racket/collects/math/private/matrix/matrix-operations.rkt
Neil Toronto 8d5a069d41 Moar `math/matrix' review/refactoring
* Split "matrix-constructors.rkt" into three parts:
 * "matrix-constructors.rkt"
 * "matrix-conversion.rkt"
 * "matrix-syntax.rkt"

* Made `matrix-map' automatically inline (it's dirt simple)

* Renamed a few things, changed some type signatures

* Fixed error in `matrix-dot' caught by testing (it was broadcasting)

* Rewrote matrix comprehensions in terms of array comprehensions

* Removed `in-column' and `in-row' (can use `in-array', `matrix-col' and
  `matrix-row')

* Tons of new rackunit tests: only "matrix-2d.rkt" and
  "matrix-operations.rkt" are left (though the latter is large)
2012-12-20 17:32:16 -07:00

654 lines
26 KiB
Racket

#lang typed/racket/base
(require racket/list
math/array
(only-in typed/racket conjugate)
"../unsafe.rkt"
"matrix-types.rkt"
"matrix-constructors.rkt"
"matrix-conversion.rkt"
"matrix-arithmetic.rkt"
"matrix-basic.rkt"
"matrix-column.rkt"
(for-syntax racket))
; TODO:
; 1. compute null space from QR factorization
; (better numerical stability than from Gauss elimnation)
; 2. S+N decomposition
; 3. Linear least squares problems (data fitting)
; 4. Pseudo inverse
; 5. Eigenvalues and eigenvectors
(provide
matrix-inverse
; row and column
matrix-scale-row
matrix-scale-column
matrix-swap-rows
matrix-swap-columns
matrix-add-scaled-row
; reduction
matrix-gauss-eliminate
matrix-gauss-jordan-eliminate
matrix-row-echelon-form
matrix-reduced-row-echelon-form
; invariant
matrix-rank
matrix-nullity
matrix-determinant
; spaces
;matrix-column+null-space
; solvers
matrix-solve
matrix-solve-many
; spaces
matrix-column-space
; projection
projection-on-orthogonal-basis
projection-on-orthonormal-basis
projection-on-subspace
gram-schmidt-orthogonal
gram-schmidt-orthonormal
; factorization
matrix-lu
matrix-qr
)
;;;
;;; Row and column
;;;
(: matrix-scale-row : (Matrix Number) Integer Number -> (Matrix Number))
(define (matrix-scale-row a i c)
((inline-matrix-scale-row i c) a))
(define-syntax (inline-matrix-scale-row stx)
(syntax-case stx ()
[(_ i c)
(syntax/loc stx
(λ (arr)
(define ds (array-shape arr))
(define g (unsafe-array-proc arr))
(cond
[(< i 0)
(error 'matrix-scale-row "row index must be non-negative, got ~a" i)]
[(not (< i (vector-ref ds 0)))
(error 'matrix-scale-row "row index must be smaller than the number of rows, got ~a" i)]
[else
(unsafe-build-array ds (λ: ([js : (Vectorof Index)])
(if (= i (vector-ref js 0))
(* c (g js))
(g js))))])))]))
(: matrix-scale-column : (Matrix Number) Integer Number -> (Matrix Number))
(define (matrix-scale-column a i c)
((inline-matrix-scale-column i c) a))
(define-syntax (inline-matrix-scale-column stx)
(syntax-case stx ()
[(_ j c)
(syntax/loc stx
(λ (arr)
(define ds (array-shape arr))
(define g (unsafe-array-proc arr))
(cond
[(< j 0)
(error 'matrix-scale-row "column index must be non-negative, got ~a" j)]
[(not (< j (vector-ref ds 1)))
(error 'matrix-scale-row "column index must be smaller than the number of rows, got ~a" j)]
[else
(unsafe-build-array ds (λ: ([js : (Vectorof Index)])
(if (= j (vector-ref js 1))
(* c (g js))
(g js))))])))]))
(: matrix-swap-rows : (Matrix Number) Integer Integer -> (Matrix Number))
(define (matrix-swap-rows a i j)
((inline-matrix-swap-rows i j) a))
(define-syntax (inline-matrix-swap-rows stx)
(syntax-case stx ()
[(_ i j)
(syntax/loc stx
(λ (arr)
(define ds (array-shape arr))
