrec ((f (lambda (x) (if (zero? x) 1 (* x (f (- x 1)))))))
(let ([q 17])
(let ((g (lambda (a) (set! q 10) (lambda () (a q)))))
((g f)))))
(letrec ((f (lambda (x) (if (zero? x) 1 (* x (f (- x 1)))))))
(let ((g (lambda (a) (lambda (b) (a b)))))
((g f) 10)))
(letrec ((f (lambda () (+ a b)))
(g (lambda (y) (set! g (lambda (y) y)) (+ y y)))
(a 17)
(b 35)
(h (cons (lambda () a) (lambda (v) (set! a v)))))
(let ((x1 (f)) (x2 (g 22)) (x3 ((car h))))
(let ((x4 (g 22)))
((cdr h) 3)
(let ((x5 (f)) (x6 ((car h))))
(cons x1 (cons x2 (cons x3 (cons x4 (cons x5 x6)))))))))
(letrec ((f (lambda () (+ a b)))
(a 17)
(b 35)
(h (cons (lambda () a) (lambda () b))))
(cons (f) (cons a (cons b (cons ((car h)) ((cdr h)))))))
(letrec ((f (lambda (x)
(letrec ((x 3)) 3))))
(letrec ((g (lambda (x) (letrec ((y 14)) (set! y 7) y))))
(set! g (cons g 3))
(letrec ((h (lambda (x) x)) (z 42))
(cons (cdr g) (h z)))))
(let ([t #t] [f #f])
(let ([bools (cons t f)] [id (lambda (x) (if (not x) f t))])
(letrec
([even (lambda (x) (if (zero? x) (id (car bools)) (odd (- x 1))))]
[odd (lambda (y) (if (zero? y) (id (cdr bools)) (even (- y 1))))])
(odd 5))))
(letrec ([fib (lambda (x)
(let ([decrx (lambda () (set! x (- x 1)))])
(if (< x 2)
1
(+ (begin (decrx) (fib x))
(begin (decrx) (fib x))))))])
(fib 10))
(letrec ([fib (lambda (x)
(let ([decrx (lambda () (lambda (i) (set! x (- x i))))])
(if (< x 2)
1
(+ (begin ((decrx) 1) (fib x))
(begin ((decrx) 1) (fib x))))))])
(fib 10))
(let ((f (lambda (g u) (g (if u (g 37) u)))))
(f (lambda (x) x) 75))
(let ((f (lambda (h u) (h (if u (h (+ u 37)) u))))
(w 62))
(f (lambda (x) (- w x)) (* 75 w)))
(let ([t #t] [f #f])
(let ([bools (cons t f)] [id (lambda (x) (if (not x) f t))])
(letrec
([even (lambda (x) (if (id (zero? x)) (car bools) (odd (- x 1))))]
[odd (lambda (y) (if (zero? y) (id (cdr bools)) (even (- y 1))))])
(odd 5))))
((lambda (x y z)
(let ((f (lambda (u v) (begin (set! x u) (+ x v))))
(g (lambda (r s) (begin (set! y (+ z s)) y))))
(* (f '1 '2) (g '3 '4))))
'10 '11 '12)
((lambda (x y z)
(let ((f '#f)
(g (lambda (r s) (begin (set! y (+ z s)) y))))
(begin
(set! f
(lambda (u v) (begin (set! v u) (+ x v))))
(* (f '1 '2) (g '3 '4)))))
'10 '11 '12)
(letrec ((f (lambda (x) (+ x 1)))
(g (lambda (y) (f (f y)))))
(+ (f 1) (g 1)))
(let ((y 3))
(letrec
((f (lambda (x) (if (zero? x) (g (+ x 1)) (f (- x y)))))
(g (lambda (x) (h (* x x))))
(h (lambda (x) x)))
(g 39)))
(letrec ((f (lambda (x) (+ x 1)))
(g (lambda (y) (f (f y)))))
(set! f (lambda (x) (- x 1)))
(+ (f 1) (g 1)))
(letrec ([f (lambda () (+ a b))]
[a 17]
[b 35]
[h (cons (lambda () a) (lambda () b))])
(cons (f) (cons a (cons b (cons ((car h)) ((cdr h)))))))
(let ((v (make-vector 8)))
(vector-set! v 0 '())
(vector-set! v 1 (void))
(vector-set! v 2 #f)
(vector-set! v 3 (cons 3 4))
(vector-set! v 4 (make-vector 3))
(vector-set! v 5 #t)
(vector-set! v 6 2)
(vector-set! v 7 5)
(vector-ref v (vector-ref v 6)))
(let ([x 5] [th (let ((a 1)) (lambda () a))])
(letrec ([fact (lambda (n th)
(if (zero? n)
(th)
(* n (fact (- n 1) th))))])
(fact x th)))
(let ([negative? (lambda (n) (< n 0))])
(letrec
([fact
(lambda (n)
(if (zero? n)
1
(* n (fact (- n 1)))))]
[call-fact
(lambda (n)
(if (not (negative? n))
(fact n)
(- 0 (fact (- 0 n)))))])
(cons (call-fact 5) (call-fact -5))))
(letrec ([iota-fill!
