
in the original GitHub fork: https://github.com/ntoronto/racket Some things about this are known to be broken (most egregious is that the array tests DO NOT RUN because of a problem in typed/rackunit), about half has no coverage in the tests, and half has no documentation. Fixes and docs are coming. This is committed now to allow others to find errors and inconsistency in the things that appear to be working, and to give the author a (rather incomplete) sense of closure.
179 lines
6.8 KiB
Racket
179 lines
6.8 KiB
Racket
#lang racket/base
|
|
|
|
(provide with-modulus
|
|
current-modulus
|
|
modular-inverse
|
|
modular-expt
|
|
inline-mod+
|
|
inline-mod*
|
|
inline-mod-
|
|
inline-mod/
|
|
inline-modsqr
|
|
inline-modexpt
|
|
inline-mod
|
|
inline-mod=
|
|
inline-mod<
|
|
inline-mod<=
|
|
inline-mod>
|
|
inline-mod>=)
|
|
|
|
(module typed-defs typed/racket/base
|
|
(require racket/performance-hint
|
|
"divisibility.rkt")
|
|
|
|
(provide (all-defined-out))
|
|
|
|
(: current-modulus-param (Parameterof Positive-Integer))
|
|
(define current-modulus-param (make-parameter 1))
|
|
|
|
(: current-modulus (-> Positive-Integer))
|
|
(begin-encourage-inline
|
|
(define (current-modulus) (current-modulus-param)))
|
|
|
|
; THEOREM
|
|
; If gcd(a,n)=1 then there exist b such that
|
|
; ab=1 mod n
|
|
; The number b is called an inverse of a modulo n.
|
|
(: modular-inverse* (Positive-Integer Integer -> Natural))
|
|
(define (modular-inverse* n a)
|
|
(cond [(zero? a) (raise-argument-error 'modular-inverse "nonzero Integer" 0 a n)]
|
|
[(coprime? n a) (modulo (car (bezout a n)) n)]
|
|
[else (error 'modular-inverse "expected argument that is coprime to modulus ~e; given ~e"
|
|
n a)]))
|
|
|
|
(: modular-expt* (Positive-Integer Integer Integer -> Natural))
|
|
;; Exponentiate by repeated modular multiplication and squaring
|
|
(define (modular-expt* n a b)
|
|
(cond [(b . < . 0) (raise-argument-error 'modular-expt "Natural" 1 a b n)]
|
|
[else
|
|
(let loop ([a a] [b b])
|
|
(cond [(b . <= . 1) (if (zero? b) (modulo 1 n) (modulo a n))]
|
|
[(even? b) (define c (loop a (quotient b 2)))
|
|
(modulo (* c c) n)]
|
|
[else (modulo (* a (loop a (sub1 b))) n)]))]))
|
|
|
|
(: modular-const* (Positive-Integer Exact-Rational -> Natural))
|
|
(define (modular-const* n a)
|
|
(cond [(integer? a) (modulo a n)]
|
|
[else (modulo (* (numerator a) (modular-inverse* n (denominator a))) n)]))
|
|
|
|
(: modular-inverse (Integer Integer -> Natural))
|
|
;; Return b, where a*b=1 mod n and b in {0,...,n-1}
|
|
(define (modular-inverse a n)
|
|
(cond [(n . <= . 0) (raise-argument-error 'modular-inverse "Positive-Integer" 1 a n)]
|
|
[else (modular-inverse* n a)]))
|
|
|
|
(: modular-expt (Integer Integer Integer -> Natural))
|
|
(define (modular-expt a b n)
|
|
(cond [(n . <= . 0) (raise-argument-error 'modular-expt "Positive-Integer" 2 a b n)]
|
|
[else (modular-expt* n a b)]))
|
|
)
|
|
|
|
(module untyped-defs racket/base
|
|
(require (for-syntax racket/base)
|
|
racket/stxparam
|
|
(submod ".." typed-defs))
|
|
|
|
(provide (all-defined-out))
|
|
|
|
(define-syntax-parameter current-modulus-id #f)
|
|
|
|
;; Sets the `current-modulus-param' and `current-modulus-id'
|
|
(define-syntax (with-modulus stx)
|
|
(syntax-case stx ()
|
|
[(_ modulus . body)
|
|
(syntax/loc stx
|
|
(let ([n modulus])
|
|
(syntax-parameterize ([current-modulus-id #'n])
|
|
(parameterize ([current-modulus-param n])
|
|
. body))))]))
|
|
|
|
;; Checks for `current-modulus-id'; if an identifier, uses the identifier's bound value for the
|
|
;; modulus; otherwise, gets the current modulus and sets `current-modulus-id' for inner expressions
|
|
(define-syntax (inline-mod-op stx)
|
|
(syntax-case stx ()
|
|
[(_ op-macro a ...)
