
in the original GitHub fork: https://github.com/ntoronto/racket Some things about this are known to be broken (most egregious is that the array tests DO NOT RUN because of a problem in typed/rackunit), about half has no coverage in the tests, and half has no documentation. Fixes and docs are coming. This is committed now to allow others to find errors and inconsistency in the things that appear to be working, and to give the author a (rather incomplete) sense of closure.
216 lines
8.0 KiB
Racket
216 lines
8.0 KiB
Racket
#lang typed/racket/base
|
|
|
|
#|
|
|
erfc for large x implementation from:
|
|
|
|
C Tellambura and A Annamalai. Efficient Computation of erfc(x) for Large Arguments.
|
|
IEEE Transactions on Communications, 2000, vol 48, pp 529--532
|
|
|#
|
|
|
|
(require "../../flonum.rkt"
|
|
"../../base.rkt"
|
|
"../distributions/impl/normal-cdf.rkt"
|
|
"../polynomial/chebyshev.rkt"
|
|
"continued-fraction.rkt")
|
|
|
|
(provide flerf flerfc*expsqr flerfc
|
|
erf erfc)
|
|
|
|
;; ===================================================================================================
|
|
;; erf
|
|
|
|
(: flerf-normal (Flonum -> Flonum))
|
|
(define (flerf-normal x)
|
|
(fl- (fl* 2.0 (standard-flnormal-cdf (fl* x (flsqrt 2.0)))) 1.0))
|
|
|
|
(: flerf-taylor-0 (Flonum -> Flonum))
|
|
;; Good for -0.5 <= x <= 0.5
|
|
(define (flerf-taylor-0 x)
|
|
(fl* x ((make-flpolyfun
|
|
(+1.1283791670955125738961589031215451716881e0
|
|
-3.7612638903183752463205296770718172389603e-1
|
|
+1.1283791670955125738961589031215451716881e-1
|
|
-2.6866170645131251759432354836227265992574e-2
|
|
+5.2239776254421878421118467737108572763338e-3
|
|
-8.5483270234508528325466583569814028158189e-4
|
|
+1.2055332981789664251027338708563516791540e-4
|
|
-1.4925650358406250977462419353459592218097e-5
|
|
+1.6462114365889247401612962522198079652312e-6
|
|
-1.6365844691234924317393003677039026554930e-7
|
|
+1.4807192815879217239546050945892452597318e-8
|
|
-1.2290555301717927352982888136906778835719e-9))
|
|
(fl* x x))))
|
|
|
|
(: flerf (Flonum -> Flonum))
|
|
(define (flerf x)
|
|
(let ([ax (flabs x)])
|
|
(cond [(ax . fl> . 0.5) (flerf-normal x)]
|
|
[(ax . fl< . 1e-13) (fl* x (fl/ 2.0 (flsqrt pi)))]
|
|
[else (flerf-taylor-0 x)])))
|
|
|
|
;; ===================================================================================================
|
|
;; erfc(x)*exp(x^2)
|
|
|
|
(define sqrtpi 1.772453850905516027298167483341145182798)
|
|
|
|
(: flerfc*expsqr-huge (Flonum -> Flonum))
|
|
;; Computed using erfc's asymptotic expansion
|
|
;; Error < epsilon.0 for x > 1e8
|
|
(define (flerfc*expsqr-huge x)
|
|
(fl/ 1.0 (fl* x sqrtpi)))
|
|
|
|
(: flerfc*expsqr-asym (Flonum -> Flonum))
|
|
;; Computed using erfc's asymptotic expansion
|
|
;; Error < epsilon.0 for x > 24
|
|
