racket/c/alloc.c
Matthew Flatt f78dc5724e add pb (portable bytecode) backend
This commit does four things:

 * Adds "pb.ss" and "pb.c", which implement a portable bytecode
   backend and interpreter that is intended for bootstrapping. A
   single set of pb bootfiles can support bootstrapping on all
   platforms --- as long as the C compiler supports a 64-bit integer
   type. The pb machine supports foreign calls for only a small set of
   recognized prototypes, and it does not support foriegn callables.
   Use `./configure --pb` to build the pb variant.

 * Changes the kernel's casts between `ptr` and `void*` types. In a pb
   build, the `ptr` type can be a 64-bit integer type while `void*` is
   a 32-bit pointer type, so casts must go through an intermediate
   integer type.

 * Adjusts the compiler to accomodate run-time-determined endianness.
   Making the compiler agnostic to word size is not practical, but
   only a few pieces depend on the target machine's endianness, and
   those can generally be deferred to a run-time choice of byte-based
   operations. The one exception is that ftype bit fields are not
   allowed unless accompanied by an explicit endianness declaration.

 * Start reducing duplication among platform-specific makefiles. For
   example, `Mf-ta6osx` chains to `Mf-a6osx` to avoid repeating most
   of it. A lot more can be done here.

original commit: 97533fa9d8b8400b0dc1a890768c7d30c91257e0
2020-07-24 13:13:46 -06:00

1013 lines
28 KiB
C

/* alloc.c
* Copyright 1984-2017 Cisco Systems, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "system.h"
#include "popcount.h"
/* locally defined functions */
static void maybe_fire_collector PROTO((void));
void S_alloc_init() {
ISPC s; IGEN g; UINT i;
if (S_boot_time) {
/* reset the allocation tables */
for (s = 0; s <= max_real_space; s++) {
for (g = 0; g <= static_generation; g++) {
S_G.base_loc[s][g] = FIX(0);
S_G.first_loc[s][g] = FIX(0);
S_G.next_loc[s][g] = FIX(0);
S_G.bytes_left[s][g] = 0;
S_G.bytes_of_space[s][g] = 0;
}
}
/* initialize the dirty-segment lists. */
for (i = 0; i < DIRTY_SEGMENT_LISTS; i += 1) {
S_G.dirty_segments[i] = NULL;
}
S_G.collect_trip_bytes = default_collect_trip_bytes;
/* set to final value in prim.c when known */
S_protect(&S_G.nonprocedure_code);
S_G.nonprocedure_code = FIX(0);
S_protect(&S_G.null_vector);
find_room(space_new, 0, type_typed_object, size_vector(0), S_G.null_vector);
VECTTYPE(S_G.null_vector) = (0 << vector_length_offset) | type_vector;
S_protect(&S_G.null_fxvector);
find_room(space_new, 0, type_typed_object, size_fxvector(0), S_G.null_fxvector);
FXVECTOR_TYPE(S_G.null_fxvector) = (0 << fxvector_length_offset) | type_fxvector;
S_protect(&S_G.null_bytevector);
find_room(space_new, 0, type_typed_object, size_bytevector(0), S_G.null_bytevector);
BYTEVECTOR_TYPE(S_G.null_bytevector) = (0 << bytevector_length_offset) | type_bytevector;
S_protect(&S_G.null_string);
find_room(space_new, 0, type_typed_object, size_string(0), S_G.null_string);
STRTYPE(S_G.null_string) = (0 << string_length_offset) | type_string;
S_protect(&S_G.null_immutable_vector);
find_room(space_new, 0, type_typed_object, size_vector(0), S_G.null_immutable_vector);
VECTTYPE(S_G.null_immutable_vector) = (0 << vector_length_offset) | type_vector | vector_immutable_flag;
S_protect(&S_G.null_immutable_fxvector);
find_room(space_new, 0, type_typed_object, size_fxvector(0), S_G.null_immutable_fxvector);
FXVECTOR_TYPE(S_G.null_immutable_fxvector) = (0 << fxvector_length_offset) | type_fxvector | fxvector_immutable_flag;
S_protect(&S_G.null_immutable_bytevector);
