racket/collects/math/private/number-theory/modular-arithmetic-base.rkt
Neil Toronto f2dc2027f6 Initial math library commit. The history for these changes is preserved
in the original GitHub fork:

  https://github.com/ntoronto/racket

Some things about this are known to be broken (most egregious is that the
array tests DO NOT RUN because of a problem in typed/rackunit), about half
has no coverage in the tests, and half has no documentation. Fixes and
docs are coming. This is committed now to allow others to find errors and
inconsistency in the things that appear to be working, and to give the
author a (rather incomplete) sense of closure.
2012-11-16 11:39:51 -07:00

179 lines
6.8 KiB
Racket

#lang racket/base
(provide with-modulus
current-modulus
modular-inverse
modular-expt
inline-mod+
inline-mod*
inline-mod-
inline-mod/
inline-modsqr
inline-modexpt
inline-mod
inline-mod=
inline-mod<
inline-mod<=
inline-mod>
inline-mod>=)
(module typed-defs typed/racket/base
(require racket/performance-hint
"divisibility.rkt")
(provide (all-defined-out))
(: current-modulus-param (Parameterof Positive-Integer))
(define current-modulus-param (make-parameter 1))
(: current-modulus (-> Positive-Integer))
(begin-encourage-inline
(define (current-modulus) (current-modulus-param)))
; THEOREM
; If gcd(a,n)=1 then there exist b such that
; ab=1 mod n
; The number b is called an inverse of a modulo n.
(: modular-inverse* (Positive-Integer Integer -> Natural))
(define (modular-inverse* n a)
(cond [(zero? a) (raise-argument-error 'modular-inverse "nonzero Integer" 0 a n)]
[(coprime? n a) (modulo (car (bezout a n)) n)]
[else (error 'modular-inverse "expected argument that is coprime to modulus ~e; given ~e"
n a)]))
(: modular-expt* (Positive-Integer Integer Integer -> Natural))
;; Exponentiate by repeated modular multiplication and squaring
(define (modular-expt* n a b)
(cond [(b . < . 0) (raise-argument-error 'modular-expt "Natural" 1 a b n)]
[else
(let loop ([a a] [b b])
(cond [(b . <= . 1) (if (zero? b) (modulo 1 n) (modulo a n))]
[(even? b) (define c (loop a (quotient b 2)))
(modulo (* c c) n)]
[else (modulo (* a (loop a (sub1 b))) n)]))]))
(: modular-const* (Positive-Integer Exact-Rational -> Natural))
(define (modular-const* n a)
(cond [(integer? a) (modulo a n)]
[else (modulo (* (numerator a) (modular-inverse* n (denominator a))) n)]))
(: modular-inverse (Integer Integer -> Natural))
;; Return b, where a*b=1 mod n and b in {0,...,n-1}
(define (modular-inverse a n)
(cond [(n . <= . 0) (raise-argument-error 'modular-inverse "Positive-Integer" 1 a n)]
[else (modular-inverse* n a)]))
(: modular-expt (Integer Integer Integer -> Natural))
(define (modular-expt a b n)
(cond [(n . <= . 0) (raise-argument-error 'modular-expt "Positive-Integer" 2 a b n)]
[else (modular-expt* n a b)]))
)
(module untyped-defs racket/base
(require (for-syntax racket/base)
racket/stxparam
(submod ".." typed-defs))
(provide (all-defined-out))
(define-syntax-parameter current-modulus-id #f)
;; Sets the `current-modulus-param' and `current-modulus-id'
(define-syntax (with-modulus stx)
(syntax-case stx ()
[(_ modulus . body)
(syntax/loc stx
(let ([n modulus])
(syntax-parameterize ([current-modulus-id #'n])
(parameterize ([current-modulus-param n])
. body))))]))
