The Racket repository
Go to file
Bob Burger a8645cb2a3 fix type declaration in s_ee_write_char for WIN32
original commit: 2f044f7088ed30e1be42adcf8a4c3e13f3fe06ec
2016-08-26 16:55:06 -04:00
c fix type declaration in s_ee_write_char for WIN32 2016-08-26 16:55:06 -04:00
csug fixed typos in csug/io.stex 2016-08-23 12:41:46 -04:00
examples - Cygwin is now used on Windows, updated mats, eliminated unused killme 2016-06-10 10:07:07 -04:00
makefiles Bash test(1) does not allow bare numbers with ==, so use -eq 2016-05-22 17:41:40 -04:00
mats - added tests for the case and exclusive-cond syntax-error calls 2016-08-22 21:41:53 -04:00
nanopass@1f7e80bcff latest nanopass 2016-06-27 09:45:20 -04:00
release_notes - added descriptions of print-extended-identifiers to the user's guide 2016-08-22 23:34:32 -04:00
s - added tests for the case and exclusive-cond syntax-error calls 2016-08-22 21:41:53 -04:00
stex@3bd2b86cc5 - compile-whole-program and compile-whole-library now copy the hash-bang 2016-05-04 20:35:38 -04:00
unicode initial upload of open-source release 2016-04-26 10:04:54 -04:00
zlib@5089329162 changing zlib and nanopass to be pulled as submodules. 2016-04-26 10:36:57 -04:00
.gitignore - Cygwin is now used on Windows, updated mats, eliminated unused killme 2016-06-10 10:07:07 -04:00
.gitmodules - compile-whole-program and compile-whole-library now copy the hash-bang 2016-05-04 20:35:38 -04:00
bintar * updated version to 9.4.1 2016-05-17 00:18:33 -04:00
BUILDING add note about TZ environment variable in Cygwin, fix typos in release notes 2016-06-17 14:33:28 -04:00
CHARTER.md initial upload of open-source release 2016-04-26 10:04:54 -04:00
checkin * updated version to 9.4.1 2016-05-17 00:18:33 -04:00
configure Merge pull request #66 from fitzgen/allow-flags-to-pass-through-configure 2016-06-13 14:38:36 -04:00
CONTRIBUTING.md - added custom install options. workarea creates an empty config.h, 2016-05-06 18:30:06 -04:00
LICENSE initial upload of open-source release 2016-04-26 10:04:54 -04:00
LOG - added descriptions of print-extended-identifiers to the user's guide 2016-08-22 23:34:32 -04:00
newrelease - updated newrelease to produce the correct log-entry format and 2016-05-18 23:48:37 -04:00
NOTICE * updated version to 9.4.1 2016-05-17 00:18:33 -04:00
README.md expanded on TSPL a bit 2016-06-01 14:24:10 -04:00
scheme.1.in - added custom install options. workarea creates an empty config.h, 2016-05-06 18:30:06 -04:00
workarea - Cygwin is now used on Windows, updated mats, eliminated unused killme 2016-06-10 10:07:07 -04:00

Chez Scheme is both a programming language and an implementation of that language, with supporting tools and documentation.

As a superset of the language described in the Revised6 Report on the Algorithmic Language Scheme (R6RS), Chez Scheme supports all standard features of Scheme, including first-class procedures, proper treatment of tail calls, continuations, user-defined records, libraries, exceptions, and hygienic macro expansion.

Chez Scheme also includes extensive support for interfacing with C and other languages, support for multiple threads possibly running on multiple cores, non-blocking I/O, and many other features.

The Chez Scheme implementation consists of a compiler, run-time system, and programming environment. Although an interpreter is available, all code is compiled by default. Source code is compiled on-the-fly when loaded from a source file or entered via the shell. A source file can also be precompiled into a stored binary form and automatically recompiled when its dependencies change. Whether compiling on the fly or precompiling, the compiler produces optimized machine code, with some optimization across separately compiled library boundaries. The compiler can also be directed to perform whole-program compilation, which does full cross-library optimization and also reduces a program and the libraries upon which it depends to a single binary.

The run-time system interfaces with the operating system and supports, among other things, binary and textual (Unicode) I/O, automatic storage management (dynamic memory allocation and generational garbage collection), library management, and exception handling. By default, the compiler is included in the run-time system, allowing programs to be generated and compiled at run time, and storage for dynamically compiled code, just like any other dynamically allocated storage, is automatically reclaimed by the garbage collector.

The programming environment includes a source-level debugger, a mechanism for producing HTML displays of profile counts and program "hot spots" when profiling is enabled during compilation, tools for inspecting memory usage, and an interactive shell interface (the expression editor, or "expeditor" for short) that supports multi-line expression editing.

The R6RS core of the Chez Scheme language is described in The Scheme Programming Language, which also includes an introduction to Scheme and a set of example programs. Chez Scheme's additional language, run-time system, and programming environment features are described in the Chez Scheme User's Guide. The latter includes a shared index and a shared summary of forms, with links where appropriate to the former, so it is often the best starting point.

Get started with Chez Scheme by Building Chez Scheme.

For more information see the Chez Scheme Project Page.