(lambda (v i n)
(if (not (= i n))
(begin
(vector-set! v i i)
(iota-fill! v (+ i 1) n))))])
(let ([n 4])
(let ([v (make-vector n)])
(iota-fill! v 0 n)
v)))
; try with operand-constraints reg/int? returning false for ints
; to make sure that nested operands are being pulled out properly
(let ((f (lambda (x) x)))
(let ((g (lambda (x) (let ((y (+ x x))) (f x) (cons x y)))))
(g 3)))
; nested test examples
(+ (let ((x 7) (y 2)) (if (if (= x 7) (< y 0) (<= 0 y)) 77 88)) 99)
(+ (let ((x 7) (y -22)) (if (if (= x 7) (< y 0) (<= 0 y)) 77 88)) 99)
(+ (let ((x 8) (y 2)) (if (if (= x 7) (< y 0) (<= 0 y)) 77 88)) 99)
(+ (let ((x 8) (y -22)) (if (if (= x 7) (< y 0) (<= 0 y)) 77 88)) 99)
; make-vector with non-constant operand and improper alignment
(let ([x 6])
(let ([v (make-vector x)])
(vector-set! v 0 3)
(vector-set! v 1 (cons (vector-ref v 0) 2))
(vector-set! v 2 (cons (vector-ref v 1) 2))
(vector-set! v 3 (cons (vector-ref v 2) 2))
(vector-set! v 4 (cons (vector-ref v 3) 2))
(vector-set! v 5 (cons (vector-ref v 4) 2))
(cons (pair? (vector-ref v 5)) (car (vector-ref v 4)))))
; nest some lambdas
(((((lambda (a)
(lambda (b)
(lambda (c)
(lambda (d)
(cons (cons a b) (cons c d))))))
33) 55) 77) 99)
; test set! on letrec rhs
(letrec ([b 4])
(letrec ([a (lambda (x) (set! a x) 5)])
(a (lambda (x) x))
(set! b 8)
(a 7)))
; test optimize-letrec---contributed by Jeremiah Penery
(letrec ([q (cons (lambda (x)
(letrec ([b r])
b))
'())]
[r 10])
((car q) 5))
; normalize-context test a bit---contributed by Andy Keep
(let ((x 5)) (if (set! x 6) 1 0) x)
; stress the register allocator
(let ((a 17))
(let ((f (lambda (x)
(let ((x1 (+ x 1)) (x2 (+ x 2)))
(let ((y1 (* x1 7)) (y2 (* x2 7)))
(let ((z1 (- y1 x1)) (z2 (- y2 x2)))
(let ((w1 (* z1 a)) (w2 (* z2 a)))
(let ([g (lambda (b)
(if (= b a)
(cons x1 (cons y1 (cons z1 '())))
(cons x2 (cons y2 (cons z2 '())))))]
[h (lambda (c)
(if (= c x) w1 w2))])
(if (if (= (* x x) (+ x x))
#t
(< x 0))
(cons (g 17) (g 16))
(cons (h x) (h (- x 0))))))))))))
(cons (f 2) (cons (f -1) (cons (f 3) '())))))
(let ([x (cons #f #t)] [y 17])
(if (if (car x) #t (< y 20))
(* y (* y 2))
(void)))
(let ((v (make-vector (add1 37))))
(vector-set! v 0 (boolean? v))
(vector-set! v (* 3 11) (vector-length v))
((let ((w (cons 33 '())))
(lambda ()
(if (not (eq? w (cons 33 '())))
(begin
(set-cdr! w (vector? v))
w))))))
(let ((v (make-vector (add1 37))))
(vector-set! v 0 (boolean? v))
(vector-set! v (* 3 11) #t)
((let ((w (cons (sub1 34) #f)))
(lambda ()
(set-cdr! w v)
(if (not (eq? w (cons (- (vector-length v) 5) v)))
(begin
(set-car! w (vector-ref (cdr w) (car w)))
w))))))
; make sure uncover-live passes don't leave behind unassigned
; or unlisted variables as a result of dead code.
(letrec ([a (lambda () 1)])
(let ([b 2])
(if #t
3
(begin (a) b))))
; stress test introduce-unspillables by generating
; (mset fp i (+ (mref fp j) (mref fp k)))
(let ((f (lambda (x) x)))
(let ((x 1) (y 2))
(let ((z (f x)))
(let ((w (+ x y)))
(let ((q (f w)))
w)))))
; stress test introduce-unspillables by generating
; (mset (mref fp i) tmp (mref fp k))---can't actually get
; (mset (mref fp i) (mref fp j) (mref fp k)), 'cause we
; have to add in the vector-data offset
(let ((f (lambda (x) x)))
(let ((x (make-vector 4)) (y 2) (z 17))
(vector-set! x y z)
(let ((w (f x)))
(cons (+ y z) x))))
(letrec ([s0 (lambda (a b c d e)
(if (null? a)
(cons b (cons c (cons d e)))
(if (eq? (car a) #t)
(s1 (cdr a) (+ b 1) c d e)
(s2 (cdr a) b (+ c 1) d e))))]
[s1 (lambda (a b c d e)
(if (eq? (car a) #t)
(s0 (cdr a) b c (+ d 1) e)
(s1 (cdr a) b c d (+ e 1))))]
[s2 (lambda (a b c d e)
(if (eq? (car a) #t)
(s0 (cdr a) (+ b 1) d c e)
(s2 (cdr a) e d b c)))])
(s0 '(#t #f #t #f #t #f #f #f #f #t) 10 20 30 40))
; stress optimize-letrec. in the outer letrec, q should be treated as
; 'lambda'. in the inner letrec, f should be treated as simple,
; d as 'lambda', and a, b, c, and e as complex.