find_room(space_new, 0, type_typed_object, size_bytevector(0), S_G.null_immutable_bytevector);
BYTEVECTOR_TYPE(S_G.null_immutable_bytevector) = (0 << bytevector_length_offset) | type_bytevector | bytevector_immutable_flag;
S_protect(&S_G.null_immutable_string);
find_room(space_new, 0, type_typed_object, size_string(0), S_G.null_immutable_string);
STRTYPE(S_G.null_immutable_string) = (0 << string_length_offset) | type_string | string_immutable_flag;
}
}
void S_protect(p) ptr *p; {
if (S_G.protect_next > max_protected)
S_error_abort("max_protected constant too small");
*p = snil;
S_G.protected[S_G.protect_next++] = p;
}
/* S_reset_scheme_stack is always called with mutex */
void S_reset_scheme_stack(tc, n) ptr tc; iptr n; {
ptr *x; iptr m;
/* we allow less than one_shot_headroom here for no truly justifyable
reason */
n = ptr_align(n + (one_shot_headroom >> 1));
x = &STACKCACHE(tc);
for (;;) {
if (*x == snil) {
if (n < default_stack_size) n = default_stack_size;
/* stacks are untyped objects */
find_room(space_new, 0, typemod, n, SCHEMESTACK(tc));
break;
}
if ((m = CACHEDSTACKSIZE(*x)) >= n) {
n = m;
SCHEMESTACK(tc) = *x;
/* if we decide to leave KEEPSMALLPUPPIES undefined permanently, we should
rewrite this code to remove the indirect on x */
/* #define KEEPSMALLPUPPIES */
#ifdef KEEPSMALLPUPPIES
*x = CACHEDSTACKLINK(*x);
#else
STACKCACHE(tc) = CACHEDSTACKLINK(*x);
#endif
break;
}
x = &CACHEDSTACKLINK(*x);
}
SCHEMESTACKSIZE(tc) = n;
ESP(tc) = (ptr)((uptr)SCHEMESTACK(tc) + n - stack_slop);
SFP(tc) = (ptr)SCHEMESTACK(tc);
}
ptr S_compute_bytes_allocated(xg, xs) ptr xg; ptr xs; {
ptr tc = get_thread_context();
ISPC s, smax, smin; IGEN g, gmax, gmin;
uptr n;
gmin = (IGEN)UNFIX(xg);
if (gmin < 0) {
gmin = 0;
gmax = static_generation;
} else if (gmin == S_G.new_max_nonstatic_generation) {
/* include virtual inhabitents too */
gmax = S_G.max_nonstatic_generation;
} else {
gmax = gmin;
}
smin = (ISPC)(UNFIX(xs));
smax = smin < 0 ? max_real_space : smin;
smin = smin < 0 ? 0 : smin;
n = 0;
g = gmin;
while (g <= gmax) {
n += S_G.bytesof[g][countof_phantom];
for (s = smin; s <= smax; s++) {
/* add in bytes previously recorded */
n += S_G.bytes_of_space[s][g];
/* add in bytes in active segments */
if (S_G.next_loc[s][g] != FIX(0))
n += (uptr)S_G.next_loc[s][g] - (uptr)S_G.base_loc[s][g];
}
if (g == S_G.max_nonstatic_generation)
g = static_generation;
else
g += 1;
}
/* subtract off bytes not allocated */
if (gmin == 0 && smin <= space_new && space_new <= smax)
n -= (uptr)REAL_EAP(tc) - (uptr)AP(tc);
return Sunsigned(n);
}
ptr S_bytes_finalized() {
return Sunsigned(S_G.bytes_finalized);
}
static void maybe_fire_collector() {
ISPC s;
uptr bytes, fudge;
bytes = S_G.bytesof[0][countof_phantom];
for (s = 0; s <= max_real_space; s += 1) {
/* bytes already accounted for */
bytes += S_G.bytes_of_space[s][0];
/* bytes in current block of segments */
if (S_G.next_loc[s][0] != FIX(0))
bytes += (uptr)S_G.next_loc[s][0] - (uptr)S_G.base_loc[s][0];
}
/* arbitrary fudge factor to account for space we may not be using yet
arbitrary because:
- we assume each thread has not yet used half it's allocation area
- we assume each thread has not yet used half its stack
- some threads' stacks may not be as much as the default size
*/
fudge = (default_stack_size / 2) + S_nthreads * (bytes_per_segment / 2);
bytes = bytes > fudge ? bytes - fudge : 0;
if (bytes >= S_G.collect_trip_bytes)
S_fire_collector();
}
/* find_more_room
* S_find_more_room is called from the macro find_room when
* the current segment is too full to fit the allocation.
