racket/doc/srfi-std/srfi-63.html
Matthew Flatt 28a3f3f0e7 r5rs and srfi docs and bindings
svn: r9336
2008-04-16 20:52:39 +00:00

1517 lines
48 KiB
HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<HTML>
<HEAD>
<title>SRFI 63: Homogeneous and Heterogeneous Arrays</title>
</HEAD>
<BODY>
<H1>Title</H1>
Homogeneous and Heterogeneous Arrays
<H1>Author</H1>
Aubrey Jaffer
<H1>Status</H1>
This SRFI is currently in ``final'' status. To see an explanation of each
status that a SRFI can hold, see <A
HREF="http://srfi.schemers.org/srfi-process.html">here</A>. You can
access previous messages via <A
HREF="http://srfi.schemers.org/srfi-63/mail-archive/maillist.html">the
archive of the mailing list</A>.
<P>
</P><UL>
<LI>Received: <A HREF="http://srfi.schemers.org/cgi-bin/viewcvs.cgi/*checkout*/srfi/srfi-63/srfi-63.html?rev=1.3">2005/01/17</A></LI>
<LI>Draft: 2005/01/17 - 2005/03/18</LI>
<LI>Revised: <A HREF="http://srfi.schemers.org/cgi-bin/viewcvs.cgi/*checkout*/srfi/srfi-63/srfi-63.html?rev=1.4">2005/01/27</A></LI>
<LI>Revised: <A HREF="http://srfi.schemers.org/cgi-bin/viewcvs.cgi/*checkout*/srfi/srfi-63/srfi-63.html?rev=1.5">2005/01/29</A></LI>
<LI>Revised: <A HREF="http://srfi.schemers.org/cgi-bin/viewcvs.cgi/*checkout*/srfi/srfi-63/srfi-63.html?rev=1.6">2005/04/08</A></LI>
<LI>Revised: <A HREF="http://srfi.schemers.org/cgi-bin/viewcvs.cgi/*checkout*/srfi/srfi-63/srfi-63.html?rev=1.7">2005/04/27</A></LI>
<LI>Final: 2005/04/27</LI>
</UL>
<H1>Abstract</H1>
The SRFI, which is to supersede
<A HREF="http://srfi.schemers.org/srfi-47/srfi-47.html">SRFI-47</A>,
"Array",
<UL>
<LI>synthesizes array concepts from Common-Lisp and Alan Bawden's
"array.scm";
</LI><LI>incorporates all the uniform vector types from
<A HREF="http://srfi.schemers.org/srfi-4/srfi-4.html">SFRI-4</A>
"Homogeneous numeric vector datatypes";
</LI><LI>adds a boolean uniform array type;
</LI><LI>adds 16.bit and 128.bit floating-point uniform-array types;
</LI><LI>adds decimal floating-point uniform-array types; and
</LI><LI>adds array types of (dual) floating-point complex numbers.
</LI></UL>
Multi-dimensional arrays subsume homogeneous vectors as the
one-dimensional case, obviating the need for SRFI-4.
<P>
SRFI-58 gives a read/write invariant syntax for the homogeneous and
heterogeneous arrays described here.
</P><P>
</P><H1>Issues</H1>
<UL>
<!-- <LI> -->
<!-- Character arrays can be supported based on strings; but they do not -->
<!-- necessarily have access times comparable to other types of arrays. -->
<!-- <P> -->
<LI>
The <A HREF="#Conversions">conversion rules</A> for exact decimal
flonums have yet to be determined. Wisdom in this area would come
from experience. Lacking that, it is better to underspecify the
behavior of decimal flonums than to make it wrong.
<P>
<!-- <LI> -->
<!-- <CODE>array-&gt;vector</CODE> and <CODE>vector-&gt;array</CODE> are -->
<!-- not inverses for rank-0 arrays. -->
<!-- <P> -->
</P></LI></UL>
<H1>Rationale</H1>
<H2>Arrays</H2>
Computations have been organized into multidimensional arrays for over
200 years. Applications for multi-dimensional arrays continue to
arise. Computer graphics and imaging, whether vector or raster based,
use arrays. A general-purpose computer language without
multidimensional arrays is an oxymoron.
<H2>Precision</H2>
R5RS provides an input syntax for inexact numbers which is capable of
distinguishing between <VAR>short</VAR>, <VAR>single</VAR>,
<VAR>double</VAR>, and <VAR>long</VAR> precisions. But R5RS provides
no method for limiting the precision of calculations:
<BLOCKQUOTE>
In particular, implementations that use flonum representations must
follow these rules: A flonum result must be represented with at least
as much precision as is used to express any of the inexact arguments
to that operation.
</BLOCKQUOTE>
And calculation with any exact number inputs blows the precision out
to "the most precise flonum format available":
<BLOCKQUOTE>
If, however, an exact number is operated upon so as to produce an
inexact result (as by <SAMP>`sqrt'</SAMP>), and if the result is
represented as a flonum, then the most precise flonum format available
must be used; but if the result is represented in some other way then
the representation must have at least as much precision as the most
precise flonum format available.
</BLOCKQUOTE>
Scheme is not much hampered by lack of low-precision inexact numbers
for scalar calculations. The extra computation incurred by gratuitous
precision is usually small compared with the overhead of type-dispatch
and boxed data manipulation.
<P>
</P><H2>Homogeneous Arrays</H2>
But if calculations are vectorized, that overhead can become
significant. Sophisticated program analysis may be able to deduce
that aggregated number storage can be made uniformly of the most
precise flonum format available. But even the most aggressive
analysis of uncontrived programs will not be able to reduce the
precision while yielding results equivalent to the most precise
calculation, as R5RS requires.
<P>
<!-- Globally reduced precision is a poor solution. The intermediate -->
<!-- results should be calculated with precision as high or higher than the -->
<!-- inputs, even if the results will be stored with lower precision. -->
<!-- <P> -->
Also significant is that the numerical data in most Scheme
implementations has manifest type information encoded with it.
Varying sizes of number objects means that the vectors hold pointers
to some numbers, requiring data fetches from memory locations unlikely
to be in the same CPU cache-line.
</P><P>
Arrays composed of elements all having the same size representations
can eliminate these indirect accesses and the storage allocation
associated with them. Homogeneous arrays of lower precision flonums
can reduce by factors of 2 or 4 the storage they occupy; which can
also speed execution because of the lower bandwidth to the memory
necessary to supply the CPU data cache.