; should evaluate to ((40 #f 105 15 . #t) #t 252 36 #t 9841 . 18)
(letrec ((q (lambda (x) (if (< x 1) 13 (+ (* (q (- x 2)) 3) 1)))))
(letrec ((a (lambda (x) x))
(b (cons (lambda () (* c 7)) (lambda (v) (set! c v))))
(c 15)
(d (lambda (x) (set! a x) (a x)))
(e (q 12))
(f 18))
(let ([a0 (a #f)] [b0 ((car b))] [c0 c])
(let ([d0 (d (lambda (z) #t))])
((cdr b) (* f 2))
(cons (cons (q 1) (cons a0 (cons b0 (cons c0 d0))))
(cons (a #f)
(cons ((car b))
(cons c (cons (procedure? d) (cons e f))))))))))
;; Jie Li
(let ((a 5))
(let ((b (cons a 6)))
(let ((f (lambda(x) (* x a))))
(begin (if (- (f a) (car b))
(begin (set-car! b
(if (not a) (* 2 a) (+ 2 a)))
(f a))
(if (not (not (< (f a) b)))
(f a)))
(not 3)
(void)
(f (car b))))))
(letrec ([f (lambda (x y) (if (not x) (g (add1 x) (add1 y)) (h (+ x y))))]
[g (lambda (u v)
(let ([a (+ u v)]
[b (* u v)])
(letrec ([e (lambda (d)
(letrec ([p (cons a b)]
[q (lambda (m)
(if (< m u)
(f m d)
(h (car p))))])
(q (f a b))))])
(e u))))]
[h (lambda (w) w)])
(f 4 5))
(letrec ((f (lambda (x)
(+ x (((lambda (y)
(lambda (z)
(+ y z)))
6)7))))
(g (+ 5 ((lambda (w u) (+ w u)) 8 9))))
g)
;; Jordan Johnson
(let ((test (if (not (not 10)) #f 5)))
(letrec ([num 5]
[length
(lambda (ls)
(let ((len (if ((lambda (ck) (begin ck (set! num test) ck))
(null? ls))
(begin num (set! num 0) num)
(begin (length '())
(set! num 5)
(+ 1 (length (cdr ls)))))))
(if len len)))])
(length (cons 5 (cons (if (set! num 50) (length (cons test '())) 1)
'())))))
(letrec ([quotient (lambda (x y)
(if (< x 0)
(- 0 (quotient (- 0 x) y))
(if (< y 0)
(- 0 (quotient x (- 0 y)))
(letrec ([f (lambda (x a)
(if (< x y)
a
(f (- x y) (+ a 1))))])
(f x 0)))))])
(letrec ([sub-interval 1]
[sub-and-continue
(lambda (n acc k) (k (- n sub-interval) (* n acc)))]
[strange-fact
(lambda (n acc)
(if (zero? n)
(lambda (proc) (proc acc))
(sub-and-continue n acc strange-fact)))])
(let ([x 20]
[fact (let ((seed 1)) (lambda (n) (strange-fact n seed)))])
(let ([give-fact5-answer (fact 5)]
[give-fact6-answer (fact 6)]
[answer-user (lambda (ans) (quotient ans x))])
(set! x (give-fact5-answer answer-user))
(begin (set! x (give-fact6-answer answer-user))
x)))))
(let ((y '())
(z 10))
(let ((test-ls (cons 5 y)))
(set! y (lambda (f)
((lambda (g) (f (lambda (x) ((g g) x))))
(lambda (g) (f (lambda (x) ((g g) x)))))))
(set! test-ls (cons z test-ls))
(letrec ((length (lambda (ls)
(if (null? ls) 0 (+ 1 (length (cdr ls)))))))
(let ((len (length test-ls)))
(eq? (begin
(set! length (y (lambda (len)
(lambda (ls)
(if (null? ls)
0
(+ 1 (len (cdr ls))))))))
(length test-ls))
len)))))
;; Ryan Newton
(letrec
((loop
(lambda ()
(lambda ()
(loop)))))
(loop)
0)
(letrec ([f (lambda ()
(letrec ([loop
(lambda (link)
(lambda ()
(link)))])
(loop (lambda () 668))))])
((f)))
(if (lambda () 1)
(let ((a 2))
(if (if ((lambda (x)
(let ((x (set! a (set! a 1))))
x)) 1)
(if (eq? a (void))
#t
#f)
#f)
#36rgood ; dyb: cannot use symbols, so use radix 36
#36rbad))) ; syntax to make all letters digits
; contributed by Ryan Newton
(letrec
(
[dropsearch
(lambda (cell tree)
(letrec
([create-link
(lambda (node f)
(lambda (g)
(if (not (pair? node))
(f g)
(if (eq? node cell)
#f
(f (create-link (car node)
(create-link (cdr node) g)))))))]
[loop
(lambda (link)
(lambda ()
(if link
(loop (link (lambda (v) v)))
#f)))])
(loop (create-link tree (lambda (x) x)))
))]
[racethunks
(lambda (thunkx thunky)
(if (if thunkx thunky #f)
(racethunks (thunkx) (thunky))
(if thunky
#t
(if thunkx
#f
'()))))]
[higher?
(lambda (x y tree)
(racethunks (dropsearch x tree)
(dropsearch y tree)))]
[under?