*
* A forward_marker followed by a pointer to
* the newly obtained segment is placed at next_loc to show
* gc where the end of this segment is and where the next
* segment of this type resides. Allocation occurs from the
* beginning of the newly obtained segment. The need for the
* eos marker explains the (2 * ptr_bytes) byte factor in
* S_find_more_room.
*/
/* S_find_more_room is always called with mutex */
ptr S_find_more_room(s, g, n, old) ISPC s; IGEN g; iptr n; ptr old; {
iptr nsegs, seg;
ptr new;
S_pants_down += 1;
nsegs = (uptr)(n + 2 * ptr_bytes + bytes_per_segment - 1) >> segment_offset_bits;
/* block requests to minimize fragmentation and improve cache locality */
if (s == space_code && nsegs < 16) nsegs = 16;
seg = S_find_segments(s, g, nsegs);
new = build_ptr(seg, 0);
if (old == FIX(0)) {
/* first object of this space */
S_G.first_loc[s][g] = new;
} else {
/* increment bytes_allocated by the closed-off partial segment */
S_G.bytes_of_space[s][g] += (uptr)old - (uptr)S_G.base_loc[s][g];
/* lay down an end-of-segment marker */
*(ptr*)TO_VOIDP(old) = forward_marker;
*((ptr*)TO_VOIDP(old) + 1) = new;
}
/* base address of current block of segments to track amount of allocation */
S_G.base_loc[s][g] = new;
S_G.next_loc[s][g] = (ptr)((uptr)new + n);
S_G.bytes_left[s][g] = (nsegs * bytes_per_segment - n) - 2 * ptr_bytes;
if (g == 0) maybe_fire_collector();
S_pants_down -= 1;
return new;
}
/* S_reset_allocation_pointer is always called with mutex */
/* We always allocate exactly one segment for the allocation area, since
we can get into hot water with formerly locked objects, specifically
symbols and impure records, that cross segment boundaries. This allows
us to maintain the invariant that no object crosses a segment boundary
unless it starts on a segment boundary (and is thus at least one
segment long). NB. This invariant does not apply to code objects
since we grab large blocks of segments for them.
*/
void S_reset_allocation_pointer(tc) ptr tc; {
iptr seg;
S_pants_down += 1;
seg = S_find_segments(space_new, 0, 1);
/* NB: if allocate_segments didn't already ensure we don't use the last segment
of memory, we'd have to reject it here so cp2-alloc can avoid a carry check for
small allocation requests, using something like this:
if (seg == (((uptr)1 << (ptr_bits - segment_offset_bits)) - 1))
seg = S_find_segments(space_new, 0, 1);
*/
S_G.bytes_of_space[space_new][0] += bytes_per_segment;
maybe_fire_collector();
AP(tc) = build_ptr(seg, 0);
REAL_EAP(tc) = EAP(tc) = (ptr)((uptr)AP(tc) + bytes_per_segment);
S_pants_down -= 1;
}
FORCEINLINE void mark_segment_dirty(seginfo *si, IGEN from_g) {
IGEN to_g = si->min_dirty_byte;
if (to_g != 0) {
seginfo **pointer_to_first, *oldfirst;
if (to_g != 0xff) {
seginfo *next = si->dirty_next, **prev = si->dirty_prev;
/* presently on some other list, so remove */
*prev = next;
if (next != NULL) next->dirty_prev = prev;
}
oldfirst = *(pointer_to_first = &DirtySegments(from_g, 0));
*pointer_to_first = si;
si->dirty_prev = pointer_to_first;
si->dirty_next = oldfirst;
if (oldfirst != NULL) oldfirst->dirty_prev = &si->dirty_next;
si->min_dirty_byte = 0;
}
}
void S_dirty_set(ptr *loc, ptr x) {
*loc = x;
if (!Sfixnump(x)) {
seginfo *si = SegInfo(addr_get_segment(TO_PTR(loc)));
if (si->use_marks) {
/* GC must be in progress */
if (!IMMEDIATE(x)) {
seginfo *t_si = SegInfo(ptr_get_segment(x));
if (t_si->generation < si->generation)
S_error_abort("wrong-way pointer installed during GC");
}
} else {
IGEN from_g = si->generation;
if (from_g != 0) {
si->dirty_bytes[((uptr)TO_PTR(loc) >> card_offset_bits) & ((1 << segment_card_offset_bits) - 1)] = 0;