</P><P>
</P><H2>Common Lisp</H2>
Common-Lisp arrays are serviceable, and are the basis for arrays here.
Common-Lisp's <CODE>make-array</CODE> does not translate well to
Scheme because the array element type and the initial contents are
passed using named arguments.
<P>
Prototype arrays specify both the homogeneous array type (or lack of)
and the initial value or lack of it; allowing these purposes to be
satisfied by one argument to <CODE>make-array</CODE> or other
procedures which create arrays.
</P><P>
Some have objected that restricting type specification to arrays is a
half-measure. In vectorized programs, specifying the precision of
scalar calculations will produce negligible performance improvements.
But the performance improvements of homogeneous arrays can accrue to
both interpreted and compiled Scheme implementations. By avoiding the
morass of general type specification, SRFI-63 can be more easily
accommodated by more Scheme implementations.
</P><P>
</P><H2>Argument Order</H2>
<UL>
<LI>
Most of the procedures originate from Alan Bawden's "array.scm".
SRFI-47's <CODE>array-set!</CODE> argument order is that of Bawden's
package. <a href="http://swissnet.ai.mit.edu/%7Ejaffer/SLIB">SLIB</A>
adopted "array.scm" in 1993. This form of <CODE>array-set!</CODE> has
also been part of the
<a href="http://swissnet.ai.mit.edu/%7Ejaffer/SCM">SCM</A> Scheme
implementation since 1993.<P>
</P></LI><LI>
The <CODE>array-set!</CODE> argument order is different from the
same-named procedure in
<A HREF="http://srfi.schemers.org/srfi-25/srfi-25.html">SRFI-25</A>.
Type dispatch on the first argument to <CODE>array-set!</CODE> could
support both SRFIs simultaneously.<P>
</P></LI><LI>
The <CODE>make-array</CODE> arguments are different from the
same-named procedure in
<A HREF="http://srfi.schemers.org/srfi-25/srfi-25.html">SRFI-25</A>.
Type dispatch on the first argument to <CODE>make-array</CODE> could
support both SRFIs simultaneously.<P>
</P></LI><LI>
The SRFI-47 argument orders are motivated to make easy dealing with
the variable arity resulting from variable rank.
<PRE> (vector-&gt;array vect proto bound1 ...)
(make-array proto bound1 ...)
(make-shared-array array mapper bound1 ...)
(array-set! array obj index1 ...)
(array-in-bounds? array index1 ...)
(array-ref array index1 ...)
</PRE>
<P>
The list-&gt;array is somewhat dissonant:
</P><PRE> (list-&gt;array rank proto list)
</PRE>
<P>
</P></LI></UL>
<P>
</P><H2>Homogeneous Array Types</H2>
All implementations must support Scheme strings as rank 1 character
arrays. This requirement mandates that Scheme strings be valid
arguments to array procedures; their stored representations may be
different from other character arrays.
<P>
Although an implementation is required to define all the prototype
functions, it is not required to support all or even any of the
homogeneous numeric arrays. It is assumed that no uniform numeric
types have larger precision than the Scheme implementation supports as
numbers.
</P><P>
<A name="Table-1"></A>
<TABLE border="1">
<TBODY><TR><th>prototype<br>procedure
</th><th>exactness
</th><th>element type
</th></TR><TR><TD><CODE>vector </CODE></TD><TD> </TD><TD>any
</TD></TR><TR><TD><CODE>A:floC128b</CODE></TD><TD>inexact</TD><TD>128.bit binary flonum complex
</TD></TR><TR><TD><CODE>A:floC64b </CODE></TD><TD>inexact</TD><TD>64.bit binary flonum complex
</TD></TR><TR><TD><CODE>A:floC32b </CODE></TD><TD>inexact</TD><TD>32.bit binary flonum complex
</TD></TR><TR><TD><CODE>A:floC16b </CODE></TD><TD>inexact</TD><TD>16.bit binary flonum complex
</TD></TR><TR><TD><CODE>A:floR128b</CODE></TD><TD>inexact</TD><TD>128.bit binary flonum real
</TD></TR><TR><TD><CODE>A:floR64b </CODE></TD><TD>inexact</TD><TD>64.bit binary flonum real
</TD></TR><TR><TD><CODE>A:floR32b </CODE></TD><TD>inexact</TD><TD>32.bit binary flonum real
</TD></TR><TR><TD><CODE>A:floR16b </CODE></TD><TD>inexact</TD><TD>16.bit binary flonum real
</TD></TR><TR><td colspan="3">
</TD></TR><TR><TD><CODE>A:floQ128d</CODE></TD><TD>exact</TD><TD>128.bit decimal flonum rational
</TD></TR><TR><TD><CODE>A:floQ64d </CODE></TD><TD>exact</TD><TD>64.bit decimal flonum rational
</TD></TR><TR><TD><CODE>A:floQ32d </CODE></TD><TD>exact</TD><TD>32.bit decimal flonum rational
</TD></TR><TR><td colspan="3">
</TD></TR><TR><TD><CODE>A:fixZ64b </CODE></TD><TD>exact</TD><TD>64.bit binary fixnum
</TD></TR><TR><TD><CODE>A:fixZ32b </CODE></TD><TD>exact</TD><TD>32.bit binary fixnum
</TD></TR><TR><TD><CODE>A:fixZ16b </CODE></TD><TD>exact</TD><TD>16.bit binary fixnum
</TD></TR><TR><TD><CODE>A:fixZ8b </CODE></TD><TD>exact</TD><TD>8.bit binary fixnum
</TD></TR><TR><TD><CODE>A:fixN64b </CODE></TD><TD>exact</TD><TD>64.bit nonnegative binary fixnum
</TD></TR><TR><TD><CODE>A:fixN32b </CODE></TD><TD>exact</TD><TD>32.bit nonnegative binary fixnum
</TD></TR><TR><TD><CODE>A:fixN16b </CODE></TD><TD>exact</TD><TD>16.bit nonnegative binary fixnum
</TD></TR><TR><TD><CODE>A:fixN8b </CODE></TD><TD>exact</TD><TD>8.bit nonnegative binary fixnum
</TD></TR><TR><TD><CODE>A:bool </CODE></TD><TD> </TD><TD>boolean
</TD></TR><TR><TD><CODE>string </CODE></TD><TD> </TD><TD>char
</TD></TR></TBODY></TABLE>
</P><P>
Decimal flonums are used for financial calculations so that fractional
errors do not accumulate. They should be exact numbers.
