
in the original GitHub fork: https://github.com/ntoronto/racket Some things about this are known to be broken (most egregious is that the array tests DO NOT RUN because of a problem in typed/rackunit), about half has no coverage in the tests, and half has no documentation. Fixes and docs are coming. This is committed now to allow others to find errors and inconsistency in the things that appear to be working, and to give the author a (rather incomplete) sense of closure.
148 lines
5.8 KiB
Racket
148 lines
5.8 KiB
Racket
#lang typed/racket/base
|
|
|
|
(require "bigfloat-struct.rkt"
|
|
"bigfloat-continued-fraction.rkt"
|
|
"bigfloat-log-arithmetic.rkt")
|
|
|
|
(provide bfgamma-lower
|
|
bfgamma-upper
|
|
bfgamma-lower-regularized
|
|
bfgamma-upper-regularized
|
|
bflog-gamma-lower
|
|
bflog-gamma-upper
|
|
bflog-gamma-lower-regularized
|
|
bflog-gamma-upper-regularized)
|
|
|
|
(: bfgamma-lower-iter (Bigfloat Bigfloat Bigfloat -> Bigfloat))
|
|
(define (bfgamma-lower-iter k x eps)
|
|
(let: loop : Bigfloat ([y : Bigfloat 0.bf]
|
|
[dy : Bigfloat (bf/ x (bf+ k 1.bf))]
|
|
[i : Bigfloat 0.bf])
|
|
(define new-y (bf+ y dy))
|
|
(cond [(or (bf= new-y +inf.bf) ((bfabs dy) . bf<= . (bf* eps new-y))) new-y]
|
|
[else (loop new-y (bf/ (bf* dy x) (bf+ 2.bf i k)) (bf+ i 1.bf))])))
|
|
|
|
(: bfgamma-lower-series (Bigfloat Bigfloat -> Bigfloat))
|
|
;; Computes the lower gamma function from its series
|
|
(define (bfgamma-lower-series k x)
|
|
(define eps epsilon.bf)
|
|
(bfcopy
|
|
(parameterize ([bf-precision (+ (bf-precision) 10)])
|
|
(define y (bfgamma-lower-iter k x epsilon.bf))
|
|
(define log-z (bf- (bf* k (bflog x)) (bf+ x (bflog k))))
|
|
(let ([z (cond [((bfabs log-z) . bf< . 1.bf) (bfexp log-z)]
|
|
[else (bf/ (bf* (bfexpt x k) (bfexp (bf- x))) k)])])
|
|
(bf+ z (bf* z y))))))
|
|
|
|
(: bflog-gamma-lower-series (Bigfloat Bigfloat -> Bigfloat))
|
|
;; Computes the log of the lower gamma function from its series
|
|
(define (bflog-gamma-lower-series k x)
|
|
(bfcopy
|
|
(parameterize ([bf-precision (+ (bf-precision) 10)])
|
|
(bflog (bfgamma-lower-series k x)))))
|
|
|
|
;; ===================================================================================================
|
|
|
|
(: bfgamma-upper-iter (Bigfloat Bigfloat Bigfloat -> Bigfloat))
|
|
(define (bfgamma-upper-iter k x eps)
|
|
(bfcontinued-fraction 1.bf
|
|
(λ (i a) (bf* i (bf- k i)))
|
|
(bf+ 1.bf (bf- x k))
|
|
(λ (i b) (bf+ (bf- x k) (bf+ (bf* 2.bf i) 1.bf)))
|
|
eps))
|
|
|
|
(: bfgamma-upper-frac (Bigfloat Bigfloat -> Bigfloat))
|
|
;; Computes the upper gamma function using Legendre's continued fraction
|
|
(define (bfgamma-upper-frac k x)
|
|
(define eps epsilon.bf)
|
|
(bfcopy
|
|
(parameterize ([bf-precision (+ (bf-precision) 10)])
|
|
(define y (bfgamma-upper-iter k x eps))
|
|
(define log-z (bf- (bf* k (bflog x)) x))
|
|
(let ([z (cond [((bfabs log-z) . bf< . 1.bf) (bfexp log-z)]
|
|
[else (bf* (bfexpt x k) (bfexp (bf- x)))])])
|
|
(bf* y z)))))
|
|
|
|
(: bflog-gamma-upper-frac (Bigfloat Bigfloat -> Bigfloat))
|
|
;; Computes the log of the upper gamma function using Legendre's continued fraction
|
|
(define (bflog-gamma-upper-frac k x)
|
|