(define g (unsafe-array-proc arr))
(cond
[(< i 0)
(error 'matrix-swap-rows "row index must be non-negative, got ~a" i)]
[(< j 0)
(error 'matrix-swap-rows "row index must be non-negative, got ~a" j)]
[(not (< i (vector-ref ds 0)))
(error 'matrix-swap-rows "row index must be smaller than the number of rows, got ~a" i)]
[(not (< j (vector-ref ds 0)))
(error 'matrix-swap-rows "row index must be smaller than the number of rows, got ~a" j)]
[else
(unsafe-build-array ds (λ: ([js : (Vectorof Index)])
(cond
[(= i (vector-ref js 0))
(g (vector j (vector-ref js 1)))]
[(= j (vector-ref js 0))
(g (vector i (vector-ref js 1)))]
[else
(g js)])))])))]))
(: matrix-swap-columns : (Matrix Number) Integer Integer -> (Matrix Number))
(define (matrix-swap-columns a i j)
((inline-matrix-swap-columns i j) a))
(define-syntax (inline-matrix-swap-columns stx)
(syntax-case stx ()
[(_ i j)
(syntax/loc stx
(λ (arr)
(define ds (array-shape arr))
(define g (unsafe-array-proc arr))
(cond
[(< i 0)
(error 'matrix-swap-columns "column index must be non-negative, got ~a" i)]
[(< j 0)
(error 'matrix-swap-columns "column index must be non-negative, got ~a" j)]
[(not (< i (vector-ref ds 0)))
(error 'matrix-swap-columns "column index must be smaller than the number of columns, got ~a" i)]
[(not (< j (vector-ref ds 0)))
(error 'matrix-swap-columns "column index must be smaller than the number of columns, got ~a" j)]
[else
(unsafe-build-array ds (λ: ([js : (Vectorof Index)])
(cond
[(= i (vector-ref js 1))
(g (vector j (vector-ref js 1)))]
[(= j (vector-ref js 1))
(g (vector i (vector-ref js 1)))]
[else
(g js)])))])))]))
(: matrix-add-scaled-row : (Matrix Number) Integer Number Integer -> (Matrix Number))
(define (matrix-add-scaled-row a i c j)
((inline-matrix-add-scaled-row i c j) a))
(: flmatrix-add-scaled-row : (Matrix Flonum) Index Flonum Index -> (Matrix Flonum))
(define (flmatrix-add-scaled-row a i c j)
((inline-matrix-add-scaled-row i c j) a))
(define-syntax (inline-matrix-add-scaled-row stx)
(syntax-case stx ()
[(_ i c j)
(syntax/loc stx
(λ (arr)
(define ds (array-shape arr))
(define g (unsafe-array-proc arr))
(cond
[(< i 0)
(error 'matrix-add-scaled-row "row index must be non-negative, got ~a" i)]
[(< j 0)
(error 'matrix-add-scaled-row "row index must be non-negative, got ~a" j)]
[(not (< i (vector-ref ds 0)))
(error 'matrix-add-scaled-row
"row index must be smaller than the number of rows, got ~a" i)]
[(not (< j (vector-ref ds 0)))
(error 'matrix-add-scaled-row
"row index must be smaller than the number of rows, got ~a" j)]
[else
(unsafe-build-array ds (λ: ([js : (Vectorof Index)])
(if (= i (vector-ref js 0))
(+ (g js) (* c (g (vector j (vector-ref js 1)))))
(g js))))])))]))
;;; GAUSS ELIMINATION / ROW ECHELON FORM
(: matrix-gauss-eliminate :
(case-> ((Matrix Number) Boolean Boolean -> (Values (Matrix Number) (Listof Integer)))
((Matrix Number) Boolean -> (Values (Matrix Number) (Listof Integer)))
((Matrix Number) -> (Values (Matrix Number) (Listof Integer)))))
(define (matrix-gauss-eliminate M [unitize-pivot-row? #f] [partial-pivoting? #t])
(define-values (m n) (matrix-shape M))
(: loop : (Integer Integer (Matrix Number) Integer (Listof Integer)
-> (Values (Matrix Number) (Listof Integer))))
(define (loop i j ; i from 0 to m
M
k ; count rows without pivot
without-pivot)
(cond
[(or (= i m) (= j n)) (values M without-pivot)]
[else
; find row to become pivot
(define p
(if partial-pivoting?