</P><P>
<A NAME="Conversions"></A>
</P><H2>Conversions</H2>
<UL>
<LI> All the elements of arrays of type A:fixN8b, A:fixN16b,
A:fixN32b, A:fixN64b, A:fixZ8b, A:fixZ16b, A:fixZ32b, or
A:fixZ64b are exact.<P>
</P></LI><LI> All the elements of arrays of type A:floR16b, A:floR32b,
A:floR64b, A:floR128b, A:floC16b, A:floC32b, A:floC64b, and
A:floC128b are inexact.<P>
</P></LI><LI> The value retrieved from an exact array element will equal (=)
the value stored in that element.<P>
</P></LI><LI> Assigning a non-integer to array-type A:fixN8b, A:fixN16b,
A:fixN32b, A:fixN64b, A:fixZ8b, A:fixZ16b, A:fixZ32b, or
A:fixZ64b is an error.<P>
</P></LI><LI> Assigning a number larger than can be represented in array-type
A:fixN8b, A:fixN16b, A:fixN32b, A:fixN64b, A:fixZ8b, A:fixZ16b,
A:fixZ32b, or A:fixZ64b is an error.<P>
</P></LI><LI> Assigning a negative number to array-type A:fixN8b, A:fixN16b,
A:fixN32b, or A:fixN64b is an error.<P>
</P></LI><LI> Assigning an inexact number to array-type A:fixN8b, A:fixN16b,
A:fixN32b, A:fixN64b, A:fixZ8b, A:fixZ16b, A:fixZ32b, or
A:fixZ64b is an error.<P>
</P></LI><LI> When assigning an exact number to an inexact array-type, the
procedure may report a violation of an implementation
restriction.<P>
</P></LI><LI> Assigning a non-real number (eg. <CODE>real?</CODE> returns
<CODE>#f</CODE>) to an A:floR128b, A:floR64b, A:floR32b, or
A:floR16b array is an error.<P>
</P></LI><LI> When an inexact number is assigned to an array whose type is
lower precision, the number will be rounded to that lower
precision if possible; otherwise it is an error.<P>
</P></LI></UL>
<A NAME="Prototype Procedures"></A>
<H2>Prototype Procedures</H2>
Implementations are required to define all of the prototype
procedures. Uniform types of matching format and sizes which the
platform supports will be used; the others will be represented as
follows:
<P>
For inexact flonum complex arrays:
</P><UL>
<LI>the next larger complex format is used;
</LI><LI>if there is no larger format,
<UL>
<LI>then if the implementation supports complex floating-point numbers of
unbounded precision,
<UL>
<LI>then a heterogeneous array;
</LI><LI>else the largest inexact flonum complex array.
</LI></UL>
</LI></UL>
</LI></UL>
For inexact flonum real arrays:
<UL>
<LI>the next larger real format is used;
</LI><LI>if there is no larger real format, then the next larger complex format
is used.
</LI><LI>If there is no larger complex format,
<UL>
<LI>then if the implementation supports floating-point real numbers of
unbounded precision,
<UL>
<LI>then a heterogeneous array;
</LI><LI>else the largest inexact flonum real or complex array.
</LI></UL>
</LI></UL>
</LI></UL>
For exact decimal flonum arrays:
<UL>
<LI>the next larger decimal flonum format array is used;
</LI><LI>If there is no larger decimal flonum format, then a
heterogeneous array is used.
</LI></UL>
For exact bipolar fixnum arrays:
<UL>
<LI>the next larger bipolar fixnum format array is used;
</LI><LI>If there is no larger bipolar fixnum format,
<UL>
<LI>then if the implementation supports exact integers of unbounded
precision,
<UL>
<LI>then a heterogeneous array;
</LI><LI>else the largest bipolar fixnum array.
</LI></UL>
</LI></UL>
</LI></UL>
For exact nonnegative fixnum arrays:
<UL>
<LI>the next larger nonnegative fixnum format array is used;
</LI><LI>If there is no larger nonnegative fixnum format,
<UL>
<LI>then the next larger bipolar fixnum format is used.
</LI><LI>If there is no larger bipolar fixnum format,
<UL>
<LI>then if the implementation supports exact integers of
unbounded precision,
<UL>
<LI>then a heterogeneous array;
</LI><LI>else the largest nonnegative or bipolar fixnum array.
</LI></UL>
</LI></UL>
</LI></UL>
</LI></UL>
<P>
Note that these rules are used to configure an implementation's
definitions of the prototype procedures, which should not themselves
be type-dispatching.
</P><P>
This arrangement has platforms which support uniform array types
employing them, with less capable platforms using vectors; but all
working compatibly from the same source code.
</P><P>
</P><H2>Shared Arrays</H2>
To my knowledge, the specification of shared array index mapping by
means of a procedure is original to Alan Bawden in his "array.scm".
<CODE>Make-shared-array</CODE> creates any view into an array whose
coordinates can be mapped by exact integer affine functions. The rank
of the arrays need not match. Shared arrays are quite useful. They
can reverse indexes, make subarrays, and facilitate straightforward
implementations of divide-and-conquer algorithms.
<P>
In Common-Lisp a <DFN>displaced array</DFN> can be created by calls to
<A HREF="http://www-2.cs.cmu.edu/Groups/AI/html/hyperspec/HyperSpec/Body/fun_adjust-array.html">adjust-array</A>.
But displaced arrays are far less flexible than <DFN>shared
arrays</DFN>, constrained to have the same rank as the original and
allowing only index displacements (not reversals, skips, or
shuffling).
</P><P>
</P><H2>Limit Cases</H2>
The bounds for each index in both Alan Bawden's "array.scm" and
<A HREF="http://srfi.schemers.org/srfi-25/srfi-25.html">SRFI-25</A>
can be any consecutive run of integers. All indexes in SRFI-63 are
zero-based for compatibility with R5RS.
<P>
Empty arrays having no elements can be of any positive rank. Empty
arrays can be returned from <CODE>make-shared-array</CODE>.
</P><P>
Following <A HREF="http://www-2.cs.cmu.edu/Groups/AI/html/hyperspec/HyperSpec/Body/sec_15-1-1-3.html">Common-Lisp</A>'s
lead, zero-rank arrays have a single element.
</P><P>
Except for character arrays, array access time is
O(<I>R</I>)+<I>V</I>, where <I>R</I> is the rank of the array and
<I>V</I> is the vector access time.
</P><P>
Character array access time is
O(<I>R</I>)+<I>S</I>, where <I>R</I> is the rank of the array and
<I>S</I> is the string access time.