mark_segment_dirty(si, from_g);
}
}
}
}
/* scan remembered set from P to ENDP, transfering to dirty vector */
void S_scan_dirty(ptr *p, ptr *endp) {
uptr this, last;
last = 0;
while (p < endp) {
ptr loc = *p;
/* whether building s directory or running UXLB code, the most
common situations are that *loc is a fixnum, this == last, or loc
is in generation 0. the generated code no longer adds elements
to the remembered set if the RHS val is a fixnum. the other
checks we do here. we don't bother looking for *loc being an
immediate or outside the heap, nor for the generation of *loc
being the same or older than the generation of loc, since these
don't seem to weed out many dirty writes, and we don't want to
waste time here on fruitless memory reads and comparisions */
if ((this = (uptr)loc >> card_offset_bits) != last) {
seginfo *si = SegInfo(addr_get_segment(loc));
IGEN from_g = si->generation;
if (from_g != 0) {
si->dirty_bytes[((uptr)loc >> card_offset_bits) & ((1 << segment_card_offset_bits) - 1)] = 0;
if (this >> segment_card_offset_bits != last >> segment_card_offset_bits) mark_segment_dirty(si, from_g);
}
last = this;
}
p += 1;
}
}
/* S_scan_remembered_set is called from generated machine code when there
* is insufficient room for a remembered set addition.
*/
void S_scan_remembered_set() {
ptr tc = get_thread_context();
uptr ap, eap, real_eap;
tc_mutex_acquire()
ap = (uptr)AP(tc);
eap = (uptr)EAP(tc);
real_eap = (uptr)REAL_EAP(tc);
S_scan_dirty(TO_VOIDP(eap), TO_VOIDP(real_eap));
eap = real_eap;
if (eap - ap > alloc_waste_maximum) {
AP(tc) = (ptr)ap;
EAP(tc) = (ptr)eap;
} else {
S_G.bytes_of_space[space_new][0] -= eap - ap;
S_reset_allocation_pointer(tc);
}
tc_mutex_release()
}
/* S_get_more_room is called from genereated machine code when there is
* insufficient room for an allocation. ap has already been incremented
* by the size of the object and xp is a (typed) pointer to the value of
* ap before the allocation attempt. xp must be set to a new object of
* the appropriate type and size.
*/
void S_get_more_room() {
ptr tc = get_thread_context();
ptr xp; uptr ap, type, size;
xp = XP(tc);
if ((type = TYPEBITS(xp)) == 0) type = typemod;
ap = (uptr)UNTYPE(xp, type);
size = (uptr)((iptr)AP(tc) - (iptr)ap);
XP(tc) = S_get_more_room_help(tc, ap, type, size);
}
ptr S_get_more_room_help(ptr tc, uptr ap, uptr type, uptr size) {
ptr x; uptr eap, real_eap;
eap = (uptr)EAP(tc);
real_eap = (uptr)REAL_EAP(tc);
tc_mutex_acquire()
S_scan_dirty(TO_VOIDP(eap), TO_VOIDP(real_eap));
eap = real_eap;
if (eap - ap >= size) {
x = TYPE(ap, type);
ap += size;
if (eap - ap > alloc_waste_maximum) {
AP(tc) = (ptr)ap;
EAP(tc) = (ptr)eap;
} else {
S_G.bytes_of_space[space_new][0] -= eap - ap;
S_reset_allocation_pointer(tc);
}
} else if (eap - ap > alloc_waste_maximum) {
AP(tc) = (ptr)ap;
EAP(tc) = (ptr)eap;
find_room(space_new, 0, type, size, x);
} else {
S_G.bytes_of_space[space_new][0] -= eap - ap;
S_reset_allocation_pointer(tc);
ap = (uptr)AP(tc);
if (size + alloc_waste_maximum <= (uptr)EAP(tc) - ap) {
x = TYPE(ap, type);
AP(tc) = (ptr)(ap + size);
} else {
find_room(space_new, 0, type, size, x);
}
}
tc_mutex_release()
return x;
}
ptr S_list_bits_ref(p) ptr p; {
seginfo *si = SegInfo(ptr_get_segment(p));
if (si->list_bits) {
int bit_pos = (segment_bitmap_index(p) & 0x7);
return FIX((si->list_bits[segment_bitmap_byte(p)] >> bit_pos) & list_bits_mask);
} else
return FIX(0);
}
void S_list_bits_set(p, bits) ptr p; iptr bits; {
seginfo *si = SegInfo(ptr_get_segment(p));
/* This function includes potential races when writing list bits.