; find element with maximal absolute value
(let: max-loop : (U False Integer)
([l : Integer i] ; i<=l<m
[max-current : Real -inf.0]
[max-index : Integer i])
(cond
[(= l m) max-index]
[else
(let ([v (magnitude (matrix-ref M l j))])
(if (> (magnitude (matrix-ref M l j)) max-current)
(max-loop (+ l 1) v l)
(max-loop (+ l 1) max-current max-index)))]))
; find non-zero element in column
(let: first-loop : (U False Integer)
([l : Integer i]) ; i<=l<m
(cond
[(= l m) #f]
[(not (zero? (matrix-ref M l j))) l]
[else (first-loop (+ l 1))]))))
(cond
[(or (eq? p #f)
(zero? (matrix-ref M p j)))
; no pivot found
(loop i (+ j 1) M (+ k 1) (cons j without-pivot))]
[else
; swap if neccessary
(let* ([M (if (= i p) M (matrix-swap-rows M i p))]
; now we now (i,j) is a pivot
[M ; maybe scale row
(if unitize-pivot-row?
(let ([pivot (matrix-ref M i j)])
(if (zero? pivot)
M
(matrix-scale-row M i (/ pivot))))
M)])
(let ([pivot (matrix-ref M i j)])
; remove elements below pivot
(let l-loop ([l (+ i 1)] [M M])
(if (= l m)
(loop (+ i 1) (+ j 1) M k without-pivot)
(let ([x_lj (matrix-ref M l j)])
(l-loop (+ l 1)
(if (zero? x_lj)
M
(matrix-add-scaled-row M l (- (/ x_lj pivot)) i))))))))])]))
(let-values ([(M without) (loop 0 0 M 0 '())])
(values M without)))
(: matrix-rank : (Matrix Number) -> Integer)
(define (matrix-rank M)
; TODO: Use QR or SVD instead for inexact matrices
; See answer: http://scicomp.stackexchange.com/questions/1861/understanding-how-numpy-does-svd
; rank = dimension of column space = dimension of row space
(define-values (m n) (matrix-shape M))
(define-values (_ cols-without-pivot) (matrix-gauss-eliminate M))
(- n (length cols-without-pivot)))
(: matrix-nullity : (Matrix Number) -> Integer)
(define (matrix-nullity M)
; nullity = dimension of null space
(define-values (m n) (matrix-shape M))
(define-values (_ cols-without-pivot) (matrix-gauss-eliminate M))
(length cols-without-pivot))
(: matrix-determinant : (Matrix Number) -> Number)
(define (matrix-determinant M)
(define-values (m n) (matrix-shape M))
(cond
[(= m 1) (matrix-ref M 0 0)]
[(= m 2) (let ([a (matrix-ref M 0 0)]
[b (matrix-ref M 0 1)]
[c (matrix-ref M 1 0)]
[d (matrix-ref M 1 1)])
(- (* a d) (* b c)))]
[(= m 3) (let ([a (matrix-ref M 0 0)]
[b (matrix-ref M 0 1)]
[c (matrix-ref M 0 2)]
[d (matrix-ref M 1 0)]
[e (matrix-ref M 1 1)]
[f (matrix-ref M 1 2)]
[g (matrix-ref M 2 0)]
[h (matrix-ref M 2 1)]
[i (matrix-ref M 2 2)])
(+ (* a (- (* e i) (* f h)))
(* (- b) (- (* d i) (* f g)))
(* c (- (* d h) (* e g)))))]
[else
(let-values ([(M _) (matrix-gauss-eliminate M #f #f)])
; TODO: #f #f turns off partial pivoting
#; (for/product: : Number ([i (in-range 0 m)])
(matrix-ref M i i))
(let ()
(define: product : Number 1)
(for: ([i : Integer (in-range 0 m 1)])
(set! product (* product (matrix-ref M i i))))
product))]))
(: matrix-column-space : (Matrix Number) -> (Listof (Matrix Number)))
; Returns
; 1) a list of column vectors spanning the column space
; 2) a list of column vectors spanning the null space
(define (matrix-column-space M)
(define-values (m n) (matrix-shape M))
(: M1 (Matrix Number))
(: cols-without-pivot (Listof Integer))
(define-values (M1 cols-without-pivot) (matrix-gauss-eliminate M #t))
(set! M1 (array->mutable-array M1))
(define: column-space : (Listof (Matrix Number))
(for/list:
([i : Index n]
#:when (not (member i cols-without-pivot)))
(matrix-col M1 i)))
column-space)
(: matrix-row-echelon-form :
(case-> ((Matrix Number) Boolean -> (Matrix Number))
((Matrix Number) Boolean -> (Matrix Number))
((Matrix Number) -> (Matrix Number))))
(define (matrix-row-echelon-form M [unitize-pivot-row? #f])
(let-values ([(M wp) (matrix-gauss-eliminate M unitize-pivot-row?)])