|
|
(with-syntax ([n (syntax-parameter-value #'current-modulus-id)])
|
|
(cond [(identifier? #'n) (syntax/loc stx (op-macro n a ...))]
|
|
[else
|
|
(syntax/loc stx
|
|
(let ([m (current-modulus-param)])
|
|
(syntax-parameterize ([current-modulus-id #'m])
|
|
(op-macro m a ...))))]))]))
|
|
|
|
(define-syntax (fold-mod-op stx)
|
|
(syntax-case stx ()
|
|
[(_ op n a b)
|
|
(syntax/loc stx (modulo (op a b) n))]
|
|
[(_ op n a b cs ...)
|
|
(syntax/loc stx
|
|
(fold-mod-op op n (modulo (op a b) n) cs ...))]))
|
|
|
|
(define-syntax (modular-compare stx)
|
|
(syntax-case stx ()
|
|
[(_ op n a) (syntax/loc stx #t)]
|
|
[(_ op n a b) (syntax/loc stx (op (modulo a n) (modulo b n)))]
|
|
[(_ op n a b-expr bs ...)
|
|
(syntax/loc stx
|
|
(let ([b (modulo b-expr n)])
|
|
(and (op (modulo a n) b)
|
|
(fold-mod-compare-op op n b bs ...))))]))
|
|
|
|
(define-syntax (fold-mod-compare-op stx)
|
|
(syntax-case stx ()
|
|
[(_ op n a b)
|
|
(syntax/loc stx (op a (modulo b n)))]
|
|
[(_ op n a b-expr bs ...)
|
|
(syntax/loc stx
|
|
(let ([b (modulo b-expr n)])
|
|
(and (op a b)
|
|
(fold-mod-compare-op op n b bs ...))))]))
|
|
|
|
(define-syntax (modular+ stx)
|
|
(syntax-case stx ()
|
|
[(_ n) (syntax/loc stx 0)]
|
|
[(_ n a) (syntax/loc stx (modulo a n))]
|
|
[(_ n a ...) (syntax/loc stx (fold-mod-op + n a ...))]))
|
|
|
|
(define-syntax (modular* stx)
|
|
(syntax-case stx ()
|
|
[(_ n) (syntax/loc stx 1)]
|
|
[(_ n a) (syntax/loc stx (modulo a n))]
|
|
[(_ n a ...) (syntax/loc stx (fold-mod-op * n a ...))]))
|
|
|
|
(define-syntax (modular- stx)
|
|
(syntax-case stx ()
|
|
[(_ n a) (syntax/loc stx (modulo (- a) n))]
|
|
[(_ n a b ...) (syntax/loc stx (fold-mod-op - n a b ...))]))
|
|
|
|
(define-syntax (modular/ stx)
|
|
(syntax-case stx ()
|
|
[(_ n a) (syntax/loc stx (modular-inverse n a))]
|
|
[(_ n a b ...) (syntax/loc stx
|
|
(modular* n a (modular-inverse* n (modular* n b ...))))]))
|
|
|
|
(define-syntax-rule (modular-sqr n a) (modulo (* a a) n))
|
|
|
|
(define-syntax-rule (modular= n a b ...) (modular-compare = n a b ...))
|
|
(define-syntax-rule (modular< n a b ...) (modular-compare < n a b ...))
|
|
(define-syntax-rule (modular<= n a b ...) (modular-compare <= n a b ...))
|
|
(define-syntax-rule (modular> n a b ...) (modular-compare > n a b ...))
|
|
(define-syntax-rule (modular>= n a b ...) (modular-compare <= n a b ...))
|
|
|
|
(define-syntax-rule (inline-mod+ a ...) (inline-mod-op modular+ a ...))
|
|
(define-syntax-rule (inline-mod* a ...) (inline-mod-op modular* a ...))
|
|
(define-syntax-rule (inline-mod- a b ...) (inline-mod-op modular- a b ...))
|
|
(define-syntax-rule (inline-mod/ a b ...) (inline-mod-op modular/ a b ...))
|
|
(define-syntax-rule (inline-modsqr a) (inline-mod-op modular-sqr a))
|
|
(define-syntax-rule (inline-modexpt a b) (inline-mod-op modular-expt* a b))
|
|
(define-syntax-rule (inline-mod a) (inline-mod-op modular-const* a))
|
|
(define-syntax-rule (inline-mod= a b ...) (inline-mod-op modular= a b ...))
|
|
(define-syntax-rule (inline-mod< a b ...) (inline-mod-op modular< a b ...))
|
|
(define-syntax-rule (inline-mod<= a b ...) (inline-mod-op modular<= a b ...))
|
|
(define-syntax-rule (inline-mod> a b ...) (inline-mod-op modular> a b ...))
|
|
(define-syntax-rule (inline-mod>= a b ...) (inline-mod-op modular>= a b ...))
|
|
)
|
|
|
|
(require (submod "." typed-defs)
|
|
(submod "." untyped-defs))
|