(define (flerfc*expsqr-asym x)
|
|
(define 1/2x^2 (fl/ 1.0 (fl* 2.0 (fl* x x))))
|
|
(fl* (fl/ 1.0 (fl* x sqrtpi))
|
|
((make-flpolyfun
|
|
(1.0 -1.0 3.0 -15.0 105.0 -945.0 10395.0))
|
|
1/2x^2)))
|
|
|
|
(: foo (Flonum -> Flonum))
|
|
(define (foo x)
|
|
(define 2x^2 (fl* 2.0 (fl* x x)))
|
|
(fl* (fl/ x sqrtpi)
|
|
((make-flpolyfun
|
|
(1.0 -1.0 3.0 -15.0 105.0 -945.0 10395.0))
|
|
2x^2)))
|
|
|
|
(: flerfc*expsqr-series (Flonum -> Flonum))
|
|
;; Good for x > 5.0
|
|
(define (flerfc*expsqr-series x)
|
|
(define h (cond [(x . fl< . 5.4) 0.25]
|
|
[(x . fl< . 8.0) 0.4]
|
|
[(x . fl< . 16.0) 0.5]
|
|
[else 0.51]))
|
|
(define h^2 (* h h))
|
|
(define z
|
|
(fl+ (fl/ (fl/ 1.0 x) x)
|
|
(let: loop : Flonum ([y : Flonum 0.0] [n : Flonum 1.0])
|
|
(define n^2*h^2 (fl* (fl* n n) h^2))
|
|
(define dy (fl/ (fl* 2.0 (flexp (- n^2*h^2))) (fl+ n^2*h^2 (fl* x x))))
|
|
;(printf "~v~n" dy)
|
|
(cond [(dy . fl< . (fl* (fl* 0.5 epsilon.0) y)) (fl+ dy y)]
|
|
[else (loop (fl+ y dy) (fl+ n 1.0))]))))
|
|
(fl* (fl/ (fl* x h) pi) z))
|
|
|
|
(: flerfc*expsqr-3-5 (Flonum -> Flonum))
|
|
(define (flerfc*expsqr-3-5 x)
|
|
(fl/ ((inline-chebyshev-flpoly-fun
|
|
3.0 5.0
|
|
(76.91661738312371165176665510251236326338
|
|
27.20465693840961735563948053921797067271
|
|
3.386442685567191365542568636267208877102
|
|
0.140993936422267459775165813598040765649
|
|
-5.153134548269842201105342673544377759352e-6
|
|
1.7508864589759466867096925622177881862e-6
|
|
-3.043007141646851587889970096343295638291e-7
|
|
4.243425771190431100938117624380917251699e-8
|
|
-5.203867155244060760117564922569126026438e-9
|
|
5.794849132093509459568321930026301391629e-10
|
|
-5.921422840095836545874122164110445535066e-11
|
|
5.533766942834863591670434965523217803471e-12
|
|
-4.631550718317617310162582984555616243437e-13
|
|
3.262025831452441605191178585599762596143e-14
|
|
-1.513328953213075725641119234827526370187e-15
|
|
-4.522283605960468274138123625976905984843e-17))
|
|
x)
|
|
(flexpt x 4.0)))
|
|
|
|
(: flerfc*expsqr-1-3 (Flonum -> Flonum))
|
|
(define (flerfc*expsqr-1-3 x)
|
|
(fl/ ((inline-chebyshev-flpoly-fun
|
|
1.0 3.0
|
|
(0.9945093280638061048517513432019848175032
|
|
0.05120904381630891334631711380945424146303
|
|
-0.01422342070434339336273995600351825586225
|
|
0.003357268323337835041126774361327403324835
|
|
-7.114985025457904001609950417739639868647e-4
|
|
1.390876463234288554054665709920181526987e-4
|
|
-2.548042834519374090944060859469479045399e-5
|
|
4.420149801027904714368125294893695251516e-6
|
|
-7.314182887789212376555477464037660326951e-7
|
|
1.160833279816164682586230015667162482652e-7
|
|
-1.77457488690957160865337806653632235146e-8
|
|
2.621904502367314860299110485351868396918e-9
|
|
-3.754481078582135875876211640532994079565e-10
|
|
5.222857161436770247649169925242741865874e-11