(lambda (x y tree)
(racethunks (dropsearch x y)
(dropsearch x tree)))]
[explore
(lambda (x y tree)
(if (not (pair? y))
#t
(if (eq? x y)
#f ;This will take out anything that points to itself
(let ((result (higher? x y tree)))
(if (eq? result #t)
(if (explore y (car y) tree)
(explore y (cdr y) tree)
#f)
(if (eq? result #f)
(process-vertical-jump x y tree)
(if (eq? result '())
(process-horizontal-jump x y tree)
)))))))]
[process-vertical-jump
(lambda (jumpedfrom jumpedto tree)
(if
(under? jumpedfrom jumpedto tree)
#f
(fullfinite? jumpedto)))]
[process-horizontal-jump
(lambda (jumpedfrom jumpedto tree)
(fullfinite? jumpedto))]
[fullfinite?
(lambda (pair)
(if (not (pair? pair))
#t
(if (explore pair (car pair) pair)
(explore pair (cdr pair) pair)
#f)))])
(cons
(fullfinite? (cons 1 2))
(cons
(fullfinite? (let ((x (cons 1 2))) (set-car! x x) x))
(cons
(fullfinite? (let ([a (cons 0 0)] [b (cons 0 0)] [c (cons 0 0)])
(set-car! a b) (set-cdr! a c) (set-cdr! b c)
(set-car! b c) (set-car! c b) (set-cdr! c b) a))
'())))))
`(() 75 -2 -42 (0) ((0) 1) 32 ,(void) ,(void) 3 0 0 34 4
142 2048 142 10 (#3(1 2 (3 #1(4))) #0() 3 #t) #f 0 #t 3
3 3 3 0 0 9000 9000 17 (0) (0) 7 7 5000 0 #f #f 9000 3
8000 4000 1 4 4 9000 9000 2 2 0 3 0 0 0 0 3 3 1 2 17 #f
60 6 ((#t . -1) . 32) 3 ,(void) ,(void) ,(void) 0 4 0 0
0 ,(void) 0 ,(void) 11 ,(void) 2 3050 2 3050 2050 2050
700 0 0 0 #f 0 () 4 0 0 0 4 8000 2000 23 22 5061 1 1 4
6 6 5 51 5 2 2 3 3 8 16 5 5 9 0 2 3 1 #t #t #t 120 (1)
10 0 6400 6400 537516 8000 3000 63 120 10000 10000 8000
24 35 #t 6 #t #f #f 1500 102 2600 60 5 5 5 5 5 8000 5
1000 #f #t 120 144 3 3628800 3628800
(52 44 17 22 38 . 3) (52 17 35 17 . 35) (3 . 42) #t 89
89 37 4687 #t 48 176 5 1521 -1 (52 17 35 17 . 35) #f
120 (120 . -120) #4(0 1 2 3) (3 . 6) 187 176 176 187
(#t ((3 . 2) . 2) . 2) ((33 . 55) 77 . 99) 7 10 6
(((3 21 18) 4 28 24) ((0 0 0) 1 7 6) (408 . 408)) 578
(33 . #t)
(#t . #38(#f 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 #t 0))
3 3 (19 . #4(0 0 17 0)) (22 32 41 . 12)
((40 #f 105 15 . #t) #t 252 36 #t 9841 . 18) 35 9 22 2
120 #t 0 668 778477 (#t #f #f)))
(equal?
(list
;;; Abdulaziz Ghuloum
;;; this is a vanilla insertion sort routine, not really interesting but used to
;;; derive the Y-Combinator version below.
(letrec ([sort
(lambda (p? ls)
(if (null? ls)
'()
(insert p? (car ls) (sort p? (cdr ls)))))]
[insert
(lambda (p? x ls)
(if (null? ls)
(cons x '())
(if (p? x (car ls))
(cons x ls)
(cons (car ls) (insert p? x (cdr ls))))))])
(sort (lambda (x y) (< x y)) '(4 3 2 5 6 3 6 9)))
;;; and this is a more exotic insertion sort using double-Y-Combinator in order
;;; to stretch anonymous lambda expressions to their limit. Does it hurt yet?
(((lambda (le) ; this is sort
((lambda (f) (f f))
(lambda (f)
(le (lambda (p? ls)
((f f) p? ls))))))
(lambda (sort)
(lambda (p? ls)
(if (null? ls)
'()
(((lambda (le) ; this is insert
((lambda (f) (f f))
(lambda (f)
(le (lambda (x ls) ((f f) x ls))))))
(lambda (insert)
(lambda (x ls)
(if (null? ls)
(cons x '())
(if (p? x (car ls))
(cons x ls)
(cons (car ls) (insert x (cdr ls))))))))
(car ls) (sort p? (cdr ls)))))))
(lambda (x y) (< x y)) ; this is the sorting criterion
'(4 3 2 5 6 3 6 9)) ; and the list to be sorted
;;; this is a definition of a rotate procedure that rotates the elements of a
;;; list n times. It rotates the pair cells themselves and not the contents.