(bfcopy
|
|
(parameterize ([bf-precision (+ (bf-precision) 10)])
|
|
(bflog (bfgamma-upper-frac k x)))))
|
|
|
|
;; ===================================================================================================
|
|
|
|
(: use-lower? (Bigfloat Bigfloat -> Boolean))
|
|
;; Determines whether to compute an incomplete gamma function using the lower's series or upper's
|
|
;; continued fraction
|
|
(define (use-lower? k x)
|
|
(or (x . bf< . k) (and (x . bf< . 4.bf) (k . bf< . 3.bf))))
|
|
|
|
(: bfgamma-lower (Bigfloat Bigfloat -> Bigfloat))
|
|
(define (bfgamma-lower k x)
|
|
(cond [(k . bf<= . 0.bf) +nan.bf]
|
|
[(x . bf< . 0.bf) +nan.bf]
|
|
[(use-lower? k x) (bfgamma-lower-series k x)]
|
|
[else (bf- (bfgamma k) (bfgamma-upper-frac k x))]))
|
|
|
|
(: bflog-gamma-lower (Bigfloat Bigfloat -> Bigfloat))
|
|
(define (bflog-gamma-lower k x)
|
|
(cond [(k . bf<= . 0.bf) +nan.bf]
|
|
[(x . bf< . 0.bf) +nan.bf]
|
|
[(use-lower? k x) (bflog-gamma-lower-series k x)]
|
|
[else (bflog- (bflog-gamma k) (bflog-gamma-upper-frac k x))]))
|
|
|
|
(: bfgamma-upper (Bigfloat Bigfloat -> Bigfloat))
|
|
(define (bfgamma-upper k x)
|
|
(cond [(k . bf<= . 0.bf) +nan.bf]
|
|
[(x . bf< . 0.bf) +nan.bf]
|
|
[(use-lower? k x) (bf- (bfgamma k) (bfgamma-lower-series k x))]
|
|
[else (bfgamma-upper-frac k x)]))
|
|
|
|
(: bflog-gamma-upper (Bigfloat Bigfloat -> Bigfloat))
|
|
(define (bflog-gamma-upper k x)
|
|
(cond [(k . bf<= . 0.bf) +nan.bf]
|
|
[(x . bf< . 0.bf) +nan.bf]
|
|
[(use-lower? k x) (bflog- (bflog-gamma k) (bflog-gamma-lower-series k x))]
|
|
[else (bflog-gamma-upper-frac k x)]))
|
|
|
|
;; ===================================================================================================
|
|
|
|
(: bflog-gamma-lower-regularized (Bigfloat Bigfloat -> Bigfloat))
|
|
(define (bflog-gamma-lower-regularized k x)
|
|
(bfcopy
|
|
(parameterize ([bf-precision (+ (bf-precision) 10)])
|
|
(cond [(use-lower? k x)
|
|
(bf- (bflog-gamma-lower-series k x) (bflog-gamma k))]
|
|
[else
|
|
(bflog1p (bf- (bfexp (bf- (bflog-gamma-upper-frac k x) (bflog-gamma k)))))]))))
|
|
|
|
(: bflog-gamma-upper-regularized (Bigfloat Bigfloat -> Bigfloat))
|
|
(define (bflog-gamma-upper-regularized k x)
|
|
(bfcopy
|
|
(parameterize ([bf-precision (+ (bf-precision) 10)])
|
|
(cond [(use-lower? k x)
|
|
(bflog1p (bf- (bfexp (bf- (bflog-gamma-lower-series k x) (bflog-gamma k)))))]
|
|
[else
|
|
(bf- (bflog-gamma-upper-frac k x) (bflog-gamma k))]))))
|
|
|
|
(: bfgamma-lower-regularized (Bigfloat Bigfloat -> Bigfloat))
|
|
(define (bfgamma-lower-regularized k x)
|
|
(bfcopy
|
|
(parameterize ([bf-precision (+ (bf-precision) 10)])
|
|
(cond [(use-lower? k x)
|
|
(bf/ (bfgamma-lower-series k x) (bfgamma k))]
|
|
[else
|
|
(define gam-k (bfgamma k))
|
|
(bf/ (bf- gam-k (bfgamma-upper-frac k x)) gam-k)]))))
|
|
|
|
(: bfgamma-upper-regularized (Bigfloat Bigfloat -> Bigfloat))
|
|
(define (bfgamma-upper-regularized k x)
|
|
(bfcopy
|
|
(parameterize ([bf-precision (+ (bf-precision) 10)])
|
|
(cond [(use-lower? k x)
|
|
(define gam-k (bfgamma k))
|
|
(bf/ (bf- gam-k (bfgamma-lower-series k x)) gam-k)]
|
|
[else
|
|
(bf/ (bfgamma-upper-frac k x) (bfgamma k))]))))
|