racket/collects/math/private/matrix/matrix-constructors.rkt
Neil Toronto f5fa93572d Moar `math/matrix' review/refactoring
* Gram-Schmidt using vector type

* QR decomposition

* Operator 1-norm and maximum norm; stub for 2-norm and angle between
  subspaces (`matrix-basis-angle')

* `matrix-absolute-error' and `matrix-relative-error'; also predicates
  based on them, such as `matrix-identity?'

* Lots of shuffling code about

* Types that can have contracts, and an exhaustive test to make sure
  every value exported by `math/matrix' has a contract when used in
  untyped code

* Some more tests (still needs some)
2012-12-31 14:17:17 -07:00

153 lines
5.9 KiB
Racket

#lang typed/racket/base
(require racket/fixnum
racket/list
racket/vector
"matrix-types.rkt"
"../unsafe.rkt"
"../array/array-struct.rkt"
"../array/array-constructors.rkt"
"../array/array-unfold.rkt"
"../array/utils.rkt")
(provide identity-matrix
make-matrix
build-matrix
diagonal-matrix/zero
diagonal-matrix
block-diagonal-matrix/zero
block-diagonal-matrix
vandermonde-matrix)
;; ===================================================================================================
;; Basic constructors
(: identity-matrix (Integer -> (Matrix (U 0 1))))
(define (identity-matrix m) (diagonal-array 2 m 1 0))
(: make-matrix (All (A) (Integer Integer A -> (Matrix A))))
(define (make-matrix m n x)
(make-array (vector m n) x))
(: build-matrix (All (A) (Integer Integer (Index Index -> A) -> (Matrix A))))
(define (build-matrix m n proc)
(cond [(or (not (index? m)) (= m 0))
(raise-argument-error 'build-matrix "Positive-Index" 0 m n proc)]
[(or (not (index? n)) (= n 0))
(raise-argument-error 'build-matrix "Positive-Index" 1 m n proc)]
[else
(unsafe-build-array
((inst vector Index) m n)
(λ: ([js : Indexes])
(proc (unsafe-vector-ref js 0)
(unsafe-vector-ref js 1))))]))
;; ===================================================================================================
;; Diagonal matrices
(: diagonal-matrix/zero (All (A) ((Listof A) A -> (Matrix A))))
(define (diagonal-matrix/zero xs zero)
(cond [(empty? xs)
(raise-argument-error 'diagonal-matrix "nonempty List" xs)]
[else
(define vs (list->vector xs))
(define m (vector-length vs))
(unsafe-build-array
((inst vector Index) m m)
(λ: ([js : Indexes])
(define i (unsafe-vector-ref js 0))
(cond [(= i (unsafe-vector-ref js 1)) (unsafe-vector-ref vs i)]
[else zero])))]))
(: diagonal-matrix (All (A) ((Listof A) -> (Matrix (U A 0)))))
(define (diagonal-matrix xs)
(diagonal-matrix/zero xs 0))
;; ===================================================================================================
;; Block diagonal matrices
(: block-diagonal-matrix/zero* (All (A) (Vectorof (Matrix A)) A -> (Matrix A)))
(define (block-diagonal-matrix/zero* as zero)
(define num (vector-length as))
(define-values (ms ns)
(let-values ([(ms ns) (for/fold: ([ms : (Listof Index) empty]
[ns : (Listof Index) empty]
) ([a (in-vector as)])
(define-values (m n) (matrix-shape a))
(values (cons m ms) (cons n ns)))])
(values (reverse ms) (reverse ns))))
(define res-m (assert (apply + ms) index?))
(define res-n (assert (apply + ns) index?))
(define vs ((inst make-vector Index) res-m 0))
(define hs ((inst make-vector Index) res-n 0))
(define is ((inst make-vector Index) res-m 0))
(define js ((inst make-vector Index) res-n 0))
(define-values (_res-i _res-j)
(for/fold: ([res-i : Nonnegative-Fixnum 0]
[res-j : Nonnegative-Fixnum 0]
) ([m (in-list ms)]
[n (in-list ns)]
[k : Nonnegative-Fixnum (in-range num)])
(let ([k (assert k index?)])
(for: ([i : Nonnegative-Fixnum (in-range m)])
(vector-set! vs (unsafe-fx+ res-i i) k)
(vector-set! is (unsafe-fx+ res-i i) (assert i index?)))
(for: ([j : Nonnegative-Fixnum (in-range n)])
(vector-set! hs (unsafe-fx+ res-j j) k)
(vector-set! js (unsafe-fx+ res-j j) (assert j index?))))
(values (unsafe-fx+ res-i m) (unsafe-fx+ res-j n))))
(define procs (vector-map (λ: ([a : (Matrix A)]) (unsafe-array-proc a)) as))
(unsafe-build-array
((inst vector Index) res-m res-n)
(λ: ([ij : Indexes])
(define i (unsafe-vector-ref ij 0))
(define j (unsafe-vector-ref ij 1))
(define v (unsafe-vector-ref vs i))
(cond [(fx= v (vector-ref hs j))
(define proc (unsafe-vector-ref procs v))
(define iv (unsafe-vector-ref is i))
(define jv (unsafe-vector-ref js j))
(unsafe-vector-set! ij 0 iv)
(unsafe-vector-set! ij 1 jv)
(define res (proc ij))
(unsafe-vector-set! ij 0 i)
(unsafe-vector-set! ij 1 j)
res]
[else
zero]))))
(: block-diagonal-matrix/zero (All (A) ((Listof (Matrix A)) A -> (Matrix A))))
(define (block-diagonal-matrix/zero as zero)
(let ([as (list->vector as)])
(define num (vector-length as))
(cond [(= num 0)
(raise-argument-error 'block-diagonal-matrix/zero "nonempty List" as)]
[(= num 1)
(unsafe-vector-ref as 0)]
[else
(block-diagonal-matrix/zero* as zero)])))
(: block-diagonal-matrix (All (A) ((Listof (Matrix A)) -> (Matrix (U A 0)))))
(define (block-diagonal-matrix as)
(block-diagonal-matrix/zero as 0))
;; ===================================================================================================
;; Special matrices
(: expt-hack (case-> (Real Integer -> Real)
(Number Integer -> Number)))
;; Stop using this when TR correctly derives expt : Real Integer -> Real
(define (expt-hack x n)
(cond [(real? x) (assert (expt x n) real?)]
[else (expt x n)]))
(: vandermonde-matrix (case-> ((Listof Real) Integer -> (Matrix Real))
((Listof Number) Integer -> (Matrix Number))))
(define (vandermonde-matrix xs n)
(cond [(empty? xs)
(raise-argument-error 'vandermonde-matrix "nonempty List" 0 xs n)]
[(or (not (index? n)) (zero? n))
(raise-argument-error 'vandermonde-matrix "Positive-Index" 1 xs n)]
[else
(array-axis-expand (list->array xs) 1 n expt-hack)]))