racket/collects/tests/mzscheme/benchmarks/shootout/spectralnorm.ss
Matthew Flatt 99943314d2 setup/unpack addition and docs
svn: r9370
2008-04-19 12:42:54 +00:00

59 lines
1.6 KiB
Scheme

;; The Great Computer Language Shootout
;; http://shootout.alioth.debian.org/
;; Translated directly from the C# version, which was:
;; contributed by Isaac Gouy
#lang scheme/base
(require scheme/cmdline)
(define (Approximate n)
(let ([u (make-vector n 1.0)]
[v (make-vector n 0.0)])
;; 20 steps of the power method
(for ([i (in-range 10)])
(MultiplyAtAv n u v)
(MultiplyAtAv n v u))
;; B=AtA A multiplied by A transposed
;; v.Bv /(v.v) eigenvalue of v
(let loop ([i 0][vBv 0][vv 0])
(if (= i n)
(sqrt (/ vBv vv))
(let ([vi (vector-ref v i)])
(loop (add1 i)
(+ vBv (* (vector-ref u i) vi))
(+ vv (* vi vi))))))))
;; return element i,j of infinite matrix A
(define (A i j)
(/ 1.0 (+ (* (+ i j) (/ (+ i j 1) 2)) i 1)))
;; multiply vector v by matrix A
(define (MultiplyAv n v Av)
(for ([i (in-range n)])
(vector-set! Av i
(for/fold ([r 0])
([j (in-range n)])
(+ r (* (A i j) (vector-ref v j)))))))
;; multiply vector v by matrix A transposed
(define (MultiplyAtv n v Atv)
(for ([i (in-range n)])
(vector-set! Atv i
(for/fold ([r 0])
([j (in-range n)])
(+ r (* (A j i) (vector-ref v j)))))))
;; multiply vector v by matrix A and then by matrix A transposed
(define (MultiplyAtAv n v AtAv)
(let ([u (make-vector n 0.0)])
(MultiplyAv n v u)
(MultiplyAtv n u AtAv)))
(printf "~a\n"
(real->decimal-string
(Approximate (command-line #:args (n) (string->number n)))
9))