racket/collects/scribblings/reference/vectors.scrbl

371 lines
12 KiB
Racket

#lang scribble/doc
@(require "mz.ss")
@title[#:tag "vectors"]{Vectors}
@guideintro["vectors"]{vectors}
A @deftech{vector} is a fixed-length array with constant-time access
and update of the vector slots, which are numbered from @racket[0] to
one less than the number of slots in the vector.
Two vectors are @racket[equal?] if they have the same length, and if
the values in corresponding slots of the vectors are
@racket[equal?].
A vector can be @defterm{mutable} or @defterm{immutable}. When an
immutable vector is provided to a procedure like @racket[vector-set!],
the @exnraise[exn:fail:contract]. Vectors generated by the default
reader (see @secref["parse-string"]) are immutable.
A vector can be used as a single-valued sequence (see
@secref["sequences"]). The elements of the vector serve as elements
of the sequence. See also @racket[in-vector].
@defproc[(vector? [v any/c]) boolean?]{
Returns @racket[#t] if @racket[v] is a vector, @racket[#f] otherwise.}
@defproc[(make-vector [size exact-nonnegative-integer?]
[v any/c 0]) vector?]{
Returns a mutable vector with @racket[size] slots, where all slots are
initialized to contain @racket[v].}
@defproc[(vector [v any/c] ...) vector?]{
Returns a newly allocated mutable vector with as many slots as provided @racket[v]s,
where the slots are initialized to contain the given @racket[v]s in
order.}
@defproc[(vector-immutable [v any/c] ...) (and/c vector?
immutable?)]{
Returns a newly allocated immutable vector with as many slots as provided
@racket[v]s, where the slots are contain the given @racket[v]s in
order.}
@defproc[(vector-length [vec vector?]) exact-nonnegative-integer?]{
Returns the length of @racket[vec] (i.e., the number of slots in the
vector).}
@defproc[(vector-ref [vec vector?] [pos exact-nonnegative-integer?]) any/c]{
Returns the element in slot @racket[pos] of @racket[vec]. The first
slot is position @racket[0], and the last slot is one less than
@racket[(vector-length vec)].}
@defproc[(vector-set! [vec (and/c vector? (not/c immutable?))]
[pos exact-nonnegative-integer?]
[v any/c])
void?]{
Updates the slot @racket[pos] of @racket[vec] to contain @racket[v].}
@defproc[(vector->list [vec vector?]) list?]{
Returns a list with the same length and elements as @racket[vec].}
@defproc[(list->vector [lst list?]) vector?]{
Returns a mutable vector with the same length and elements as
@racket[lst].}
@defproc[(vector->immutable-vector [vec vector?])
(and/c vector? immutable?)]{
Returns an immutable vector with the same length and elements as @racket[vec].
If @racket[vec] is itself immutable, then it is returned as the result.}
@defproc[(vector-fill! [vec (and/c vector? (not/c immutable?))]
[v any/c])
void?]{
Changes all slots of @racket[vec] to contain @racket[v].}
@defproc[(vector-copy! [dest (and/c vector? (not/c immutable?))]
[dest-start exact-nonnegative-integer?]
[src vector?]
[src-start exact-nonnegative-integer? 0]
[src-end exact-nonnegative-integer? (vector-length src)])
void?]{
Changes the elements of @racket[dest] starting at position
@racket[dest-start] to match the elements in @racket[src] from
@racket[src-start] (inclusive) to @racket[src-end] (exclusive). The
vectors @racket[dest] and @racket[src] can be the same vector, and in
that case the destination region can overlap with the source region;
the destination elements after the copy match the source elements
from before the copy. If any of @racket[dest-start],
@racket[src-start], or @racket[src-end] are out of range (taking into
account the sizes of the vectors and the source and destination
regions), the @exnraise[exn:fail:contract].
@examples[(define v (vector 'A 'p 'p 'l 'e))
(vector-copy! v 4 #(y))
(vector-copy! v 0 v 3 4)
v]}
@defproc[(vector->values [vec vector?]
