racket/collects/math/private/matrix/matrix-solve.rkt
Neil Toronto f42cc6f14a Fixed major performance issue with matrix arithmetic; please merge to 5.3.2
The fix consists of three parts:

1. Rewriting `inline-matrix*'. The material change here is that the
   expansion now contains only direct applications of `+' and `*'.
   TR's optimizer replaces them with `unsafe-fx+' and `unsafe-fx*',
   which keeps intermediate flonum values from being boxed.

2. Making the types of all functions that operate on (Matrix Number)
   values more precise. Now TR can prove that matrix operations preserve
   inexactness. For example, matrix-conjugate : (Matrix Flonum) ->
   (Matrix Flonum) and three other cases for Real, Float-Complex, and
   Number.

3. Changing the return types of some functions that used to return
   things like (Matrix (U A 0)). Now that we worry about preserving
   inexactness, we can't have `matrix-upper-triangle' always return a
   matrix that contains exact zeros. It now accepts an optional `zero'
   argument of type A.
2013-01-21 22:04:04 -07:00

129 lines
5.7 KiB
Racket

#lang typed/racket/base
(require racket/fixnum
racket/match
racket/list
"matrix-types.rkt"
"matrix-constructors.rkt"
"matrix-conversion.rkt"
"matrix-basic.rkt"
"matrix-gauss-elim.rkt"
"utils.rkt"
"../vector/vector-mutate.rkt"
"../array/array-indexing.rkt"
"../array/mutable-array.rkt"
"../array/array-struct.rkt")
(provide
matrix-determinant
matrix-determinant/row-reduction ; for testing
matrix-invertible?
matrix-inverse
matrix-solve)
;; ===================================================================================================
;; Determinant
(: matrix-determinant (case-> ((Matrix Flonum) -> Flonum)
((Matrix Real) -> Real)
((Matrix Float-Complex) -> Float-Complex)
((Matrix Number) -> Number)))
(define (matrix-determinant M)
(define m (square-matrix-size M))
(cond
[(= m 1) (matrix-ref M 0 0)]
[(= m 2) (match-define (vector a b c d)
(mutable-array-data (array->mutable-array M)))
(- (* a d) (* b c))]
[(= m 3) (match-define (vector a b c d e f g h i)
(mutable-array-data (array->mutable-array M)))
(+ (* a (- (* e i) (* f h)))
(* (- b) (- (* d i) (* f g)))
(* c (- (* d h) (* e g))))]
[else
(matrix-determinant/row-reduction M)]))
(: matrix-determinant/row-reduction (case-> ((Matrix Flonum) -> Flonum)
((Matrix Real) -> Real)
((Matrix Float-Complex) -> Float-Complex)
((Matrix Number) -> Number)))
(define (matrix-determinant/row-reduction M)
(define m (square-matrix-size M))
(define rows (matrix->vector* M))
(let loop ([#{i : Nonnegative-Fixnum} 0] [#{sign : (U Positive-Fixnum Negative-Fixnum)} 1])
(cond
[(i . fx< . m)
(define-values (p pivot) (find-partial-pivot rows m i i))
(cond
[(zero? pivot) pivot] ; no pivot means non-invertible matrix
[else
(let ([sign (if (= i p) sign (begin (vector-swap! rows i p) ; swapping negates sign
(if (= sign 1) -1 1)))])
(elim-rows! rows m i i pivot (fx+ i 1)) ; adding scaled rows doesn't change it
(loop (fx+ i 1) sign))])]
[else
(define prod (unsafe-vector2d-ref rows 0 0))
(let loop ([#{i : Nonnegative-Fixnum} 1] [prod prod])
(cond [(i . fx< . m)
(loop (fx+ i 1) (* prod (unsafe-vector2d-ref rows i i)))]
[else (* prod sign)]))])))
;; ===================================================================================================
;; Inversion
(: matrix-invertible? ((Matrix Number) -> Boolean))
(define (matrix-invertible? M)
(and (square-matrix? M)
(not (zero? (matrix-determinant M)))))
(: matrix-inverse (All (A) (case-> ((Matrix Flonum) -> (Matrix Flonum))
((Matrix Flonum) (-> A) -> (U A (Matrix Flonum)))
((Matrix Real) -> (Matrix Real))
((Matrix Real) (-> A) -> (U A (Matrix Real)))
((Matrix Float-Complex) -> (Matrix Float-Complex))
((Matrix Float-Complex) (-> A) -> (U A (Matrix Float-Complex)))
((Matrix Number) -> (Matrix Number))
((Matrix Number) (-> A) -> (U A (Matrix Number))))))
(define matrix-inverse
(case-lambda
[(M) (matrix-inverse M (λ () (raise-argument-error 'matrix-inverse "matrix-invertible?" M)))]
[(M fail)
(define m (square-matrix-size M))
(define x00 (matrix-ref M 0 0))
(define I (identity-matrix m (one* x00) (zero* x00)))
(define-values (IM^-1 wps) (parameterize ([array-strictness #f])
(matrix-gauss-elim (matrix-augment (list M I)) #t #t)))
(cond [(and (not (empty? wps)) (= (first wps) m))
(submatrix IM^-1 (::) (:: m #f))]
[else (fail)])]))
;; ===================================================================================================
;; Solving linear systems
(: matrix-solve
(All (A) (case->
((Matrix Flonum) (Matrix Flonum) -> (Matrix Flonum))
((Matrix Flonum) (Matrix Flonum) (-> A) -> (U A (Matrix Flonum)))
((Matrix Real) (Matrix Real) -> (Matrix Real))
((Matrix Real) (Matrix Real) (-> A) -> (U A (Matrix Real)))
((Matrix Float-Complex) (Matrix Float-Complex) -> (Matrix Float-Complex))
((Matrix Float-Complex) (Matrix Float-Complex) (-> A) -> (U A (Matrix Float-Complex)))
((Matrix Number) (Matrix Number) -> (Matrix Number))
((Matrix Number) (Matrix Number) (-> A) -> (U A (Matrix Number))))))
(define matrix-solve
(case-lambda
[(M B) (matrix-solve M B (λ () (raise-argument-error 'matrix-solve "matrix-invertible?" 0 M B)))]
[(M B fail)
(define m (square-matrix-size M))
(define-values (s t) (matrix-shape B))
(cond [(= m s)
(define-values (IX wps) (parameterize ([array-strictness #f])
(matrix-gauss-elim (matrix-augment (list M B)) #t #t)))
(cond [(and (not (empty? wps)) (= (first wps) m))
(submatrix IX (::) (:: m #f))]
[else (fail)])]
[else
(error 'matrix-solve
"matrices must have the same number of rows; given ~e and ~e"
M B)])]))