|
|
-7.07220022924025262089289170578922817775e-12
|
|
9.337553246718007012188722480344684913175e-13
|
|
-1.203905834239132741551983752552150752983e-13
|
|
1.517763413855051802253894051250284281458e-14
|
|
-1.873156638647946872401895465528599118158e-15
|
|
2.265073220841686859543609057755087846036e-16
|
|
-2.651790674204626906157253423748608352303e-17))
|
|
x)
|
|
x))
|
|
|
|
(define flerfc*expsqr-0.5-1
|
|
(inline-chebyshev-flpoly-fun
|
|
0.5 1.0
|
|
(1.028508060089628120924659381992051204702
|
|
-0.09353436157631646884296478224639544611431
|
|
0.00734954356796596066014584525500838968569
|
|
-5.170287683170954502817549118454885607861e-4
|
|
3.327489181039831922712166420908522822156e-5
|
|
-1.987760941931570403969164257181219771567e-6
|
|
1.113719839925198075577451421375109070733e-7
|
|
-5.898649609389129304942457516804088201602e-9
|
|
2.971299014285280439436981007380165475227e-10
|
|
-1.430488185776241939959484837699287692925e-11
|
|
6.608616284222898801100004753695010173929e-13
|
|
-2.939555278237892581547471127716213388842e-14
|
|
1.262499691092374606344446613363361460578e-15
|
|
-5.240060859272093179585053345170003668439e-17)))
|
|
|
|
(: flerfc*expsqr-normal (Flonum -> Flonum))
|
|
(define (flerfc*expsqr-normal x)
|
|
(fl* (flexpsqr x) (fl* 2.0 (standard-flnormal-cdf (- (fl* x (flsqrt 2.0)))))))
|
|
|
|
(: flerfc*expsqr (Flonum -> Flonum))
|
|
(define (flerfc*expsqr x)
|
|
(cond [(x . fl> . 1e8) (flerfc*expsqr-huge x)]
|
|
[(x . fl> . 24.0) (flerfc*expsqr-asym x)]
|
|
[(x . fl> . 5.0) (flerfc*expsqr-series x)]
|
|
[(x . fl> . 3.0) (flerfc*expsqr-3-5 x)]
|
|
[(x . fl> . 1.0) (flerfc*expsqr-1-3 x)]
|
|
[(x . fl> . 0.5) (flerfc*expsqr-0.5-1 x)]
|
|
[(x . fl> . -27.0) (flerfc*expsqr-normal x)]
|
|
[else +inf.0]))
|
|
|
|
;; ===================================================================================================
|
|
;; erfc
|
|
|
|
(define -erfc-max.0 -5.8635847487551676)
|
|
(define +erfc-max.0 27.226017111108362)
|
|
|
|
(: flerfc (Flonum -> Flonum))
|
|
(define (flerfc x)
|
|
(cond [(x . fl< . 0.0)
|
|
(cond [(x . fl< . -erfc-max.0) 2.0]
|
|
[else (- 2.0 (flerfc (- x)))])]
|
|
[(x . fl> . 0.0)
|
|
(cond [(x . fl> . +erfc-max.0) 0.0]
|
|
[else (fl* (flerfc*expsqr x) (flgauss x))])]
|
|
[(x . fl= . 0.0) 1.0]
|
|
[else +nan.0]))
|
|
|
|
;; ===================================================================================================
|
|
|
|
(: erf (case-> (Zero -> Zero)
|
|
(Flonum -> Flonum)
|
|
(Real -> (U Zero Flonum))))
|
|
(define (erf x)
|
|
(cond [(flonum? x) (flerf x)]
|
|
[(eqv? x 0) x]
|
|
[else (flerf (fl x))]))
|
|
|
|
(: erfc (case-> (Zero -> One)
|
|
(Flonum -> Flonum)
|
|
(Real -> (U One Flonum))))
|
|
(define (erfc x)
|
|
(cond [(flonum? x) (flerfc x)]
|
|
[(eqv? x 0) 1]
|
|
[else (flerfc (fl x))]))
|