racket/collects/math/private/bigfloat/bigfloat-incomplete-gamma.rkt
Neil Toronto f2dc2027f6 Initial math library commit. The history for these changes is preserved
in the original GitHub fork:

  https://github.com/ntoronto/racket

Some things about this are known to be broken (most egregious is that the
array tests DO NOT RUN because of a problem in typed/rackunit), about half
has no coverage in the tests, and half has no documentation. Fixes and
docs are coming. This is committed now to allow others to find errors and
inconsistency in the things that appear to be working, and to give the
author a (rather incomplete) sense of closure.
2012-11-16 11:39:51 -07:00

148 lines
5.8 KiB
Racket

#lang typed/racket/base
(require "bigfloat-struct.rkt"
"bigfloat-continued-fraction.rkt"
"bigfloat-log-arithmetic.rkt")
(provide bfgamma-lower
bfgamma-upper
bfgamma-lower-regularized
bfgamma-upper-regularized
bflog-gamma-lower
bflog-gamma-upper
bflog-gamma-lower-regularized
bflog-gamma-upper-regularized)
(: bfgamma-lower-iter (Bigfloat Bigfloat Bigfloat -> Bigfloat))
(define (bfgamma-lower-iter k x eps)
(let: loop : Bigfloat ([y : Bigfloat 0.bf]
[dy : Bigfloat (bf/ x (bf+ k 1.bf))]
[i : Bigfloat 0.bf])
(define new-y (bf+ y dy))
(cond [(or (bf= new-y +inf.bf) ((bfabs dy) . bf<= . (bf* eps new-y))) new-y]
[else (loop new-y (bf/ (bf* dy x) (bf+ 2.bf i k)) (bf+ i 1.bf))])))
(: bfgamma-lower-series (Bigfloat Bigfloat -> Bigfloat))
;; Computes the lower gamma function from its series
(define (bfgamma-lower-series k x)
(define eps epsilon.bf)
(bfcopy
(parameterize ([bf-precision (+ (bf-precision) 10)])
(define y (bfgamma-lower-iter k x epsilon.bf))
(define log-z (bf- (bf* k (bflog x)) (bf+ x (bflog k))))
(let ([z (cond [((bfabs log-z) . bf< . 1.bf) (bfexp log-z)]
[else (bf/ (bf* (bfexpt x k) (bfexp (bf- x))) k)])])
(bf+ z (bf* z y))))))
(: bflog-gamma-lower-series (Bigfloat Bigfloat -> Bigfloat))
;; Computes the log of the lower gamma function from its series
(define (bflog-gamma-lower-series k x)
(bfcopy
(parameterize ([bf-precision (+ (bf-precision) 10)])
(bflog (bfgamma-lower-series k x)))))
;; ===================================================================================================
(: bfgamma-upper-iter (Bigfloat Bigfloat Bigfloat -> Bigfloat))
(define (bfgamma-upper-iter k x eps)
(bfcontinued-fraction 1.bf
(λ (i a) (bf* i (bf- k i)))
(bf+ 1.bf (bf- x k))
(λ (i b) (bf+ (bf- x k) (bf+ (bf* 2.bf i) 1.bf)))
eps))
(: bfgamma-upper-frac (Bigfloat Bigfloat -> Bigfloat))
;; Computes the upper gamma function using Legendre's continued fraction
(define (bfgamma-upper-frac k x)
(define eps epsilon.bf)
(bfcopy
(parameterize ([bf-precision (+ (bf-precision) 10)])
(define y (bfgamma-upper-iter k x eps))
(define log-z (bf- (bf* k (bflog x)) x))
(let ([z (cond [((bfabs log-z) . bf< . 1.bf) (bfexp log-z)]
[else (bf* (bfexpt x k) (bfexp (bf- x)))])])
(bf* y z)))))
(: bflog-gamma-upper-frac (Bigfloat Bigfloat -> Bigfloat))
