
in the original GitHub fork: https://github.com/ntoronto/racket Some things about this are known to be broken (most egregious is that the array tests DO NOT RUN because of a problem in typed/rackunit), about half has no coverage in the tests, and half has no documentation. Fixes and docs are coming. This is committed now to allow others to find errors and inconsistency in the things that appear to be working, and to give the author a (rather incomplete) sense of closure.
125 lines
4.6 KiB
Racket
125 lines
4.6 KiB
Racket
#lang typed/racket/base
|
|
|
|
(require racket/fixnum
|
|
"../../flonum.rkt"
|
|
"../polynomial/chebyshev.rkt")
|
|
|
|
(provide fllambert lambert fllambert- lambert-)
|
|
|
|
(define -lambert-max.0 (- (flexp -1.0)))
|
|
|
|
(: lambert-upper-appx+ (Flonum -> Flonum))
|
|
(define (lambert-upper-appx+ x)
|
|
(cond [(x . fl<= . 3.0) (define z (fl+ x 1.04))
|
|
(define z^2 (fl* z z))
|
|
(fl* (fl* 0.607 (flsqrt x)) (fl- 1.0 (fl/ 1.0 (fl* z^2 z^2))))]
|
|
[else (define L1 (fllog x))
|
|
(define L2 (fllog L1))
|
|
(fl+ (fl+ (fl- L1 L2) (fl/ L2 L1))
|
|
(fl/ (fl* L2 (fl+ -2.0 L2))
|
|
(fl* (fl* 2.0 L1) L1)))]))
|
|
|
|
(: lambert-upper-appx- (Float -> Float))
|
|
(define (lambert-upper-appx- x)
|
|
(fl- (flexpt (fl+ 2.0 (fl/ (fl+ x -lambert-max.0)
|
|
(- -lambert-max.0)))
|
|
0.4)
|
|
1.0))
|
|
|
|
(: lambert-upper-newton (Float Float -> Float))
|
|
(define (lambert-upper-newton x y)
|
|
(let loop ([y y] [#{n : Nonnegative-Fixnum} 0])
|
|
(cond [(n . fx< . 6)
|
|
(define exp-y (flexp y))
|
|
(define denom (fl* (fl+ y 1.0) exp-y))
|
|
(define new-y (fl/ (fl+ (fl* y denom) (fl- x (fl* y exp-y)))
|
|
denom))
|
|
(cond [((flabs (fl- new-y y)) . fl<= . (flabs (fl* epsilon.0 new-y))) y]
|
|
[else (loop new-y (fx+ n 1))])]
|
|
[else y])))
|
|
|
|
(: fllambert (Flonum -> Flonum))
|
|
(define (fllambert x)
|
|
(cond [(x . fl> . 0.0)
|
|
(cond [(x . fl> . 1e308) (lambert-upper-appx+ x)]
|
|
[else (lambert-upper-newton x (lambert-upper-appx+ x))])]
|
|
[(x . fl< . 0.0)
|
|
(cond [(x . fl> . -lambert-max.0) (lambert-upper-newton x (lambert-upper-appx- x))]
|
|
[(x . fl< . -lambert-max.0) +nan.0]
|
|
[else -1.0])]
|
|
[else x]))
|
|
|
|
;; ===================================================================================================
|
|
|
|
(: lambert-lower-appx (Float -> Float))
|
|
(define (lambert-lower-appx x)
|
|
(cond [(x . fl> . -0.3678793)
|
|
(define L1 (fllog (- x)))
|
|
(define L2 (fllog (- L1)))
|
|
(fl+ (fl+ (- L1 L2) (/ L2 L1))
|
|
(fl/ (fl* L2 (fl+ -2.0 L2))
|
|
(fl* (fl* 2.0 L1) L1)))]
|
|
[(x . fl> . -0.3678794)
|
|
((inline-chebyshev-flpoly-fun
|
|
-0.3678794 -0.367879
|
|
(-2.002168474311089
|
|
-0.0005183728424209184
|
|
6.618450077030176e-05
|
|
-1.718303045243156e-05
|
|
5.513014540399948e-06
|
|
-1.7451631748784575e-06))
|
|
x)]
|
|
[else
|
|
((inline-chebyshev-flpoly-fun
|
|
-0.36787944 -0.3678794
|
|
(-2.000625593512204
|
|
-0.0001831934682653043
|
|
2.9969169663135453e-05
|
|
-1.002911105281908e-05
|
|
4.0654407009362474e-06
|
|
-1.5323076251738676e-06))
|
|
x)]))
|
|
|
|
(: lambert-lower-newton (Float Float -> Float))
|
|
(define (lambert-lower-newton x y)
|
|
(let loop ([dy 0.0] [y y] [#{n : Nonnegative-Fixnum} 0])
|
|
(cond [(n . fx< . 13)
|
|
(define exp-y (flexp y))
|
|
(define denom (- (flexp (fl+ (fllog (flabs (fl+ y 1.0))) y))))
|
|
(define new-dy (fl/ (fl+ (fl- x denom) exp-y) denom))
|
|
(define new-y (fl+ y new-dy))
|
|
(cond [((flabs (fl- new-y y)) . fl<= . (flabs (fl* epsilon.0 new-y))) y]
|
|
[(and (n . fx> . 3) (not (fl= (flsgn new-dy) (flsgn dy))))
|
|
;; If we detect oscillation, the true value is between new-y and y
|
|
(fl* 0.5 (fl+ new-y y))]
|
|
[else
|
|
(loop new-dy new-y (fx+ n 1))])]
|
|
[else y])))
|
|
|
|
(: fllambert- (Float -> Float))
|
|
(define (fllambert- x)
|
|
(cond [(x . fl<= . -lambert-max.0) (if (fl= x -lambert-max.0) -1.0 +nan.0)]
|
|
[(x . fl>= . 0.0) (if (fl= x 0.0) -inf.0 +nan.0)]
|
|
[else (lambert-lower-newton x (lambert-lower-appx x))]))
|
|
|
|
;; ===================================================================================================
|
|
|
|
(: lambert (case-> (Zero -> Zero)
|
|
(Flonum -> Flonum)
|
|
(Real -> (U Zero Flonum))))
|
|
(define (lambert x)
|
|
(cond [(flonum? x) (fllambert x)]
|
|
[(single-flonum? x) (fllambert (fl x))]
|
|
[(zero? x) x]
|
|
[(x . < . -lambert-max.0)
|
|
(raise-argument-error 'lambert "Real >= (- (exp -1))" x)]
|
|
[else (fllambert (fl x))]))
|
|
|
|
(: lambert- (Real -> Flonum))
|
|
(define (lambert- x)
|
|
(cond [(flonum? x) (fllambert- x)]
|
|
[(single-flonum? x) (fllambert- (fl x))]
|
|
[(or (x . < . -lambert-max.0) (x . >= . 0))
|
|
(raise-argument-error 'lambert- "Negative-Real >= (- (exp -1))" x)]
|
|
[else (fllambert- (fl x))]))
|