If a race loses bits, that's ok, as long as it's unlikely. */
if (!si->list_bits) {
void *list_bits;
if (si->generation == 0) {
ptr tc = get_thread_context();
thread_find_room_voidp(tc, ptr_align(segment_bitmap_bytes), list_bits);
} else {
tc_mutex_acquire()
find_room_voidp(space_data, si->generation, ptr_align(segment_bitmap_bytes), list_bits);
tc_mutex_release()
}
memset(list_bits, 0, segment_bitmap_bytes);
/* FIXME: A write fence is needed here to make sure `list_bits` is
zeroed for everyone who sees it. On x86, TSO takes care of that
ordering already. */
/* beware: racy write here */
si->list_bits = list_bits;
}
/* beware: racy read+write here */
si->list_bits[segment_bitmap_byte(p)] |= segment_bitmap_bits(p, bits);
}
/* S_cons_in is always called with mutex */
ptr S_cons_in(s, g, car, cdr) ISPC s; IGEN g; ptr car, cdr; {
ptr p;
find_room(s, g, type_pair, size_pair, p);
INITCAR(p) = car;
INITCDR(p) = cdr;
return p;
}
ptr Scons(car, cdr) ptr car, cdr; {
ptr tc = get_thread_context();
ptr p;
thread_find_room(tc, type_pair, size_pair, p);
INITCAR(p) = car;
INITCDR(p) = cdr;
return p;
}
/* S_ephemeron_cons_in is always called with mutex */
ptr S_ephemeron_cons_in(gen, car, cdr) IGEN gen; ptr car, cdr; {
ptr p;
find_room(space_ephemeron, gen, type_pair, size_ephemeron, p);
INITCAR(p) = car;
INITCDR(p) = cdr;
EPHEMERONPREVREF(p) = 0;
EPHEMERONNEXT(p) = 0;
return p;
}
ptr S_box2(ref, immobile) ptr ref; IBOOL immobile; {
ptr tc = get_thread_context();
ptr p;
if (immobile) {
tc_mutex_acquire()
find_room(space_immobile_impure, 0, type_typed_object, size_box, p);
tc_mutex_release()
} else
thread_find_room(tc, type_typed_object, size_box, p);
BOXTYPE(p) = type_box;
INITBOXREF(p) = ref;
return p;
}
ptr Sbox(ref) ptr ref; {
return S_box2(ref, 0);
}
ptr S_symbol(name) ptr name; {
ptr tc = get_thread_context();
ptr p;
thread_find_room(tc, type_symbol, size_symbol, p);
/* changes here should be reflected in the oblist collection code in gc.c */
INITSYMVAL(p) = sunbound;
INITSYMCODE(p,S_G.nonprocedure_code);
INITSYMPLIST(p) = snil;
INITSYMSPLIST(p) = snil;
INITSYMNAME(p) = name;
INITSYMHASH(p) = Sfalse;
return p;
}
ptr S_rational(n, d) ptr n, d; {
if (d == FIX(1)) return n;
else {
ptr tc = get_thread_context();
ptr p;
thread_find_room(tc, type_typed_object, size_ratnum, p);
RATTYPE(p) = type_ratnum;
RATNUM(p) = n;
RATDEN(p) = d;
return p;
}
}
ptr S_tlc(ptr keyval, ptr ht, ptr next) {
ptr tc = get_thread_context();
ptr p;
thread_find_room(tc, type_typed_object, size_tlc, p);
TLCTYPE(p) = type_tlc;
INITTLCKEYVAL(p) = keyval;
INITTLCHT(p) = ht;
INITTLCNEXT(p) = next;
return p;
}
/* S_vector_in is always called with mutex */
ptr S_vector_in(s, g, n) ISPC s; IGEN g; iptr n; {
ptr p; iptr d;
if (n == 0) return S_G.null_vector;
if ((uptr)n >= maximum_vector_length)
S_error("", "invalid vector size request");
d = size_vector(n);
/* S_vector_in always called with mutex */
find_room(s, g, type_typed_object, d, p);
VECTTYPE(p) = (n << vector_length_offset) | type_vector;
return p;
}
ptr S_vector(n) iptr n; {
ptr tc;
ptr p; iptr d;
if (n == 0) return S_G.null_vector;