M))
(: matrix-gauss-jordan-eliminate :
(case-> ((Matrix Number) Boolean Boolean -> (Values (Matrix Number) (Listof Integer)))
((Matrix Number) Boolean -> (Values (Matrix Number) (Listof Integer)))
((Matrix Number) -> (Values (Matrix Number) (Listof Integer)))))
(define (matrix-gauss-jordan-eliminate M [unitize-pivot-row? #f] [partial-pivoting? #t])
(define-values (m n) (matrix-shape M))
(: loop : (Integer Integer (Matrix Number) Integer (Listof Integer)
-> (Values (Matrix Number) (Listof Integer))))
(define (loop i j ; i from 0 to m
M
k ; count rows without pivot
without-pivot)
(cond
[(or (= i m) (= j n)) (values M without-pivot)]
[else
; find row to become pivot
(define p
(if partial-pivoting?
; find element with maximal absolute value
(let: max-loop : (U False Integer)
([l : Integer i] ; i<=l<m
[max-current : Real -inf.0]
[max-index : Integer i])
(cond
[(= l m) max-index]
[else
(let ([v (magnitude (matrix-ref M l j))])
(if (> (magnitude (matrix-ref M l j)) max-current)
(max-loop (+ l 1) v l)
(max-loop (+ l 1) max-current max-index)))]))
; find non-zero element in column
(let: first-loop : (U False Integer)
([l : Integer i]) ; i<=l<m
(cond
[(= l m) #f]
[(not (zero? (matrix-ref M l j))) l]
[else (first-loop (+ l 1))]))))
(cond
[(eq? p #f)
; no pivot found - this implies the matrix is singular (not invertible)
(loop i (+ j 1) M (+ k 1) (cons j without-pivot))]
[else
; swap if neccessary
(let* ([M (if (= i p) M (matrix-swap-rows M i p))]
; now we now (i,j) is a pivot
[M ; maybe scale row
(if unitize-pivot-row?
(let ([pivot (matrix-ref M i j)])
(if (zero? pivot)
M
(matrix-scale-row M i (/ pivot))))
M)])
(let ([pivot (matrix-ref M i j)])
; remove elements above and below pivot
(let l-loop ([l 0] [M M])
(cond
[(= l m) (loop (+ i 1) (+ j 1) M k without-pivot)]
[(= l i) (l-loop (+ l 1) M)]
[else
(let ([x_lj (matrix-ref M l j)])
(l-loop (+ l 1)
(if (zero? x_lj)
M
(matrix-add-scaled-row M l (- (/ x_lj pivot)) i))))]))))])]))
(let-values ([(M without) (loop 0 0 M 0 '())])
(values M without)))
(: matrix-reduced-row-echelon-form :
(case-> ((Matrix Number) Boolean -> (Matrix Number))
((Matrix Number) Boolean -> (Matrix Number))
((Matrix Number) -> (Matrix Number))))
(define (matrix-reduced-row-echelon-form M [unitize-pivot-row? #f])
(let-values ([(M wp) (matrix-gauss-jordan-eliminate M unitize-pivot-row?)])
M))
(: matrix-inverse : (Matrix Number) -> (Matrix Number))
(define (matrix-inverse M)
(define-values (m n) (matrix-shape M))
(unless (= m n) (error 'matrix-inverse "matrix not square"))
(let ([MI (matrix-augment (list M (identity-matrix m)))])
(define 2m (* 2 m))
(if (index? 2m)
(submatrix (matrix-reduced-row-echelon-form MI #t)
(in-range 0 m) (in-range m 2m))
(error 'matrix-inverse "internal error"))))
(: matrix-solve : (Matrix Number) (Matrix Number) -> (Matrix Number))
; Return a column-vector x such that Mx = b.
; If no such vector exists return #f.
