
in the original GitHub fork: https://github.com/ntoronto/racket Some things about this are known to be broken (most egregious is that the array tests DO NOT RUN because of a problem in typed/rackunit), about half has no coverage in the tests, and half has no documentation. Fixes and docs are coming. This is committed now to allow others to find errors and inconsistency in the things that appear to be working, and to give the author a (rather incomplete) sense of closure.
128 lines
4.8 KiB
Racket
128 lines
4.8 KiB
Racket
#lang typed/racket/base
|
|
|
|
(require (for-syntax racket/base syntax/parse)
|
|
racket/vector
|
|
"../../base.rkt"
|
|
"../../bigfloat.rkt"
|
|
"../flonum/flonum-functions.rkt"
|
|
"../unsafe.rkt")
|
|
|
|
(provide chebyshev-poly chebyshev-poly? chebyshev-poly-min chebyshev-poly-max chebyshev-poly-coefs
|
|
chebyshev-poly-order chebyshev-poly-convert
|
|
build-chebyshev-poly build-chebyshev-flpoly build-chebyshev-bfpoly
|
|
chebyshev-poly-fun chebyshev-flpoly-fun chebyshev-bfpoly-fun
|
|
inline-chebyshev-flpoly-fun)
|
|
|
|
(struct: (A) chebyshev-poly ([min : A] [max : A] [coefs : (Vectorof A)]) #:transparent)
|
|
|
|
(: chebyshev-poly-order (All (A) ((chebyshev-poly A) -> Index)))
|
|
(define (chebyshev-poly-order p)
|
|
(define n (vector-length (chebyshev-poly-coefs p)))
|
|
(if (zero? n) 0 (- n 1)))
|
|
|
|
(: chebyshev-poly-convert (All (A B) ((chebyshev-poly A) (A -> B) -> (chebyshev-poly B))))
|
|
(define (chebyshev-poly-convert p conv)
|
|
(define mn (chebyshev-poly-min p))
|
|
(define mx (chebyshev-poly-max p))
|
|
(define cs (chebyshev-poly-coefs p))
|
|
(chebyshev-poly (conv mn) (conv mx) (vector-map conv cs)))
|
|
|
|
#;
|
|
(: make-build-chebyshev-poly
|
|
(All (A) ((A A -> A) (A A -> A) (A A -> A) (A A -> A) (A -> A) (Integer -> A) (-> A)
|
|
-> (A A Integer (A -> A) -> (chebyshev-poly A)))))
|
|
(define-syntax-rule (make-build-chebyshev-poly A num+ num- num* num/ numcos int->num pi-thnk)
|
|
(λ: ([mn : A] [mx : A] [n : Integer] [f : (A -> A)])
|
|
(define 0.num (int->num 0))
|
|
(define 1.num (int->num 1))
|
|
(define 2.num (int->num 2))
|
|
(define 1/2.num (num/ 1.num 2.num))
|
|
(define pi.num (pi-thnk))
|
|
(define mx-mn (num- mx mn))
|
|
(define mn+mx (num+ mn mx))
|
|
(let ([n.num (int->num n)])
|
|
(define norm (num/ 2.num n.num))
|
|
(define cs
|
|
(for/vector: #:length n ([j (in-range n)]) : A
|
|
(let ([j (int->num j)])
|
|
(num* (for/fold: ([cj : A 0.num]) ([k (in-range n)])
|
|
(define θ (num/ (num* pi.num (num+ (int->num k) 1/2.num)) n.num))
|
|