[start-pos exact-nonnegative-integer? 0]
[end-pos exact-nonnegative-integer? (vector-length vec)])
any]{
Returns @math{@racket[end-pos] - @racket[start-pos]} values, which are
the elements of @racket[vec] from @racket[start-pos] (inclusive) to
@racket[end-pos] (exclusive). If @racket[start-pos] or
@racket[end-pos] are greater than @racket[(vector-length vec)], or if
@racket[end-pos] is less than @racket[start-pos], the
@exnraise[exn:fail:contract].}
@defproc[(build-vector [n exact-nonnegative-integer?]
[proc (exact-nonnegative-integer? . -> . any/c)])
vector?]{
Creates a vector of @racket[n] elements by applying @racket[proc] to
the integers from @racket[0] to @racket[(sub1 n)] in order. If
@racket[_vec] is the resulting vector, then @racket[(vector-ref _vec
_i)] is the value produced by @racket[(proc _i)].
@examples[
(build-vector 5 add1)
]}
@; ----------------------------------------
@section{Additional Vector Functions}
@note-lib[racket/vector]
@(define vec-eval (make-base-eval))
@(interaction-eval #:eval vec-eval
(require racket/vector))
@defproc[(vector-set*! [vec (and/c vector? (not/c immutable?))]
[pos exact-nonnegative-integer?]
[v any/c]
...
...)
void?]{
Updates each slot @racket[pos] of @racket[vec] to contain each @racket[v].
The update takes place from the left so later updates overwrite earlier updates.}
@defproc[(vector-map [proc procedure?] [vec vector?] ...+)
vector?]{
Applies @racket[proc] to the elements of the @racket[vec]s from the
first elements to the last. The @racket[proc] argument must accept
the same number of arguments as the number of supplied @racket[vec]s,
and all @racket[vec]s must have the same number of elements. The
result is a fresh vector containing each result of @racket[proc] in
order.
@mz-examples[#:eval vec-eval
(vector-map + #(1 2) #(3 4))]
}
@defproc[(vector-map! [proc procedure?] [vec vector?] ...+)
vector?]{
Applies @racket[proc] to the elements of the @racket[vec]s from the
first elements to the last. The @racket[proc] argument must accept
the same number of arguments as the number of supplied @racket[vec]s,
and all @racket[vec]s must have the same number of elements. The
each result of @racket[proc] is inserted into the first @racket[vec]
at the index that the arguments to @racket[proc] was taken from. The
result is the first @racket[vec].
@mz-examples[#:eval vec-eval
(define v #(1 2 3 4))
(vector-map! add1 v)
v
]}
@defproc[(vector-append [vec vector?] ...) vector?]{
Creates a fresh vector that contains all
of the elements of the given vectors in order.
@mz-examples[#:eval vec-eval
(vector-append #(1 2) #(3 4))]
}
@defproc[(vector-take [vec vector?] [pos exact-nonnegative-integer?]) vector?]{
Returns a fresh vector whose elements are the first @racket[pos] elements of
@racket[vec]. If @racket[vec] has fewer than
@racket[pos] elements, then the @exnraise[exn:fail:contract].
@mz-examples[#:eval vec-eval
(vector-take #(1 2 3 4) 2)
]}
@defproc[(vector-take-right [vec vector?] [pos exact-nonnegative-integer?]) vector?]{
Returns a fresh vector whose elements are the last @racket[pos] elements of
@racket[vec]. If @racket[vec] has fewer than
@racket[pos] elements, then the @exnraise[exn:fail:contract].
@mz-examples[#:eval vec-eval
(vector-take-right #(1 2 3 4) 2)
]}
@defproc[(vector-drop [vec vector?] [pos exact-nonnegative-integer?]) vector?]{
Returns a fresh vector whose elements are the elements of @racket[vec]
after the first @racket[pos] elements. If @racket[vec] has fewer
than @racket[pos] elements, then the @exnraise[exn:fail:contract].
@mz-examples[#:eval vec-eval
(vector-drop #(1 2 3 4) 2)
]}
@defproc[(vector-drop-right [vec vector?] [pos exact-nonnegative-integer?]) vector?]{
Returns a fresh vector whose elements are the elements of @racket[vec]
before the first @racket[pos] elements. If @racket[vec] has fewer
than @racket[pos] elements, then the @exnraise[exn:fail:contract].
@mz-examples[#:eval vec-eval
(vector-drop-right #(1 2 3 4) 2)
]}
@defproc[(vector-split-at [vec vector?] [pos exact-nonnegative-integer?])