(define (matrix-solve M b)
(define-values (m n) (matrix-shape M))
(define-values (s t) (matrix-shape b))
(define m+1 (+ m 1))
(cond
[(not (= t 1)) (error 'matrix-solve "expected column vector (i.e. r x 1 - matrix), got: ~a " b)]
[(not (= m s)) (error 'matrix-solve "expected column vector with same number of rows as the matrix")]
[(index? m+1)
(submatrix
(matrix-reduced-row-echelon-form
(matrix-augment (list M b)) #t)
(in-range 0 m) (in-range m m+1))]
[else (error 'matrix-solve "internatl error")]))
(: matrix-solve-many : (Matrix Number) (Listof (Matrix Number)) -> (Matrix Number))
(define (matrix-solve-many M bs)
(define-values (m n) (matrix-shape M))
(define-values (s t) (matrix-shape (car bs)))
(define k (length bs))
(define m+1 (+ m 1))
(define m+k (+ m k))
(cond
[(not (= t 1)) (error 'matrix-solve-many "expected column vector (i.e. r x 1 - matrix), got: ~a " (car bs))]
[(not (= m s)) (error 'matrix-solve-many "expected column vectors with same number of rows as the matrix")]
[(and (index? m+1) (index? m+k))
(define bs-as-matrix (matrix-augment bs))
(define MB (matrix-augment (list M bs-as-matrix)))
(define reduced-MB (matrix-reduced-row-echelon-form MB #t))
(submatrix reduced-MB
(in-range 0 m+k)
(in-range m m+1))]
[else (error 'matrix-solve-many "internal error")]))
;;; LU Factorization
; Not all matrices can be LU-factored.
; If Gauss-elimination can be done without any row swaps,
; a LU-factorization is possible.
(: matrix-lu :
(Matrix Number) -> (U False (List (Matrix Number) (Matrix Number))))
(define (matrix-lu M)
(define-values (m _) (matrix-shape M))
(define: ms : (Listof Number) '())
(define V
(let/ec: return : (U False (Matrix Number))
(let: i-loop : (Matrix Number)
([i : Integer 0]
[V : (Matrix Number) M])
(cond
[(= i m) V]
[else
; Gauss: find non-zero element
; LU: this has to be the first
(let ([x_ii (matrix-ref V i i)])
(cond
[(zero? x_ii)
(return #f)] ; no LU - factorization possible
[else
; remove elements below pivot
(let j-loop ([j (+ i 1)] [V V])
(cond
[(= j m) (i-loop (+ i 1) V)]
[else
(let* ([x_ji (matrix-ref V j i)]
[m_ij (/ x_ji x_ii)])
(set! ms (cons m_ij ms))
(j-loop (+ j 1)
(if (zero? x_ji)
V
(matrix-add-scaled-row V j (- m_ij) i))))]))]))]))))
; Now M has been transformed to U.
(if (eq? V #f)
#f
(let ()
(define: L-matrix : (Vectorof Number) (make-vector (* m m) 0))
; fill below diagonal
(set! ms (reverse ms))
(for*: ([j : Integer (in-range 0 m)]
[i : Integer (in-range (+ j 1) m)])
(vector-set! L-matrix (+ (* i m) j) (car ms))
(set! ms (cdr ms)))
; fill diagonal
(for: ([i : Integer (in-range 0 m)])
(vector-set! L-matrix (+ (* i m) i) 1))
(define: L : (Matrix Number)
(let ([ds (array-shape M)])
(unsafe-build-array
ds (λ: ([js : (Vectorof Index)])
(define i (unsafe-vector-ref js 0))
(define j (unsafe-vector-ref js 1))
(vector-ref L-matrix (+ (* i m) j))))))
(list L V))))
(: projection-on-orthogonal-basis :
(Column Number) (Listof (Column Number)) -> (Result-Column Number))
; (projection-on-orthogonal-basis v bs)
; Project the vector v on the orthogonal basis vectors in bs.
; The basis bs must be either the column vectors of a matrix
; or a sequence of column-vectors.
(define (projection-on-orthogonal-basis v bs)
(if (null? bs)
(error 'projection-on-orthogonal-basis
"received empty list of basis vectors")
(matrix-sum (map (λ: ([b : (Column Number)])
(column-project v (->col-matrix b)))
bs))))
; (projection-on-orthonormal-basis v bs)
; Project the vector v on the orthonormal basis vectors in bs.
; The basis bs must be either the column vectors of a matrix
; or a sequence of column-vectors.