(define x (num* 1/2.num (num+ (num* mx-mn (numcos θ)) mn+mx)))
|
|
(num+ cj (num* (f x) (numcos (num* θ j)))))
|
|
norm))))
|
|
(chebyshev-poly mn mx cs))))
|
|
|
|
#;
|
|
(: make-chebyshev-poly-fun
|
|
(All (A) ((A A -> A) (A A -> A) (A A -> A) (A A -> A) (Integer -> A)
|
|
-> ((chebyshev-poly A) -> (A -> A)))))
|
|
(define-syntax-rule (make-chebyshev-poly-fun A num+ num- num* num/ int->num)
|
|
(λ: ([p : (chebyshev-poly A)])
|
|
(define cs (chebyshev-poly-coefs p))
|
|
(define n (vector-length cs))
|
|
(define 0.num (int->num 0))
|
|
(define 2.num (int->num 2))
|
|
(cond
|
|
[(zero? n) (λ: ([x : A]) 0.num)]
|
|
[else
|
|
(define mn (chebyshev-poly-min p))
|
|
(define mx (chebyshev-poly-max p))
|
|
(λ: ([x : A])
|
|
(define i (- n 1))
|
|
(define c (unsafe-vector-ref cs i))
|
|
(define y (num/ (num- (num* x 2.num) (num+ mn mx))
|
|
(num- mx mn)))
|
|
(define y2 (num* y 2.num))
|
|
(let: loop : A ([i : Nonnegative-Fixnum i]
|
|
[c : A c]
|
|
[d : A 0.num]
|
|
[dd : A 0.num])
|
|
(cond [(zero? i) (num+ (num* y d) (num- (num/ c 2.num) dd))]
|
|
[else
|
|
(let ([d (num+ (num* y2 d) (num- c dd))]
|
|
[dd d])
|
|
(loop (- i 1) (unsafe-vector-ref cs (- i 1)) d dd))])))])))
|
|
|
|
(define build-chebyshev-poly
|
|
(make-build-chebyshev-poly Real + - * / cos (λ (x) x) (λ () pi)))
|
|
|
|
(define build-chebyshev-flpoly
|
|
(make-build-chebyshev-poly Float fl+ fl- fl* fl/ flcos ->fl (λ () pi)))
|
|
|
|
(define build-chebyshev-bfpoly
|
|
(make-build-chebyshev-poly Bigfloat bf+ bf- bf* bf/ bfcos bf (λ () pi.bf)))
|
|
|
|
(define chebyshev-poly-fun
|
|
(make-chebyshev-poly-fun Real + - * / (λ (x) x)))
|
|
|
|
(define chebyshev-flpoly-fun
|
|
(make-chebyshev-poly-fun Float fl+ fl- fl* fl/ ->fl))
|
|
|
|
(define chebyshev-bfpoly-fun
|
|
(make-chebyshev-poly-fun Bigfloat bf+ bf- bf* bf/ bf))
|
|
|
|
(define-syntax (chebyshev-iter stx)
|
|
(syntax-case stx ()
|
|
[(_ y y2 d dd ()) (syntax/loc stx d)]
|
|
[(_ y y2 d dd (c0))
|
|
(syntax/loc stx
|
|
(fl+ (fl* y d) (fl- (fl/ c0 2.0) dd)))]
|
|
[(_ y y2 d dd (c0 c ...))
|
|
(syntax/loc stx
|
|
(let ([d (fl+ (fl* y2 d) (fl- c0 dd))]
|
|
[dd d])
|
|
(chebyshev-iter y y2 d dd (c ...))))]))
|
|
|
|
(define-syntax (inline-chebyshev-flpoly-fun stx)
|
|
(syntax-parse stx
|
|
[(_ lower:expr upper:expr (c0:expr c:expr ...))
|
|
(with-syntax ([(c0 c ...) (reverse (syntax->list #'(c0 c ...)))])
|
|
(syntax/loc stx
|
|
(λ: ([z : Float])
|
|
(define y (fl/ (fl- (fl+ z z) (fl+ lower upper))
|
|
(fl- upper lower)))
|
|
(define y2 (fl+ y y))
|
|
(let ([d 0.0]
|
|
[dd 0.0])
|
|
(chebyshev-iter y y2 d dd (c ...))))))]))
|