(values vector? vector?)]{
Returns the same result as
@racketblock[(values (vector-take vec pos) (vector-drop vec pos))]
except that it can be faster.
@mz-examples[#:eval vec-eval
(vector-split-at #(1 2 3 4 5) 2)
]}
@defproc[(vector-split-at-right [vec vector?] [pos exact-nonnegative-integer?])
(values vector? vector?)]{
Returns the same result as
@racketblock[(values (vector-take-right vec pos) (vector-drop-right vec pos))]
except that it can be faster.
@mz-examples[#:eval vec-eval
(vector-split-at-right #(1 2 3 4 5) 2)
]}
@defproc[(vector-copy [vec vector?]
[start exact-nonnegative-integer? 0]
[end exact-nonnegative-integer? (vector-length v)])
vector?]{
Creates a fresh vector of size @racket[(- end start)], with all of the
elements of @racket[vec] from @racket[start] (inclusive) to
@racket[end] (exclusive).
@mz-examples[#:eval vec-eval
(vector-copy #(1 2 3 4))
(vector-copy #(1 2 3 4) 3)
(vector-copy #(1 2 3 4) 2 3)
]
}
@defproc[(vector-filter [pred procedure?] [vec vector?]) vector?]{
Returns a fresh vector with the elements of @racket[vec] for which
@racket[pred] produces a true value. The @racket[pred] procedure is
applied to each element from first to last.
@mz-examples[#:eval vec-eval
(vector-filter even? #(1 2 3 4 5 6))
]}
@defproc[(vector-filter-not [pred procedure?] [vec vector?]) vector?]{
Like @racket[vector-filter], but the meaning of the @racket[pred] predicate
is reversed: the result is a vector of all items for which @racket[pred]
returns @racket[#f].
@mz-examples[#:eval vec-eval
(vector-filter-not even? #(1 2 3 4 5 6))
]}
@defproc[(vector-count [proc procedure?] [vec vector?] ...+)
exact-nonnegative-integer?]{
Returns the number of elements of the @racket[vec ...] (taken in
parallel) on which @racket[proc] does not evaluate to @racket[#f].
@mz-examples[#:eval vec-eval
(vector-count even? #(1 2 3 4 5))
(vector-count = #(1 2 3 4 5) #(5 4 3 2 1))]
}
@defproc[(vector-argmin [proc (-> any/c real?)] [vec vector?]) any/c]{
This returns the first element in the non-empty vector @racket[vec] that minimizes
the result of @racket[proc].
@mz-examples[#:eval vec-eval
(vector-argmin car #((3 pears) (1 banana) (2 apples)))
(vector-argmin car #((1 banana) (1 orange)))
]
}
@defproc[(vector-argmax [proc (-> any/c real?)] [vec vector?]) any/c]{
This returns the first element in the non-empty vector @racket[vec] that maximizes
the result of @racket[proc].
@mz-examples[#:eval vec-eval
(vector-argmax car #((3 pears) (1 banana) (2 apples)))
(vector-argmax car #((3 pears) (3 oranges)))
]
}
@defproc[(vector-member [v any/c] [lst vector?])
(or/c natural-number/c #f)]{
Locates the first element of @racket[vec] that is @racket[equal?] to
@racket[v]. If such an element exists, the index of that element in
@racket[vec] is returned. Otherwise, the result is @racket[#f].
@mz-examples[#:eval vec-eval
(vector-member 2 (vector 1 2 3 4))
(vector-member 9 (vector 1 2 3 4))
]}
@defproc[(vector-memv [v any/c] [vec vector?])
(or/c natural-number/c #f)]{
Like @racket[vector-member], but finds an element using @racket[eqv?].
@mz-examples[#:eval vec-eval
(vector-memv 2 (vector 1 2 3 4))
(vector-memv 9 (vector 1 2 3 4))
]}
@defproc[(vector-memq [v any/c] [vec vector?])
(or/c natural-number/c #f)]{
Like @racket[vector-member], but finds an element using @racket[eq?].
@mz-examples[#:eval vec-eval
(vector-memq 2 (vector 1 2 3 4))
(vector-memq 9 (vector 1 2 3 4))
]}
@close-eval[vec-eval]