;; Computes the log of the upper gamma function using Legendre's continued fraction
(define (bflog-gamma-upper-frac k x)
(bfcopy
(parameterize ([bf-precision (+ (bf-precision) 10)])
(bflog (bfgamma-upper-frac k x)))))
;; ===================================================================================================
(: use-lower? (Bigfloat Bigfloat -> Boolean))
;; Determines whether to compute an incomplete gamma function using the lower's series or upper's
;; continued fraction
(define (use-lower? k x)
(or (x . bf< . k) (and (x . bf< . 4.bf) (k . bf< . 3.bf))))
(: bfgamma-lower (Bigfloat Bigfloat -> Bigfloat))
(define (bfgamma-lower k x)
(cond [(k . bf<= . 0.bf) +nan.bf]
[(x . bf< . 0.bf) +nan.bf]
[(use-lower? k x) (bfgamma-lower-series k x)]
[else (bf- (bfgamma k) (bfgamma-upper-frac k x))]))
(: bflog-gamma-lower (Bigfloat Bigfloat -> Bigfloat))
(define (bflog-gamma-lower k x)
(cond [(k . bf<= . 0.bf) +nan.bf]
[(x . bf< . 0.bf) +nan.bf]
[(use-lower? k x) (bflog-gamma-lower-series k x)]
[else (bflog- (bflog-gamma k) (bflog-gamma-upper-frac k x))]))
(: bfgamma-upper (Bigfloat Bigfloat -> Bigfloat))
(define (bfgamma-upper k x)
(cond [(k . bf<= . 0.bf) +nan.bf]
[(x . bf< . 0.bf) +nan.bf]
[(use-lower? k x) (bf- (bfgamma k) (bfgamma-lower-series k x))]
[else (bfgamma-upper-frac k x)]))
(: bflog-gamma-upper (Bigfloat Bigfloat -> Bigfloat))
(define (bflog-gamma-upper k x)
(cond [(k . bf<= . 0.bf) +nan.bf]
[(x . bf< . 0.bf) +nan.bf]
[(use-lower? k x) (bflog- (bflog-gamma k) (bflog-gamma-lower-series k x))]
[else (bflog-gamma-upper-frac k x)]))
;; ===================================================================================================
(: bflog-gamma-lower-regularized (Bigfloat Bigfloat -> Bigfloat))
(define (bflog-gamma-lower-regularized k x)
(bfcopy
(parameterize ([bf-precision (+ (bf-precision) 10)])
(cond [(use-lower? k x)
(bf- (bflog-gamma-lower-series k x) (bflog-gamma k))]
[else
(bflog1p (bf- (bfexp (bf- (bflog-gamma-upper-frac k x) (bflog-gamma k)))))]))))
(: bflog-gamma-upper-regularized (Bigfloat Bigfloat -> Bigfloat))
(define (bflog-gamma-upper-regularized k x)
(bfcopy
(parameterize ([bf-precision (+ (bf-precision) 10)])
(cond [(use-lower? k x)
(bflog1p (bf- (bfexp (bf- (bflog-gamma-lower-series k x) (bflog-gamma k)))))]
[else
(bf- (bflog-gamma-upper-frac k x) (bflog-gamma k))]))))
(: bfgamma-lower-regularized (Bigfloat Bigfloat -> Bigfloat))
(define (bfgamma-lower-regularized k x)
(bfcopy
(parameterize ([bf-precision (+ (bf-precision) 10)])
(cond [(use-lower? k x)
(bf/ (bfgamma-lower-series k x) (bfgamma k))]
[else
(define gam-k (bfgamma k))
(bf/ (bf- gam-k (bfgamma-upper-frac k x)) gam-k)]))))
(: bfgamma-upper-regularized (Bigfloat Bigfloat -> Bigfloat))
(define (bfgamma-upper-regularized k x)
(bfcopy
(parameterize ([bf-precision (+ (bf-precision) 10)])
(cond [(use-lower? k x)
(define gam-k (bfgamma k))
(bf/ (bf- gam-k (bfgamma-lower-series k x)) gam-k)]
[else
(bf/ (bfgamma-upper-frac k x) (bfgamma k))]))))