;;; It tests proper closure implementations in (set! x (cdr x)) as well as
;;; set-cdr! as it does not appear that frequently in tests.ss
;;;
;;; before
;;; +--+--+ +--+--+ +--+--+ +--+--+ +--+--+ +--+--+
;;; | 1|------>| 2|------>| 3|------> ... | 6|------>| 7|------>| 8|#f|
;;; +--+--+ +--+--+ +--+--+ +--+--+ +--+--+ +--+--+
;;; ^^
;;; yx
;;;
;;; after
;;; +--+--+ +--+--+ +--+--+ +--+--+ +--+--+ +--+--+
;;; | 4|------>| 5|------> ... | 8|------>| 1|------>| 2|------>| 3|#f|
;;; +--+--+ +--+--+ +--+--+ +--+--+ +--+--+ +--+--+
;;; ^ ^
;;; x y
(let ([x (cons 1 (cons 2 (cons 3 (cons 4 (cons 5 (cons 6 (cons 7 (cons 8 '()))))))))])
(letrec ([rotate
(lambda (n)
(if (not (<= n 0))
(let ([s x])
(set! x (cdr x))
(insert s x)
(rotate (- n 1)))))]
[insert
(lambda (s x)
(if (null? (cdr x))
(begin
(set-cdr! x s)
(set-cdr! s '()))
(insert s (cdr x))))])
(let ([y x])
(rotate 3) ; rotate x and chop y as a side effect
(cons x (cons y '()))))) ; cons for comparison
;;; Albert Hartono
(letrec [(length 6)
(start-value 6)]
((lambda (v lst)
(letrec [(length (lambda (x)
(if (null? x)
0
(add1 (length (cdr x))))))]
(let [(ls-lg (length lst))
(v-lg (vector-length v))]
(let [(new-vec (make-vector (+ ls-lg v-lg)))]
(letrec [(loop-vec
(lambda (index)
(if (= index v-lg)
(loop-ls lst index)
(begin
(vector-set! new-vec index (vector-ref v index))
(loop-vec (add1 index))))))
(loop-ls
(lambda (lst index)
(if (not (null? lst))
(begin
(vector-set! new-vec index (car lst))
(loop-ls (cdr lst) (add1 index))))))]
(loop-vec 0)
new-vec)))))
(let [(vec (letrec ([tmp-vec (lambda () (make-vector length))]
[fill-vector
(lambda (v lg val)
(if (zero? lg)
v
(begin
(vector-set! v (sub1 lg) val)
(fill-vector v (sub1 lg) (add1 val)))))])
(fill-vector (tmp-vec) (vector-length (tmp-vec))
(- 0 start-value))))]
vec)
(letrec [(make-list (lambda (lg val)
(if (not (zero? lg))
(cons val (make-list (sub1 lg) (sub1 val)))
'())))]
(make-list length start-value))))
;;; Brooke Chenoweth
;;; a little Ackermann, just for fun
;;; if you uncomment this, you should probably make most of the passes
;;; trusted, unless you want to wait a long time for it to complete. - rkd
#;(let ([x 3] [y 6])
(letrec ([A (lambda (x y)
(if (= x 0)
(add1 y)
(if (= y 0)
(A (sub1 x) 1)
(A (sub1 x) (A x (sub1 y))))))])
(A x y)))
;;; let's try out a more substantial program
;;; the N queens problem, for several values of n
;;; solve-n-queens gives a list of the row indices for a valid queen placement, or #f if no solution
(let ([n-vals '(1 2 3 4 5 6 7 8)])
(letrec ([solve-n-queens
(lambda (n)
(letrec ([extend-board
(lambda (i b)
(if (= i n)
(let ([b (adjust b)])
(if b (extend-board 0 b) #f))
(if (valid? i b)
(cons i b)
(extend-board (+ i 1) b))))]
[valid?
(lambda (i b)
(no-threat? (sub1 i) i (add1 i) b))]
[no-threat?
(lambda (u s d others)
(if (null? others)
#t
(if (not (let ([neighbor (car others)])
(if (= neighbor u)
#t
(if (= neighbor s)
#t
(= neighbor d)))))
(no-threat? (- u 1) s (+ d 1) (cdr others))
#f)))]
[adjust
(lambda (b)
(if b
(if (not (null? b))
(extend-board (add1 (car b)) (cdr b))
#f)
#f))]
[solve
(lambda (len b)
(if (= n len)
b
(solve (add1 len) (extend-board 0 b))))])
(solve 0 '())))])
(letrec ([test
(lambda (ls)
(if (null? ls)
'()
(let ([n (car ls)])
(cons (solve-n-queens n)
(test (cdr ls))))))])
(test n-vals))))
;;; Ronald Garcia
(let ([re-apply
(lambda (high)
(letrec ([gen
(lambda (iter cont)
(let ([cont1 (lambda (f val) (cont f (f val)))]
[cont2 (lambda (f val) (cont f val))])
(if (= iter 0)
cont2
(gen (- iter 1) cont1))))])
(gen high (lambda (f val) val))))])
((re-apply 10) (lambda (x) (+ x 1)) 5 ))
(let ([make-list
(lambda (count)
(letrec ([loop
(lambda (val counter max)
(if (= counter max)
val
(loop (cons counter val) (+ counter 1) max)))])
(loop '() 0 count)))])
(make-list 12))
;;; Jeremiah Willcock
;;; This test stresses two parts of the compiler: variable renaming and
;;; register allocation. It stresses the variable renaming mechanism by
;;; using locally-bound names that match special forms in the compiler. It
;;; stresses register allocation by having a large number of variables (and
;;; most of them are referenced). The actual code of the program is mostly a
;;; factorial function, but with many helper lambdas to deal with the lack of
;;; if. The list of set! statements had formerly set all variables up to z,
;;; but the list was trimmed so that it would compile using the compiler on
;;; the course Web page. The list of cons expressions at the bottom could
;;; also be extended to z. This program also has deeply nested expressions
;;; that will be simplified by remove-complex-opera*. It also contains a not
;;; expression in order to test the compiler's handling of this expression
;;; type, as well as a one-armed if expression and an implicit begin.
