racket/collects/math/private/polynomial/chebyshev.rkt
Neil Toronto f2dc2027f6 Initial math library commit. The history for these changes is preserved
in the original GitHub fork:

  https://github.com/ntoronto/racket

Some things about this are known to be broken (most egregious is that the
array tests DO NOT RUN because of a problem in typed/rackunit), about half
has no coverage in the tests, and half has no documentation. Fixes and
docs are coming. This is committed now to allow others to find errors and
inconsistency in the things that appear to be working, and to give the
author a (rather incomplete) sense of closure.
2012-11-16 11:39:51 -07:00

128 lines
4.8 KiB
Racket

#lang typed/racket/base
(require (for-syntax racket/base syntax/parse)
racket/vector
"../../base.rkt"
"../../bigfloat.rkt"
"../flonum/flonum-functions.rkt"
"../unsafe.rkt")
(provide chebyshev-poly chebyshev-poly? chebyshev-poly-min chebyshev-poly-max chebyshev-poly-coefs
chebyshev-poly-order chebyshev-poly-convert
build-chebyshev-poly build-chebyshev-flpoly build-chebyshev-bfpoly
chebyshev-poly-fun chebyshev-flpoly-fun chebyshev-bfpoly-fun
inline-chebyshev-flpoly-fun)
(struct: (A) chebyshev-poly ([min : A] [max : A] [coefs : (Vectorof A)]) #:transparent)
(: chebyshev-poly-order (All (A) ((chebyshev-poly A) -> Index)))
(define (chebyshev-poly-order p)
(define n (vector-length (chebyshev-poly-coefs p)))
(if (zero? n) 0 (- n 1)))
(: chebyshev-poly-convert (All (A B) ((chebyshev-poly A) (A -> B) -> (chebyshev-poly B))))
(define (chebyshev-poly-convert p conv)
(define mn (chebyshev-poly-min p))
(define mx (chebyshev-poly-max p))
(define cs (chebyshev-poly-coefs p))
(chebyshev-poly (conv mn) (conv mx) (vector-map conv cs)))
#;
(: make-build-chebyshev-poly
(All (A) ((A A -> A) (A A -> A) (A A -> A) (A A -> A) (A -> A) (Integer -> A) (-> A)
-> (A A Integer (A -> A) -> (chebyshev-poly A)))))
(define-syntax-rule (make-build-chebyshev-poly A num+ num- num* num/ numcos int->num pi-thnk)
(λ: ([mn : A] [mx : A] [n : Integer] [f : (A -> A)])
(define 0.num (int->num 0))
(define 1.num (int->num 1))
(define 2.num (int->num 2))
(define 1/2.num (num/ 1.num 2.num))
(define pi.num (pi-thnk))
(define mx-mn (num- mx mn))
(define mn+mx (num+ mn mx))
(let ([n.num (int->num n)])
(define norm (num/ 2.num n.num))
(define cs
(for/vector: #:length n ([j (in-range n)]) : A
(let ([j (int->num j)])
(num* (for/fold: ([cj : A 0.num]) ([k (in-range n)])
(define θ (num/ (num* pi.num (num+ (int->num k) 1/2.num)) n.num))
(define x (num* 1/2.num (num+ (num* mx-mn (numcos θ)) mn+mx)))
(num+ cj (num* (f x) (numcos (num* θ j)))))
norm))))
(chebyshev-poly mn mx cs))))
#;
(: make-chebyshev-poly-fun
(All (A) ((A A -> A) (A A -> A) (A A -> A) (A A -> A) (Integer -> A)
-> ((chebyshev-poly A) -> (A -> A)))))
(define-syntax-rule (make-chebyshev-poly-fun A num+ num- num* num/ int->num)
(λ: ([p : (chebyshev-poly A)])
(define cs (chebyshev-poly-coefs p))
(define n (vector-length cs))
(define 0.num (int->num 0))
(define 2.num (int->num 2))
(cond
[(zero? n) (λ: ([x : A]) 0.num)]
[else
(define mn (chebyshev-poly-min p))
(define mx (chebyshev-poly-max p))
(λ: ([x : A])
(define i (- n 1))
(define c (unsafe-vector-ref cs i))
(define y (num/ (num- (num* x 2.num) (num+ mn mx))
(num- mx mn)))
(define y2 (num* y 2.num))
(let: loop : A ([i : Nonnegative-Fixnum i]
[c : A c]
[d : A 0.num]
[dd : A 0.num])
(cond [(zero? i) (num+ (num* y d) (num- (num/ c 2.num) dd))]
[else
(let ([d (num+ (num* y2 d) (num- c dd))]
[dd d])
(loop (- i 1) (unsafe-vector-ref cs (- i 1)) d dd))])))])))
(define build-chebyshev-poly
(make-build-chebyshev-poly Real + - * / cos (λ (x) x) (λ () pi)))
(define build-chebyshev-flpoly
(make-build-chebyshev-poly Float fl+ fl- fl* fl/ flcos ->fl (λ () pi)))
(define build-chebyshev-bfpoly
(make-build-chebyshev-poly Bigfloat bf+ bf- bf* bf/ bfcos bf (λ () pi.bf)))
(define chebyshev-poly-fun
(make-chebyshev-poly-fun Real + - * / (λ (x) x)))
(define chebyshev-flpoly-fun
(make-chebyshev-poly-fun Float fl+ fl- fl* fl/ ->fl))
(define chebyshev-bfpoly-fun
(make-chebyshev-poly-fun Bigfloat bf+ bf- bf* bf/ bf))
(define-syntax (chebyshev-iter stx)
(syntax-case stx ()
[(_ y y2 d dd ()) (syntax/loc stx d)]
[(_ y y2 d dd (c0))
(syntax/loc stx
(fl+ (fl* y d) (fl- (fl/ c0 2.0) dd)))]
[(_ y y2 d dd (c0 c ...))
(syntax/loc stx
(let ([d (fl+ (fl* y2 d) (fl- c0 dd))]
[dd d])
(chebyshev-iter y y2 d dd (c ...))))]))
(define-syntax (inline-chebyshev-flpoly-fun stx)
(syntax-parse stx
[(_ lower:expr upper:expr (c0:expr c:expr ...))
(with-syntax ([(c0 c ...) (reverse (syntax->list #'(c0 c ...)))])
(syntax/loc stx
(λ: ([z : Float])
(define y (fl/ (fl- (fl+ z z) (fl+ lower upper))
(fl- upper lower)))
(define y2 (fl+ y y))
(let ([d 0.0]
[dd 0.0])
(chebyshev-iter y y2 d dd (c ...))))))]))