</P><P>
</P><H1>Specification</H1>
<P>
</P><DL>
<DT><U>Function:</U> <B>array?</B> <I>obj</I>
</DT><DD><A name="IDX1108"></A>
<P>
Returns <CODE>#t</CODE> if the <VAR>obj</VAR> is an array, and <CODE>#f</CODE> if not.
</P></DD></DL>
<P>
<EM>Note:</EM> Arrays are not disjoint from other Scheme types.
Vectors and possibly strings also satisfy <CODE>array?</CODE>.
A disjoint array predicate can be written:
</P><PRE>(define (strict-array? obj)
(and (array? obj) (not (string? obj)) (not (vector? obj))))
</PRE>
<P>
</P><DL>
<DT><U>Function:</U> <B>equal?</B> <I>obj1 obj2</I>
</DT><DD><A name="IDX1109"></A>
<P>
Returns <CODE>#t</CODE> if <VAR>obj1</VAR> and <VAR>obj2</VAR> have the same rank and dimensions and the
corresponding elements of <VAR>obj1</VAR> and <VAR>obj2</VAR> are <CODE>equal?</CODE>.
</P><P>
<CODE>equal?</CODE> recursively compares the contents of pairs, vectors, strings, and
<EM>arrays</EM>, applying <CODE>eqv?</CODE> on other objects such as numbers
and symbols. A rule of thumb is that objects are generally <CODE>equal?</CODE> if
they print the same. <CODE>equal?</CODE> may fail to terminate if its arguments are
circular data structures.
</P><PRE>(equal? 'a 'a) =&gt; #t
(equal? '(a) '(a)) =&gt; #t
(equal? '(a (b) c)
'(a (b) c)) =&gt; #t
(equal? "abc" "abc") =&gt; #t
(equal? 2 2) =&gt; #t
(equal? (make-vector 5 'a)
(make-vector 5 'a)) =&gt; #t
(equal? (make-array (A:fixN32b 4) 5 3)
(make-array (A:fixN32b 4) 5 3)) =&gt; #t
(equal? (make-array '#(foo) 3 3)
(make-array '#(foo) 3 3)) =&gt; #t
(equal? (lambda (x) x)
(lambda (y) y)) =&gt; <em>unspecified</em>
</PRE>
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>array-rank</B> <I>obj</I>
</DT><DD><A name="IDX1110"></A>
<P>
Returns the number of dimensions of <VAR>obj</VAR>. If <VAR>obj</VAR> is not an array, 0 is
returned.
</P></DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>array-dimensions</B> <I>array</I>
</DT><DD><A name="IDX1111"></A>
<P>
Returns a list of dimensions.
</P><PRE>(array-dimensions (make-array '#() 3 5))
=&gt; (3 5)
</PRE>
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>make-array</B> <I>prototype k1 ...</I>
</DT><DD><A name="IDX1112"></A>
<P>
Creates and returns an array of type <VAR>prototype</VAR> with dimensions <VAR>k1</VAR>, ...
and filled with elements from <VAR>prototype</VAR>. <VAR>prototype</VAR> must be an array, vector, or
string. The implementation-dependent type of the returned array
will be the same as the type of <VAR>prototype</VAR>; except if that would be a vector
or string with rank not equal to one, in which case some variety of
array will be returned.
</P><P>
If the <VAR>prototype</VAR> has no elements, then the initial contents of the returned
array are unspecified. Otherwise, the returned array will be filled
with the element at the origin of <VAR>prototype</VAR>.
</P></DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>make-shared-array</B> <I>array mapper k1 ...</I>
</DT><DD><A name="IDX1114"></A>
<P>
<CODE>make-shared-array</CODE> can be used to create shared subarrays of other
arrays. The <VAR>mapper</VAR> is a function that translates coordinates in
the new array into coordinates in the old array. A <VAR>mapper</VAR> must be
linear, and its range must stay within the bounds of the old array, but
it can be otherwise arbitrary. A simple example:
</P><PRE>(define fred (make-array '#(#f) 8 8))
(define freds-diagonal
(make-shared-array fred (lambda (i) (list i i)) 8))
(array-set! freds-diagonal 'foo 3)
(array-ref fred 3 3)
=&gt; FOO
(define freds-center
(make-shared-array fred (lambda (i j) (list (+ 3 i) (+ 3 j)))
2 2))
(array-ref freds-center 0 0)
=&gt; FOO
</PRE>
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>list-&gt;array</B> <I>rank proto list</I>
</DT><DD><A name="IDX1115"></A>
<P>
<VAR>list</VAR> must be a rank-nested list consisting of all the elements, in
row-major order, of the array to be created.
</P><P>
<CODE>list-&gt;array</CODE> returns an array of rank <VAR>rank</VAR> and type <VAR>proto</VAR> consisting of all the
elements, in row-major order, of <VAR>list</VAR>. When <VAR>rank</VAR> is 0, <VAR>list</VAR> is the lone
array element; not necessarily a list.
</P><PRE>(list-&gt;array 2 '#() '((1 2) (3 4)))
=&gt; #2A((1 2) (3 4))
(list-&gt;array 0 '#() 3)
=&gt; #0A 3
</PRE>
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>array-&gt;list</B> <I>array</I>
</DT><DD><A name="IDX1116"></A>
<P>
Returns a rank-nested list consisting of all the elements, in
row-major order, of <VAR>array</VAR>. In the case of a rank-0 array, <CODE>array-&gt;list</CODE> returns
the single element.
</P><PRE>(array-&gt;list #2A((ho ho ho) (ho oh oh)))
=&gt; ((ho ho ho) (ho oh oh))
(array-&gt;list #0A ho)
=&gt; ho
</PRE>
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>vector-&gt;array</B> <I>vect proto dim1 ...</I>
</DT><DD><A name="IDX1117"></A>
<P>
<VAR>vect</VAR> must be a vector of length equal to the product of exact
nonnegative integers <VAR>dim1</VAR>, ....
</P><P>
<CODE>vector-&gt;array</CODE> returns an array of type <VAR>proto</VAR> consisting of all the elements, in
row-major order, of <VAR>vect</VAR>. In the case of a rank-0 array, <VAR>vect</VAR> has a
single element.
</P><PRE>(vector-&gt;array #(1 2 3 4) #() 2 2)
=&gt; #2A((1 2) (3 4))
(vector-&gt;array '#(3) '#())
=&gt; #0A 3
</PRE>
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>array-&gt;vector</B> <I>array</I>
</DT><DD><A name="IDX1118"></A>
<P>
Returns a new vector consisting of all the elements of <VAR>array</VAR> in
row-major order.