(let ([ef (lambda (x y z)
(let ([result z]) (if x (set! result y)) result))]
[a 1] [b 2] [c 3] [d 4] [e 5] [f 6] [g 7] [h 8] [i 9]
[j 10] [k 11] [l 12] [m 13] [n 14] [o 15] [p 16] [q 17] [r 18]
[s 19] [t 20] [u 21] [v 22] [w 23] [x 24] [y 25] [z 26])
(set! a 0)
(set! b 0)
(set! c 0)
(set! d 0)
(set! e 0)
(set! f 0)
(set! g 0)
(set! h 0)
(set! i 0)
(set! j 0)
(set! k 0)
(set! l 0)
(set! m 0)
(set! n 0)
(set! o 0)
(set! p 0)
(letrec ([let 5]
[letrec (lambda (x y) (set! let x) y)]
[fac (lambda (n) ((ef (not (zero? n)) (f2 n) f1)))]
[f1 (lambda () 1)]
[f2
((lambda (f3) (lambda (n) (lambda () (* n (f3 n)))))
(lambda (n) (fac (- n 1))))]
[f3 (lambda (x) -1)]
[if (lambda (x) (lambda () (+ 1 x)))])
((lambda (lambda)
(cons lambda
(cons (fac let)
(cons a (cons b (cons c (cons d (cons e (cons f
(cons g (cons h (cons i (cons j (cons k (cons l
(cons m (cons n (cons o '()))))))))))))))))))
(letrec ([if 7]) ((if let))))))
;; This test uses streams of integers (similar to those studied in CSCI B521
;; and B621) to produce a list of integers that are not multiples of two and
;; five. It also has a heavy use of lambdas within the streams. This test
;; case will test closure conversion, most of its lambdas have references to
;; free variables. This program is purely functional, so it is much less of
;; a test of assignment conversion and begin handling than the last program.
(letrec ([integers (lambda (n) (cons n (lambda () (integers (+ n 1)))))]
[stream-times (lambda (s n)
(cons (* (car s) n)
(lambda () (stream-times ((cdr s)) n))))]
[difference (lambda (s1 s2)
(if (if (null? s1) #t (null? s2)) '()
(if (< (car s1) (car s2))
(cons (car s1) (lambda () (difference ((cdr s1)) s2)))
(if (= (car s1) (car s2))
(difference ((cdr s1)) ((cdr s2)))
(difference s1 ((cdr s2)))))))]
[stream-head (lambda (s n)
(if (if (null? s) #t (zero? n)) '()
(cons (car s)
(if (= n 1) '() (stream-head ((cdr s)) (- n 1))))))])
(stream-head
(difference
(difference (integers 0) (stream-times (integers 0) 2))
(stream-times (integers 0) 5))
20))
;;; Mark Meiss
;;; Test out identifier defintions, scope of letrec, the poor man's
;;; Y-combinator, and higher-order procedures.
(letrec ([odd (lambda (lambda odd)
((odd (lambda))))]
[even (lambda (letrec lambda)
(((((lambda letrec))))))])
(letrec ([uf (lambda (x y z) (if (x) y z))]
[af (lambda (x y z) ((if x y z)))])
(letrec ([make-sub (lambda (sub)
(lambda (n) (- n sub)))]
[odd (lambda (odd even)
(lambda (n)
((uf (lambda () (zero? n))
(lambda () #f)
(lambda () ((even even odd) ((make-sub 1) n)))))))]
[even (lambda (even odd)
(lambda (n)
(af (zero? n)
(lambda () #t)
(lambda () ((odd odd even) ((make-sub 1) n))))))])
((even even odd) 12))))
;;; Test out higher-order procedures and a mixture of tail and non-tail
;;; calls by playing around with a representation of Church numerals.
(letrec ([zero (lambda (f)
(lambda (x) x))]
[succ (lambda (n)
(lambda (f)
(lambda (x) (f ((n f) x)))))]
[zero? (lambda (n)
((n (lambda (x) #f)) #t))])
(letrec ([to-int (lambda (n)
((n (lambda (a) (+ a 1))) 0))]
[from-int (lambda (n)
(if (= n 0) zero (succ (from-int (- n 1)))))])
(letrec ([add (lambda (n)
(lambda (m) ((n succ) m)))])
(- (+ 5 4)
(to-int ((add (from-int 5)) (from-int 4)))))))
;;; Matthew Garrett
;;; Bubble Sort on a list of numbers
;;; A recursive function defined inside a recursive function, both with the
;;; same name.
(letrec ([list-length (lambda (ls)
(letrec ([loop (lambda (ls n)
(if (null? ls)
n
(loop (cdr ls) (+ n 1))))])
(loop ls 0)))]
[sorted? (lambda (lon)
(if (<= (list-length lon) 1)
#t
(if (< (car lon) (car (cdr lon)))
(sorted? (cdr lon))
#f)))]
[bubble-sort (lambda (lon)
(if (sorted? lon)
lon
(bubble-sort (cdr
; cdr is necessary because of the "hold" place keeper, in this inner
; bubble-sort, which is guaranteed to get first place in this lesser to
; greater sorting.