;; Checks for `current-modulus-id'; if an identifier, uses the identifier's bound value for the
;; modulus; otherwise, gets the current modulus and sets `current-modulus-id' for inner expressions
(define-syntax (inline-mod-op stx)
(syntax-case stx ()
[(_ op-macro a ...)
(with-syntax ([n (syntax-parameter-value #'current-modulus-id)])
(cond [(identifier? #'n) (syntax/loc stx (op-macro n a ...))]
[else
(syntax/loc stx
(let ([m (current-modulus-param)])
(syntax-parameterize ([current-modulus-id #'m])
(op-macro m a ...))))]))]))
(define-syntax (fold-mod-op stx)
(syntax-case stx ()
[(_ op n a b)
(syntax/loc stx (modulo (op a b) n))]
[(_ op n a b cs ...)
(syntax/loc stx
(fold-mod-op op n (modulo (op a b) n) cs ...))]))
(define-syntax (modular-compare stx)
(syntax-case stx ()
[(_ op n a) (syntax/loc stx #t)]
[(_ op n a b) (syntax/loc stx (op (modulo a n) (modulo b n)))]
[(_ op n a b-expr bs ...)
(syntax/loc stx
(let ([b (modulo b-expr n)])
(and (op (modulo a n) b)
(fold-mod-compare-op op n b bs ...))))]))
(define-syntax (fold-mod-compare-op stx)
(syntax-case stx ()
[(_ op n a b)
(syntax/loc stx (op a (modulo b n)))]
[(_ op n a b-expr bs ...)
(syntax/loc stx
(let ([b (modulo b-expr n)])
(and (op a b)
(fold-mod-compare-op op n b bs ...))))]))
(define-syntax (modular+ stx)
(syntax-case stx ()
[(_ n) (syntax/loc stx 0)]
[(_ n a) (syntax/loc stx (modulo a n))]
[(_ n a ...) (syntax/loc stx (fold-mod-op + n a ...))]))
(define-syntax (modular* stx)
(syntax-case stx ()
[(_ n) (syntax/loc stx 1)]
[(_ n a) (syntax/loc stx (modulo a n))]
[(_ n a ...) (syntax/loc stx (fold-mod-op * n a ...))]))
(define-syntax (modular- stx)
(syntax-case stx ()
[(_ n a) (syntax/loc stx (modulo (- a) n))]
[(_ n a b ...) (syntax/loc stx (fold-mod-op - n a b ...))]))
(define-syntax (modular/ stx)
(syntax-case stx ()
[(_ n a) (syntax/loc stx (modular-inverse n a))]
[(_ n a b ...) (syntax/loc stx
(modular* n a (modular-inverse* n (modular* n b ...))))]))
(define-syntax-rule (modular-sqr n a) (modulo (* a a) n))
(define-syntax-rule (modular= n a b ...) (modular-compare = n a b ...))
(define-syntax-rule (modular< n a b ...) (modular-compare < n a b ...))
(define-syntax-rule (modular<= n a b ...) (modular-compare <= n a b ...))
(define-syntax-rule (modular> n a b ...) (modular-compare > n a b ...))
(define-syntax-rule (modular>= n a b ...) (modular-compare <= n a b ...))
(define-syntax-rule (inline-mod+ a ...) (inline-mod-op modular+ a ...))
(define-syntax-rule (inline-mod* a ...) (inline-mod-op modular* a ...))
(define-syntax-rule (inline-mod- a b ...) (inline-mod-op modular- a b ...))
(define-syntax-rule (inline-mod/ a b ...) (inline-mod-op modular/ a b ...))
(define-syntax-rule (inline-modsqr a) (inline-mod-op modular-sqr a))
(define-syntax-rule (inline-modexpt a b) (inline-mod-op modular-expt* a b))
(define-syntax-rule (inline-mod a) (inline-mod-op modular-const* a))
(define-syntax-rule (inline-mod= a b ...) (inline-mod-op modular= a b ...))
(define-syntax-rule (inline-mod< a b ...) (inline-mod-op modular< a b ...))
(define-syntax-rule (inline-mod<= a b ...) (inline-mod-op modular<= a b ...))
(define-syntax-rule (inline-mod> a b ...) (inline-mod-op modular> a b ...))
(define-syntax-rule (inline-mod>= a b ...) (inline-mod-op modular>= a b ...))
)
(require (submod "." typed-defs)
(submod "." untyped-defs))