</P><PRE>(array-&gt;vector #2A ((1 2)( 3 4)))
=&gt; #(1 2 3 4)
(array-&gt;vector #0A ho)
=&gt; #(ho)
</PRE>
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>array-in-bounds?</B> <I>array index1 ...</I>
</DT><DD><A name="IDX1119"></A>
<P>
Returns <CODE>#t</CODE> if its arguments would be acceptable to
<CODE>array-ref</CODE>.
</P></DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>array-ref</B> <I>array k1 ...</I>
</DT><DD><A name="IDX1120"></A>
<P>
Returns the (<VAR>k1</VAR>, ...) element of <VAR>array</VAR>.
</P></DD></DL>
<P>
</P><DL>
<DT><U>Procedure:</U> <B>array-set!</B> <I>array obj k1 ...</I>
</DT><DD><A name="IDX1121"></A>
<P>
Stores <VAR>obj</VAR> in the (<VAR>k1</VAR>, ...) element of <VAR>array</VAR>. The value returned
by <CODE>array-set!</CODE> is unspecified.
</P></DD></DL>
<P>
These functions return a prototypical uniform-array enclosing the
optional argument (which must be of the correct type). If the
uniform-array type is supported by the implementation, then it is
returned; defaulting to the next larger precision type; resorting
finally to vector.
</P><P>
</P><DL>
<DT><U>Function:</U> <B>a:floc128b</B> <I>z</I>
</DT><DD><A name="IDX1122"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:floc128b</b>
</DT><DD><A name="IDX1123"></A>
Returns an inexact 128.bit flonum complex uniform-array prototype.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:floc64b</B> <I>z</I>
</DT><DD><A name="IDX1124"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:floc64b</b>
</DT><DD><A name="IDX1125"></A>
Returns an inexact 64.bit flonum complex uniform-array prototype.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:floc32b</B> <I>z</I>
</DT><DD><A name="IDX1126"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:floc32b</b>
</DT><DD><A name="IDX1127"></A>
Returns an inexact 32.bit flonum complex uniform-array prototype.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:floc16b</B> <I>z</I>
</DT><DD><A name="IDX1128"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:floc16b</b>
</DT><DD><A name="IDX1129"></A>
Returns an inexact 16.bit flonum complex uniform-array prototype.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:flor128b</B> <I>z</I>
</DT><DD><A name="IDX1130"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:flor128b</b>
</DT><DD><A name="IDX1131"></A>
Returns an inexact 128.bit flonum real uniform-array prototype.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:flor64b</B> <I>z</I>
</DT><DD><A name="IDX1132"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:flor64b</b>
</DT><DD><A name="IDX1133"></A>
Returns an inexact 64.bit flonum real uniform-array prototype.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:flor32b</B> <I>z</I>
</DT><DD><A name="IDX1134"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:flor32b</b>
</DT><DD><A name="IDX1135"></A>
Returns an inexact 32.bit flonum real uniform-array prototype.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:flor16b</B> <I>z</I>
</DT><DD><A name="IDX1136"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:flor16b</b>
</DT><DD><A name="IDX1137"></A>
Returns an inexact 16.bit flonum real uniform-array prototype.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:flor128b</B> <I>z</I>
</DT><DD><A name="IDX1138"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:flor128b</b>
</DT><DD><A name="IDX1139"></A>
Returns an exact 128.bit decimal flonum rational uniform-array prototype.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:flor64b</B> <I>z</I>
</DT><DD><A name="IDX1140"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:flor64b</b>
</DT><DD><A name="IDX1141"></A>
Returns an exact 64.bit decimal flonum rational uniform-array prototype.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:flor32b</B> <I>z</I>
</DT><DD><A name="IDX1142"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:flor32b</b>
</DT><DD><A name="IDX1143"></A>
Returns an exact 32.bit decimal flonum rational uniform-array prototype.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:fixz64b</B> <I>n</I>
</DT><DD><A name="IDX1144"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:fixz64b</b>
</DT><DD><A name="IDX1145"></A>
Returns an exact binary fixnum uniform-array prototype with at least
64 bits of precision.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:fixz32b</B> <I>n</I>
</DT><DD><A name="IDX1146"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:fixz32b</b>
</DT><DD><A name="IDX1147"></A>
Returns an exact binary fixnum uniform-array prototype with at least
32 bits of precision.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:fixz16b</B> <I>n</I>
</DT><DD><A name="IDX1148"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:fixz16b</b>
</DT><DD><A name="IDX1149"></A>
Returns an exact binary fixnum uniform-array prototype with at least
16 bits of precision.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:fixz8b</B> <I>n</I>
</DT><DD><A name="IDX1150"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:fixz8b</b>
</DT><DD><A name="IDX1151"></A>
Returns an exact binary fixnum uniform-array prototype with at least
8 bits of precision.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:fixn64b</B> <I>k</I>
</DT><DD><A name="IDX1152"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:fixn64b</b>
</DT><DD><A name="IDX1153"></A>
Returns an exact non-negative binary fixnum uniform-array prototype with at
least 64 bits of precision.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:fixn32b</B> <I>k</I>
</DT><DD><A name="IDX1154"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:fixn32b</b>
</DT><DD><A name="IDX1155"></A>
Returns an exact non-negative binary fixnum uniform-array prototype with at
least 32 bits of precision.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:fixn16b</B> <I>k</I>
</DT><DD><A name="IDX1156"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:fixn16b</b>
</DT><DD><A name="IDX1157"></A>
Returns an exact non-negative binary fixnum uniform-array prototype with at
least 16 bits of precision.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:fixn8b</B> <I>k</I>
</DT><DD><A name="IDX1158"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:fixn8b</b>
</DT><DD><A name="IDX1159"></A>
Returns an exact non-negative binary fixnum uniform-array prototype with at
least 8 bits of precision.
</DD></DL>
<P>
</P><DL>
<DT><U>Function:</U> <B>a:bool</B> <I>bool</I>
</DT><DD><A name="IDX1160"></A>
<P>
</P></DD><DT><u>Function:</u> <b>a:bool</b>
</DT><DD><A name="IDX1161"></A>
Returns a boolean uniform-array prototype.