(letrec ([bubble-sort (lambda (hold list-of-numbers)
(if (null? list-of-numbers)
(cons hold '())
(if (< hold (car list-of-numbers))
(cons hold
(bubble-sort
(car list-of-numbers)
(cdr list-of-numbers)))
(cons (car list-of-numbers)
(bubble-sort hold
(cdr list-of-numbers))))))])
(bubble-sort 0 lon))))))])
(bubble-sort '(5 6 4 3 8 7))))
'((2 3 3 4 5 6 6 9) (2 3 3 4 5 6 6 9)
((4 5 6 7 8 1 2 3) (1 2 3))
#12(-1 -2 -3 -4 -5 -6 6 5 4 3 2 1)
((0) #f #f (2 0 3 1) (3 1 4 2 0) (4 2 0 5 3 1)
(5 3 1 6 4 2 0) (3 1 6 2 5 7 4 0))
15 (11 10 9 8 7 6 5 4 3 2 1 0)
(6 40320 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)
(1 3 7 9 11 13 17 19 21 23 27 29 31 33 37 39 41 43 47 49)
#t 0 (3 4 5 6 7 8)))
)
(mat constant-closures
; make sure that closure optimization doesn't replicate closures
(let ([f (rec f (lambda (q) f))])
(and
(eq? f (f 3))
(eq? ((f 3) 4) (f 3))))
(begin
(with-output-to-file "testfile-cc.ss"
(lambda ()
(pretty-print
'(define $cc-foo (rec f (lambda (q) f)))))
'replace)
(compile-file "testfile-cc")
(load "testfile-cc.so")
#t)
(eq? ($cc-foo 3) $cc-foo)
(eq? (($cc-foo 3) 4) $cc-foo)
)
(mat simplify-if
(eqv?
(let ([x 'a] [y 'b])
(and (fixnum? x) (fixnum? (car y))))
#f)
(eqv?
(let ([x 'a] [y 'b])
(and (fixnum? x) (fixnum? (car y)) 75))
#f)
(error? ; not a port
(let ([x 'a])
(and (textual-port? x) (input-port? x))))
(not
(let ([x 'a])
(and (input-port? x) (textual-port? x))))
(let ([x (current-input-port)])
(and (input-port? x) (textual-port? x)))
(equal?
(let ()
(define (? x) (and (input-port? x) (if (textual-port? x) #t (binary-port? x))))
(define-syntax first-value
(syntax-rules ()
[(_ e) (let-values ([(x . r) e]) x)]))
(list
(? 'a)
(? (open-string-input-port ""))
(? (first-value (open-string-output-port)))
(? (open-bytevector-input-port #vu8()))
(? (first-value (open-bytevector-output-port)))))
'(#f #t #f #t #f))
)
(mat virtual-registers
(fixnum? (virtual-register-count))
(fx>= (virtual-register-count) 0)
(error? ; invalid index
(virtual-register 'one))
(error? ; invalid index
(virtual-register -1))
(error? ; invalid index
(virtual-register (+ (most-positive-fixnum) 1)))
(error? ; invalid index
(virtual-register 0.0))
(error? ; invalid index
(set-virtual-register! 'one 19))
(error? ; invalid index
(set-virtual-register! -1 19))
(error? ; invalid index
(set-virtual-register! (+ (most-positive-fixnum) 1) 19))
(error? ; invalid index
(set-virtual-register! 0.0 19))
(fx>= (virtual-register-count) 4)
(eqv? (set-virtual-register! 3 'hello) (void))
(eqv? (virtual-register 3) 'hello)
(eqv?
(let ([x 3]) (virtual-register x))
'hello)
(eqv?
(let ([x 3] [y (cons 1 2)])
(set-virtual-register! x (list y)))
(void))
(equal? (virtual-register 3) '((1 . 2)))
(equal?
(let ()
(define g (make-guardian))
(g (virtual-register 3))
(collect)
(list (virtual-register 3) (g)))
'(((1 . 2)) #f))
)
(mat pariah
(error? ; invalid syntax
(pariah))
(error? ; invalid syntax
(pariah . 17))
(equal?
(list (pariah 17))
'(17))
(equal?
(let f ([n 10])
(if (fx= n 0)
(pariah 1)
(* n (f (fx- n 1)))))
3628800)
; make sure that cp0 doesn't remove the pariah form
(equivalent-expansion?
