racket/collects/math/private/todo/polynomial/unfold-polynomial.rkt
Neil Toronto f2dc2027f6 Initial math library commit. The history for these changes is preserved
in the original GitHub fork:

  https://github.com/ntoronto/racket

Some things about this are known to be broken (most egregious is that the
array tests DO NOT RUN because of a problem in typed/rackunit), about half
has no coverage in the tests, and half has no documentation. Fixes and
docs are coming. This is committed now to allow others to find errors and
inconsistency in the things that appear to be working, and to give the
author a (rather incomplete) sense of closure.
2012-11-16 11:39:51 -07:00

99 lines
3.3 KiB
Racket

#lang typed/racket
(require racket/fixnum
"chebyshev.rkt")
(define-syntax (do-unfold-polynomial stx)
(syntax-case stx ()
[(_ [(b-names ...) init-bs] unfold-proc multiply-add zero n es cs)
(syntax/loc stx
(let-values ([(b-names ...) init-bs])
(let loop ([i 0] [res zero] [b-names b-names] ...)
(cond [(i . < . n)
(let-values ([(a b-names ...) (unfold-proc (vector-ref es i) b-names ...)])
(loop (+ i 1) (multiply-add (vector-ref cs i) a res) b-names ...))]
[else
res]))))]))
(define-syntax (unfold-polynomial stx)
(syntax-case stx ()
[(_ unfolder x deg n es cs)
(with-syntax ([([(b-names ...) init-bs] unfold-proc multiply-add zero)
(local-expand #'(unfolder deg n x)
(syntax-local-context)
#f)])
(syntax/loc stx
(do-unfold-polynomial [(b-names ...) init-bs] unfold-proc multiply-add zero n es cs)))]))
(: monomial-apply ((Vectorof Integer) (Vectorof Real) -> Real))
(define (monomial-apply es xs)
(define n (min (vector-length es) (vector-length xs)))
(let loop ([#{i : Nonnegative-Fixnum} 0] [#{z : Real} 1])
(cond [(i . fx< . n)
(define w (expt (vector-ref xs i) (vector-ref es i)))
(with-asserts ([w real?])
(loop (fx+ i 1) (* z w)))]
[else z])))
(define-syntax (power-unfolder stx)
(syntax-case stx ()
[(_ deg n x)
#'([() (values)]
(λ (a) (expt x a))
(λ: ([u : Real] [v : Real] [w : Real]) (+ (* u v) w))
(ann 0 Real))]))
(define-syntax (lacunary-unfolder stx)
(syntax-case stx ()
[(_ deg n x)
#'([() (values)]
(λ: ([a : (Vectorof Integer)]) (monomial-apply a x))
(λ: ([u : Real] [v : Real] [w : Real]) (+ (* u v) w))
(ann 0 Real))]))
(define-syntax (chebyshev-unfolder stx)
(syntax-case stx ()
[(_ deg n x)
#'([(ts) (let ()
(define ts (ann (make-vector (+ deg 1) #f) (Vectorof (Option Real))))
(vector-set! ts 0 1)
(vector-set! ts 1 x)
ts)]
(let ()
(: get-t (Integer (Vectorof (Option Real)) -> (Values Real (Vectorof (Option Real)))))
(define (get-t a ts)
(define t
(or (vector-ref ts a)
(let*-values ([(t-1 ts) (get-t (- a 1) ts)]
[(t-2 ts) (get-t (- a 2) ts)]
[(t) (- (* 2 (* x t-1)) t-2)])
(vector-set! ts a t)
t)))
(values t ts))
get-t)
(λ: ([u : Real] [v : Real] [w : Real]) (+ (* u v) w))
(ann 0 Real))]))
(define x 10)
(define y 5)
(define: xs : Any
(unfold-polynomial power-unfolder x 5 4 #(0 1 2 3) #(5 2 3 1)))
(define: ys : Any
(unfold-polynomial lacunary-unfolder
(ann (vector x y) (Vectorof Real))
#(5 5)
4
(ann #(#(1 2) #(2 1) #(4 3) #(5 5)) (Vectorof (Vectorof Integer)))
#(5 2 3 1)))
(define: zs : Any
(unfold-polynomial chebyshev-unfolder
x
5
4
(ann #(0 1 3 5) (Vectorof Integer))
#(2.55 3.1 2.1 1.1)))