</DD></DL>
<H1>Implementation</H1>
<A HREF="http://savannah.gnu.org/cgi-bin/viewcvs/*checkout*/slib/slib/array.scm?rev=HEAD&amp;content-type=text/vnd.viewcvs-markup">slib/array.scm</A>
implements array procedures for R4RS or R5RS compliant Scheme
implementations with <DFN>records</DFN> as implemented by
<A HREF="http://savannah.gnu.org/cgi-bin/viewcvs/slib/slib/record.scm?rev=HEAD&amp;content-type=text/vnd.viewcvs-markup">slib/record.scm</A>
or <A HREF="http://srfi.schemers.org/srfi-9/srfi-9.html">SRFI-9</A>.
"<CODE>array.scm</CODE>" redefines <CODE>equal?</CODE> to handle
arrays.
<P>
</P><PRE>;;;;"array.scm" Arrays for Scheme
; Copyright (C) 2001, 2003 Aubrey Jaffer
;
;Permission to copy this software, to modify it, to redistribute it,
;to distribute modified versions, and to use it for any purpose is
;granted, subject to the following restrictions and understandings.
;
;1. Any copy made of this software must include this copyright notice
;in full.
;
;2. I have made no warranty or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3. In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.
;;@code{(require 'array)} or @code{(require 'srfi-63)}
;;@ftindex array
(require 'record)
(define array:rtd
(make-record-type "array"
'(dimensions
scales ;list of dimension scales
offset ;exact integer
store ;data
)))
(define array:dimensions
(let ((dimensions (record-accessor array:rtd 'dimensions)))
(lambda (array)
(cond ((vector? array) (list (vector-length array)))
((string? array) (list (string-length array)))
(else (dimensions array))))))
(define array:scales
(let ((scales (record-accessor array:rtd 'scales)))
(lambda (obj)
(cond ((string? obj) '(1))
((vector? obj) '(1))
(else (scales obj))))))
(define array:store
(let ((store (record-accessor array:rtd 'store)))
(lambda (obj)
(cond ((string? obj) obj)
((vector? obj) obj)
(else (store obj))))))
(define array:offset
(let ((offset (record-accessor array:rtd 'offset)))
(lambda (obj)
(cond ((string? obj) 0)
((vector? obj) 0)
(else (offset obj))))))
(define array:construct
(record-constructor array:rtd '(dimensions scales offset store)))
;;@args obj
;;Returns @code{#t} if the @1 is an array, and @code{#f} if not.
(define array?
(let ((array:array? (record-predicate array:rtd)))
(lambda (obj) (or (string? obj) (vector? obj) (array:array? obj)))))
;;@noindent
;;@emph{Note:} Arrays are not disjoint from other Scheme types.
;;Vectors and possibly strings also satisfy @code{array?}.
;;A disjoint array predicate can be written:
;;
;;@example
;;(define (strict-array? obj)
;; (and (array? obj) (not (string? obj)) (not (vector? obj))))
;;@end example
;;@body
;;Returns @code{#t} if @1 and @2 have the same rank and dimensions and the
;;corresponding elements of @1 and @2 are @code{equal?}.
;;@body
;;@0 recursively compares the contents of pairs, vectors, strings, and
;;@emph{arrays}, applying @code{eqv?} on other objects such as numbers
;;and symbols. A rule of thumb is that objects are generally @0 if
;;they print the same. @0 may fail to terminate if its arguments are
;;circular data structures.
;;
;;@example
;;(equal? 'a 'a) @result{} #t
;;(equal? '(a) '(a)) @result{} #t
;;(equal? '(a (b) c)
;; '(a (b) c)) @result{} #t
;;(equal? "abc" "abc") @result{} #t
;;(equal? 2 2) @result{} #t
;;(equal? (make-vector 5 'a)
;; (make-vector 5 'a)) @result{} #t
;;(equal? (make-array (A:fixN32b 4) 5 3)
;; (make-array (A:fixN32b 4) 5 3)) @result{} #t
;;(equal? (make-array '#(foo) 3 3)
;; (make-array '#(foo) 3 3)) @result{} #t
;;(equal? (lambda (x) x)
;; (lambda (y) y)) @result{} @emph{unspecified}
;;@end example
(define (equal? obj1 obj2)
(cond ((eqv? obj1 obj2) #t)
((or (pair? obj1) (pair? obj2))
(and (pair? obj1) (pair? obj2)
(equal? (car obj1) (car obj2))
(equal? (cdr obj1) (cdr obj2))))
((or (string? obj1) (string? obj2))
(and (string? obj1) (string? obj2)
(string=? obj1 obj2)))
((or (vector? obj1) (vector? obj2))
(and (vector? obj1) (vector? obj2)
(equal? (vector-length obj1) (vector-length obj2))
(do ((idx (+ -1 (vector-length obj1)) (+ -1 idx)))
((or (negative? idx)
(not (equal? (vector-ref obj1 idx)
(vector-ref obj2 idx))))
(negative? idx)))))
((or (array? obj1) (array? obj2))
(and (array? obj1) (array? obj2)
(equal? (array:dimensions obj1) (array:dimensions obj2))
(equal? (array:store obj1) (array:store obj2))))
(else #f)))
;;@body
;;Returns the number of dimensions of @1. If @1 is not an array, 0 is
;;returned.
(define (array-rank obj)
(if (array? obj) (length (array:dimensions obj)) 0))
;;@args array
;;Returns a list of dimensions.
;;
;;@example
;;(array-dimensions (make-array '#() 3 5))
;; @result{} (3 5)
;;@end example
(define array-dimensions array:dimensions)
;;@args prototype k1 @dots{}
;;
;;Creates and returns an array of type @1 with dimensions @2, @dots{}
;;and filled with elements from @1. @1 must be an array, vector, or
;;string. The implementation-dependent type of the returned array
;;will be the same as the type of @1; except if that would be a vector
;;or string with rank not equal to one, in which case some variety of
;;array will be returned.
;;
;;If the @1 has no elements, then the initial contents of the returned
;;array are unspecified. Otherwise, the returned array will be filled
;;with the element at the origin of @1.
(define (make-array prototype . dimensions)
(define tcnt (apply * dimensions))
(let ((store
(if (string? prototype)
(case (string-length prototype)
((0) (make-string tcnt))
(else (make-string tcnt
(string-ref prototype 0))))
(let ((pdims (array:dimensions prototype)))
(case (apply * pdims)
((0) (make-vector tcnt))
(else (make-vector tcnt
(apply array-ref prototype
(map (lambda (x) 0) pdims)))))))))
(define (loop dims scales)
(if (null? dims)
(array:construct dimensions (cdr scales) 0 store)
(loop (cdr dims) (cons (* (car dims) (car scales)) scales))))
(loop (reverse dimensions) '(1))))
;;@args prototype k1 @dots{}
;;@0 is an alias for @code{make-array}.