(parameterize ([enable-cp0 #t] [#%$suppress-primitive-inlining #f])
(expand/optimize
'(if (zero? (random 1000))
(pariah (display 0))
(display 1))))
(if (= (optimize-level) 3)
'(if (#3%zero? (#3%random 1000))
(begin (pariah (void)) (#3%display 0))
(#3%display 1))
'(if (#2%zero? (#2%random 1000))
(begin (pariah (void)) (#2%display 0))
(#2%display 1))))
)
(mat $read-time-stamp-counter
(let ([t (#%$read-time-stamp-counter)])
(and (integer? t) (exact? t)))
(let ()
;; NB: pulled from thread.ms, to use as a delay
(define fat+
(lambda (x y)
(if (zero? y)
x
(fat+ (1+ x) (1- y)))))
(define fatfib
(lambda (x)
(if (< x 2)
1
(fat+ (fatfib (1- x)) (fatfib (1- (1- x)))))))
(let loop ([count 10] [success 0])
(if (fx= count 0)
(>= success 9)
(let ([t0 (#%$read-time-stamp-counter)])
(fatfib 26)
(let ([t1 (#%$read-time-stamp-counter)])
(loop (fx- count 1)
(if (< t0 t1)
(fx+ success 1)
success)))))))
)
(mat procedure-arity-mask
(equal? (procedure-arity-mask (lambda () #f)) 1)
(equal? (procedure-arity-mask (lambda (x) x)) 2)
(equal? (procedure-arity-mask (lambda (x y z w) x)) 16)
(or (eq? (current-eval) interpret)
(equal? (procedure-arity-mask (lambda (x y z w a b c d e f g h i j) x)) (ash 1 14)))
(or (eq? (current-eval) interpret)
(and
(equal? (procedure-arity-mask (case-lambda)) 0)
(equal? (procedure-arity-mask (case-lambda [(x) x] [(x y) y])) 6)
(equal? (procedure-arity-mask (case-lambda [() x] [(x . y) y])) -1)
(equal? (procedure-arity-mask (case-lambda [() x] [(x y . z) y])) (bitwise-not 2))
(equal? (procedure-arity-mask (case-lambda [(x y . z) y] [() x])) (bitwise-not 2))
(equal? (procedure-arity-mask (case-lambda [(x) x] [(x y) y] [(x y z) z])) 14)))
(equal? (procedure-arity-mask list) -1)
(equal? (procedure-arity-mask cons) 4)
(equal? (procedure-arity-mask list*) (bitwise-not 1))
(equal? (procedure-arity-mask +) -1)
(equal? (procedure-arity-mask -) -2)
(equal? (procedure-arity-mask max) -2)
(equal? (call/cc procedure-arity-mask) -1)
(equal? (call/1cc procedure-arity-mask) -1)
(equal? (procedure-arity-mask #%$null-continuation) 0)
(equal?
(parameterize ([enable-cp0 #t]) (compile '(procedure-arity-mask
(case-lambda [a a] [(b) b]))))
-1)
(equal?
(parameterize ([enable-cp0 #f]) (compile '(procedure-arity-mask
(case-lambda [a a] [(b) b]))))
-1)
(error? ; invalid argument
(procedure-arity-mask 17))
)
(mat procedure-name
(begin
(define (procedure-name f)
(((inspect/object f) 'code) 'name))
(define (ok-name? name expect)
(or (equal? name expect)
;; interpreter currently doesn't keep names
(eq? (current-eval) interpret)))
(define should-be-named-f (let ([f (lambda (x) x)]) f))
(define should-be-named-g (letrec ([g (lambda (x) x)]) g))
(define should-be-named-h (let ([f (let ([h (lambda (x) x)]) h)]) f))
(define should-be-named-i (letrec ([f (let ([i (lambda (x) x)]) i)]) f))
(define should-be-named-j (let ([f (letrec ([j (lambda (x) x)]) j)]) f))
#t)
(ok-name? (procedure-name procedure-name) "procedure-name")
(ok-name? (procedure-name should-be-named-f) "f")
(ok-name? (procedure-name should-be-named-g) "g")
(ok-name? (procedure-name should-be-named-h) "h")
(ok-name? (procedure-name should-be-named-i) "i")
(ok-name? (procedure-name should-be-named-j) "j"))
(mat fasl-immutable
(begin
(define immutable-objs (list (vector->immutable-vector '#(1 2 3))
(fxvector->immutable-fxvector '#vfx(1 2 3))
(string->immutable-string "abc")
(bytevector->immutable-bytevector #vu8(1 2 3))
(box-immutable 1)))
(define immutable-zero-objs (list (vector->immutable-vector '#())
(fxvector->immutable-fxvector '#vfx())
(string->immutable-string "")
(bytevector->immutable-bytevector #vu8())
(box-immutable 1)))
(define (immutable? l)
(and (immutable-vector? (list-ref l 0))
(immutable-fxvector? (list-ref l 1))
(immutable-string? (list-ref l 2))
(immutable-bytevector? (list-ref l 3))
(immutable-box? (list-ref l 4))))
(define (round-trip l)
(let-values ([(o get) (open-bytevector-output-port)])
(fasl-write l o)
(immutable? (fasl-read (open-bytevector-input-port (get))))))
(define (round-trip-via-strip l)
(compile-to-file (list `(set! fasl-immutable-round-trip ',l)) "testfile-immut-sff.so")
(strip-fasl-file "testfile-immut-sff.so" "testfile-immut-sff.so" (fasl-strip-options))
(load "testfile-immut-sff.so")
(let ([l2 (eval 'fasl-immutable-round-trip)])
(and (equal? l l2)
(immutable? l2))))
#t)
(immutable? immutable-objs)
(immutable? immutable-zero-objs)
(round-trip immutable-objs)
(round-trip immutable-zero-objs)
(round-trip-via-strip immutable-objs)
(round-trip-via-strip immutable-zero-objs)
;; Make sure `fasl-read` didn't mark "mutable" null values
;; as immutable:
(mutable-vector? '#())
(mutable-fxvector? '#vfx())
(mutable-string? "")
(mutable-bytevector? '#vu8())
)
(mat show-allocation
(begin
(#%$show-allocation #t)
#t)
)