(: projection-on-orthonormal-basis :
(Column Number) (Listof (Column Number)) -> (Result-Column Number))
(define (projection-on-orthonormal-basis v bs)
#;(for/matrix-sum ([b bs]) (matrix-scale b (column-dot v b)))
(define: sum : (U False (Result-Column Number)) #f)
(for ([b1 (in-list bs)])
(define: b : (Result-Column Number) (->col-matrix b1))
(cond [(not sum) (set! sum (column-project/unit v b))]
[else (set! sum (array+ (assert sum) (column-project/unit v b)))]))
(cond [sum (assert sum)]
[else (error 'projection-on-orthonormal-basis
"received empty list of basis vectors")]))
(: gram-schmidt-orthogonal : (Listof (Column Number)) -> (Listof (Result-Column Number)))
; (gram-schmidt-orthogonal ws)
; Given a list ws of column vectors, produce
; an orthogonal basis for the span of the
; vectors in ws.
(define (gram-schmidt-orthogonal ws1)
(define ws (map (λ: ([w : (Column Number)]) (->col-matrix w)) ws1))
(cond
[(null? ws) '()]
[(null? (cdr ws)) (list (car ws))]
[else
(: loop : (Listof (Result-Column Number)) (Listof (Column-Matrix Number))
-> (Listof (Result-Column Number)))
(define (loop vs ws)
(cond [(null? ws) vs]
[else
(define w (car ws))
(let ([w-proj (projection-on-orthogonal-basis w vs)])
; Note: We project onto vs (not on the original ws)
; in order to get numerical stability.
(let ([w-minus-proj (array-strict (array- w w-proj))])
(if (matrix-zero? w-minus-proj)
(loop vs (cdr ws)) ; w in span{vs} => omit it
(loop (cons w-minus-proj vs) (cdr ws)))))]))
(reverse (loop (list (car ws)) (cdr ws)))]))
(: gram-schmidt-orthonormal : (Listof (Column Number)) -> (Listof (Result-Column Number)))
; (gram-schmidt-orthonormal ws)
; Given a list ws of column vectors, produce
; an orthonormal basis for the span of the
; vectors in ws.
(define (gram-schmidt-orthonormal ws)
(map column-normalize (gram-schmidt-orthogonal ws)))
(: projection-on-subspace :
(Column Number) (Listof (Column Number)) -> (Result-Column Number))
; (projection-on-subspace v ws)
; Returns the projection of v on span{w_i}, w_i in ws.
(define (projection-on-subspace v ws)
(projection-on-orthogonal-basis v (gram-schmidt-orthogonal ws)))
(: extend-span-to-basis :
(Listof (Matrix Number)) Integer -> (Listof (Matrix Number)))
; Extend the basis in vs to with rdimensional basis
(define (extend-span-to-basis vs r)
(define-values (m n) (matrix-shape (car vs)))
(: loop : (Listof (Matrix Number)) (Listof (Matrix Number)) Integer -> (Listof (Matrix Number)))
(define (loop vs ws i)
(if (>= i m)
ws
(let ()
(define ei (unit-column m i))
(define pi (projection-on-subspace ei vs))
(if (matrix= ei pi)
(loop vs ws (+ i 1))
(let ([w (array- ei pi)])
(loop (cons w vs) (cons w ws) (+ i 1)))))))
(: norm> : (Matrix Number) (Matrix Number) -> Boolean)
(define (norm> v w)
(> (column-norm v) (column-norm w)))
(if (index? r)
(take (sort (loop vs '() 0) norm>) r)
(error 'extend-span-to-basis "expected index as second argument, got ~a" r)))
(: matrix-qr : (Matrix Number) -> (Values (Matrix Number) (Matrix Number)))
(define (matrix-qr M)
; compute the QR-facorization
; 1) QR = M
; 2) columns of Q is are orthonormal
; 3) R is upper-triangular
; Note: columnspace(A)=columnspace(Q) !
(define-values (m n) (matrix-shape M))
(let* ([basis-for-column-space
(gram-schmidt-orthonormal (matrix-cols M))]
[extension
(extend-span-to-basis
basis-for-column-space (- n (length basis-for-column-space)))]
[Q (matrix-augment
(append basis-for-column-space
(map column-normalize
extension)))]
[R
(let ()
(define v (make-vector (* n n) (ann 0 Number)))
(for*: ([i (in-range 0 n)]
[j (in-range 0 n)])
(if (> i j)
(void) ; v(i,j)=0 already
(let ()
(define: sum : Number 0)
(for: ([k (in-range m)])
(set! sum (+ sum (* (matrix-ref Q k i)
(matrix-ref M k j)))))
(vector-set! v (+ (* i n) j) sum))))
(vector->matrix n n v))])
(values Q R)))