(define create-array make-array)
;;@args array mapper k1 @dots{}
;;@0 can be used to create shared subarrays of other
;;arrays. The @var{mapper} is a function that translates coordinates in
;;the new array into coordinates in the old array. A @var{mapper} must be
;;linear, and its range must stay within the bounds of the old array, but
;;it can be otherwise arbitrary. A simple example:
;;
;;@example
;;(define fred (make-array '#(#f) 8 8))
;;(define freds-diagonal
;; (make-shared-array fred (lambda (i) (list i i)) 8))
;;(array-set! freds-diagonal 'foo 3)
;;(array-ref fred 3 3)
;; @result{} FOO
;;(define freds-center
;; (make-shared-array fred (lambda (i j) (list (+ 3 i) (+ 3 j)))
;; 2 2))
;;(array-ref freds-center 0 0)
;; @result{} FOO
;;@end example
(define (make-shared-array array mapper . dimensions)
(define odl (array:scales array))
(define rank (length dimensions))
(define shape
(map (lambda (dim) (if (list? dim) dim (list 0 (+ -1 dim)))) dimensions))
(do ((idx (+ -1 rank) (+ -1 idx))
(uvt (append (cdr (vector-&gt;list (make-vector rank 0))) '(1))
(append (cdr uvt) '(0)))
(uvts '() (cons uvt uvts)))
((negative? idx)
(let ((ker0 (apply + (map * odl (apply mapper uvt)))))
(array:construct
(map (lambda (dim) (+ 1 (- (cadr dim) (car dim)))) shape)
(map (lambda (uvt) (- (apply + (map * odl (apply mapper uvt))) ker0))
uvts)
(apply +
(array:offset array)
(map * odl (apply mapper (map car shape))))
(array:store array))))))
;;@args rank proto list
;;@3 must be a rank-nested list consisting of all the elements, in
;;row-major order, of the array to be created.
;;
;;@0 returns an array of rank @1 and type @2 consisting of all the
;;elements, in row-major order, of @3. When @1 is 0, @3 is the lone
;;array element; not necessarily a list.
;;
;;@example
;;(list-&gt;array 2 '#() '((1 2) (3 4)))
;; @result{} #2A((1 2) (3 4))
;;(list-&gt;array 0 '#() 3)
;; @result{} #0A 3
;;@end example
(define (list-&gt;array rank proto lst)
(define dimensions
(do ((shp '() (cons (length row) shp))
(row lst (car lst))
(rnk (+ -1 rank) (+ -1 rnk)))
((negative? rnk) (reverse shp))))
(let ((nra (apply make-array proto dimensions)))
(define (l2ra dims idxs row)
(cond ((null? dims)
(apply array-set! nra row (reverse idxs)))
((if (not (eqv? (car dims) (length row)))
(slib:error 'list-&gt;array
'non-rectangular 'array dims dimensions))
(do ((idx 0 (+ 1 idx))
(row row (cdr row)))
((&gt;= idx (car dims)))
(l2ra (cdr dims) (cons idx idxs) (car row))))))
(l2ra dimensions '() lst)
nra))
;;@args array
;;Returns a rank-nested list consisting of all the elements, in
;;row-major order, of @1. In the case of a rank-0 array, @0 returns
;;the single element.
;;
;;@example
;;(array-&gt;list #2A((ho ho ho) (ho oh oh)))
;; @result{} ((ho ho ho) (ho oh oh))
;;(array-&gt;list #0A ho)
;; @result{} ho
;;@end example
(define (array-&gt;list ra)
(define (ra2l dims idxs)
(if (null? dims)
(apply array-ref ra (reverse idxs))
(do ((lst '() (cons (ra2l (cdr dims) (cons idx idxs)) lst))
(idx (+ -1 (car dims)) (+ -1 idx)))
((negative? idx) lst))))
(ra2l (array-dimensions ra) '()))
;;@args vect proto dim1 @dots{}
;;@1 must be a vector of length equal to the product of exact
;;nonnegative integers @3, @dots{}.
;;
;;@0 returns an array of type @2 consisting of all the elements, in
;;row-major order, of @1. In the case of a rank-0 array, @1 has a
;;single element.
;;
;;@example
;;(vector-&gt;array #(1 2 3 4) #() 2 2)
;; @result{} #2A((1 2) (3 4))
;;(vector-&gt;array '#(3) '#())
;; @result{} #0A 3
;;@end example
(define (vector-&gt;array vect prototype . dimensions)
(define vdx (vector-length vect))
(if (not (eqv? vdx (apply * dimensions)))
(slib:error 'vector-&gt;array vdx '&lt;&gt; (cons '* dimensions)))
(let ((ra (apply make-array prototype dimensions)))
(define (v2ra dims idxs)
(cond ((null? dims)
(set! vdx (+ -1 vdx))
(apply array-set! ra (vector-ref vect vdx) (reverse idxs)))
(else
(do ((idx (+ -1 (car dims)) (+ -1 idx)))
((negative? idx) vect)
(v2ra (cdr dims) (cons idx idxs))))))
(v2ra dimensions '())
ra))
;;@args array
;;Returns a new vector consisting of all the elements of @1 in
;;row-major order.
;;
;;@example
;;(array-&gt;vector #2A ((1 2)( 3 4)))
;; @result{} #(1 2 3 4)
;;(array-&gt;vector #0A ho)
;; @result{} #(ho)
;;@end example
(define (array-&gt;vector ra)
(define dims (array-dimensions ra))
(let* ((vdx (apply * dims))
(vect (make-vector vdx)))
(define (ra2v dims idxs)
(if (null? dims)
(let ((val (apply array-ref ra (reverse idxs))))
(set! vdx (+ -1 vdx))
(vector-set! vect vdx val)
vect)
(do ((idx (+ -1 (car dims)) (+ -1 idx)))
((negative? idx) vect)
(ra2v (cdr dims) (cons idx idxs)))))
(ra2v dims '())))
(define (array:in-bounds? array indices)
(do ((bnds (array:dimensions array) (cdr bnds))
(idxs indices (cdr idxs)))
((or (null? bnds)
(null? idxs)
(not (integer? (car idxs)))
(not (&lt; -1 (car idxs) (car bnds))))
(and (null? bnds) (null? idxs)))))
;;@args array index1 @dots{}
;;Returns @code{#t} if its arguments would be acceptable to
;;@code{array-ref}.
(define (array-in-bounds? array . indices)
(array:in-bounds? array indices))
;;@args array k1 @dots{}
;;Returns the (@2, @dots{}) element of @1.
(define (array-ref array . indices)
(define store (array:store array))
(or (array:in-bounds? array indices)
(slib:error 'array-ref 'bad-indices indices))
((if (string? store) string-ref vector-ref)
store (apply + (array:offset array) (map * (array:scales array) indices))))
;;@args array obj k1 @dots{}
;;Stores @2 in the (@3, @dots{}) element of @1. The value returned
;;by @0 is unspecified.
(define (array-set! array obj . indices)
(define store (array:store array))
(or (array:in-bounds? array indices)
(slib:error 'array-set! 'bad-indices indices))
((if (string? store) string-set! vector-set!)
store (apply + (array:offset array) (map * (array:scales array) indices))
obj))
;;@noindent
;;These functions return a prototypical uniform-array enclosing the
;;optional argument (which must be of the correct type). If the
;;uniform-array type is supported by the implementation, then it is
;;returned; defaulting to the next larger precision type; resorting
;;finally to vector.
(define (make-prototype-checker name pred? creator)
(lambda args
(case (length args)
((1) (if (pred? (car args))
(creator (car args))
(slib:error name 'incompatible 'type (car args))))
((0) (creator))
(else (slib:error name 'wrong 'number 'of 'args args)))))
(define (integer-bytes?? n)
(lambda (obj)
(and (integer? obj)
(exact? obj)
(or (negative? n) (not (negative? obj)))
(do ((num obj (quotient num 256))
(n (+ -1 (abs n)) (+ -1 n)))
((or (zero? num) (negative? n))
(zero? num))))))
;;@args z
;;@args
;;Returns an inexact 128.bit flonum complex uniform-array prototype.
(define A:floC128b (make-prototype-checker 'A:floC128b complex? vector))
;;@args z
;;@args
;;Returns an inexact 64.bit flonum complex uniform-array prototype.
(define A:floC64b (make-prototype-checker 'A:floC64b complex? vector))
;;@args z
;;@args
;;Returns an inexact 32.bit flonum complex uniform-array prototype.
(define A:floC32b (make-prototype-checker 'A:floC32b complex? vector))
;;@args z
;;@args
;;Returns an inexact 16.bit flonum complex uniform-array prototype.
(define A:floC16b (make-prototype-checker 'A:floC16b complex? vector))
;;@args z
;;@args
;;Returns an inexact 128.bit flonum real uniform-array prototype.
(define A:floR128b (make-prototype-checker 'A:floR128b real? vector))
;;@args z
;;@args
;;Returns an inexact 64.bit flonum real uniform-array prototype.
(define A:floR64b (make-prototype-checker 'A:floR64b real? vector))
;;@args z
;;@args
;;Returns an inexact 32.bit flonum real uniform-array prototype.
(define A:floR32b (make-prototype-checker 'A:floR32b real? vector))
;;@args z
;;@args
;;Returns an inexact 16.bit flonum real uniform-array prototype.
(define A:floR16b (make-prototype-checker 'A:floR16b real? vector))
;;@args z
;;@args
;;Returns an exact 128.bit decimal flonum rational uniform-array prototype.
(define A:floR128b (make-prototype-checker 'A:floR128b real? vector))
;;@args z
;;@args
;;Returns an exact 64.bit decimal flonum rational uniform-array prototype.
(define A:floR64b (make-prototype-checker 'A:floR64b real? vector))
;;@args z
;;@args
;;Returns an exact 32.bit decimal flonum rational uniform-array prototype.
(define A:floR32b (make-prototype-checker 'A:floR32b real? vector))
;;@args n
;;@args
;;Returns an exact binary fixnum uniform-array prototype with at least
;;64 bits of precision.
(define A:fixZ64b (make-prototype-checker 'A:fixZ64b (integer-bytes?? -8) vector))
;;@args n
;;@args
;;Returns an exact binary fixnum uniform-array prototype with at least
;;32 bits of precision.
(define A:fixZ32b (make-prototype-checker 'A:fixZ32b (integer-bytes?? -4) vector))
;;@args n
;;@args
;;Returns an exact binary fixnum uniform-array prototype with at least
;;16 bits of precision.
(define A:fixZ16b (make-prototype-checker 'A:fixZ16b (integer-bytes?? -2) vector))
;;@args n
;;@args
;;Returns an exact binary fixnum uniform-array prototype with at least
;;8 bits of precision.
(define A:fixZ8b (make-prototype-checker 'A:fixZ8b (integer-bytes?? -1) vector))
;;@args k
;;@args
;;Returns an exact non-negative binary fixnum uniform-array prototype with at
;;least 64 bits of precision.
(define A:fixN64b (make-prototype-checker 'A:fixN64b (integer-bytes?? 8) vector))
;;@args k
;;@args
;;Returns an exact non-negative binary fixnum uniform-array prototype with at
;;least 32 bits of precision.
(define A:fixN32b (make-prototype-checker 'A:fixN32b (integer-bytes?? 4) vector))
;;@args k
;;@args
;;Returns an exact non-negative binary fixnum uniform-array prototype with at
;;least 16 bits of precision.
(define A:fixN16b (make-prototype-checker 'A:fixN16b (integer-bytes?? 2) vector))
;;@args k
;;@args
;;Returns an exact non-negative binary fixnum uniform-array prototype with at
;;least 8 bits of precision.
(define A:fixN8b (make-prototype-checker 'A:fixN8b (integer-bytes?? 1) vector))
;;@args bool
;;@args
;;Returns a boolean uniform-array prototype.
(define A:bool (make-prototype-checker 'A:bool boolean? vector))
</PRE>
<H1>Copyright</H1>
<p>Copyright (C) 2005 Aubrey Jaffer</p>
<P>
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
</P><P>
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
</P><P>
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
</P><P>
</P><HR>
<ADDRESS>Editor: <A HREF="mailto:srfi-editors@srfi.schemers.org">David Van Horn</A></ADDRESS>
<!-- Created: Tue Sep 29 19:20:08 EDT 1998 -->
<!-- hhmts start -->
Last modified: Thu Jan 27 09:30:33 EST 2005
<!-- hhmts end -->
</BODY>
</HTML>