if ((uptr)n >= maximum_vector_length)
S_error("", "invalid vector size request");
tc = get_thread_context();
d = size_vector(n);
thread_find_room(tc, type_typed_object, d, p);
VECTTYPE(p) = (n << vector_length_offset) | type_vector;
return p;
}
ptr S_fxvector(n) iptr n; {
ptr tc;
ptr p; iptr d;
if (n == 0) return S_G.null_fxvector;
if ((uptr)n > (uptr)maximum_fxvector_length)
S_error("", "invalid fxvector size request");
tc = get_thread_context();
d = size_fxvector(n);
thread_find_room(tc, type_typed_object, d, p);
FXVECTOR_TYPE(p) = (n << fxvector_length_offset) | type_fxvector;
return p;
}
ptr S_bytevector(n) iptr n; {
return S_bytevector2(n, 0);
}
ptr S_bytevector2(n, immobile) iptr n; IBOOL immobile; {
ptr tc;
ptr p; iptr d;
if (n == 0) return S_G.null_bytevector;
if ((uptr)n > (uptr)maximum_bytevector_length)
S_error("", "invalid bytevector size request");
tc = get_thread_context();
d = size_bytevector(n);
if (immobile) {
tc_mutex_acquire()
find_room(space_immobile_data, 0, type_typed_object, d, p);
tc_mutex_release()
} else
thread_find_room(tc, type_typed_object, d, p);
BYTEVECTOR_TYPE(p) = (n << bytevector_length_offset) | type_bytevector;
return p;
}
ptr S_null_immutable_vector() {
ptr v;
find_room(space_new, 0, type_typed_object, size_vector(0), v);
VECTTYPE(v) = (0 << vector_length_offset) | type_vector | vector_immutable_flag;
return v;
}
ptr S_null_immutable_fxvector() {
ptr v;
find_room(space_new, 0, type_typed_object, size_fxvector(0), v);
VECTTYPE(v) = (0 << fxvector_length_offset) | type_fxvector | fxvector_immutable_flag;
return v;
}
ptr S_null_immutable_bytevector() {
ptr v;
find_room(space_new, 0, type_typed_object, size_bytevector(0), v);
VECTTYPE(v) = (0 << bytevector_length_offset) | type_bytevector | bytevector_immutable_flag;
return v;
}
ptr S_null_immutable_string() {
ptr v;
find_room(space_new, 0, type_typed_object, size_string(0), v);
VECTTYPE(v) = (0 << string_length_offset) | type_string | string_immutable_flag;
return v;
}
ptr S_stencil_vector(mask) uptr mask; {
ptr tc;
ptr p; iptr d;
iptr n = Spopcount(mask);
tc = get_thread_context();
d = size_stencil_vector(n);
thread_find_room(tc, type_typed_object, d, p);
VECTTYPE(p) = (mask << stencil_vector_mask_offset) | type_stencil_vector;
return p;
}
ptr S_record(n) iptr n; {
ptr tc = get_thread_context();
ptr p;
thread_find_room(tc, type_typed_object, n, p);
return p;
}
ptr S_closure(cod, n) ptr cod; iptr n; {
ptr tc = get_thread_context();
ptr p; iptr d;
d = size_closure(n);
thread_find_room(tc, type_closure, d, p);
CLOSENTRY(p) = cod;
return p;
}
/* S_mkcontinuation is always called with mutex */
ptr S_mkcontinuation(s, g, nuate, stack, length, clength, link, ret, winders, attachments)
ISPC s; IGEN g; ptr nuate; ptr stack; iptr length; iptr clength; ptr link;
ptr ret; ptr winders; ptr attachments; {
ptr p;
find_room(s, g, type_closure, size_continuation, p);
CLOSENTRY(p) = nuate;
CONTSTACK(p) = stack;
CONTLENGTH(p) = length;
CONTCLENGTH(p) = clength;
CONTLINK(p) = link;
CONTRET(p) = ret;
CONTWINDERS(p) = winders;
CONTATTACHMENTS(p) = attachments;
return p;
}
ptr Sflonum(x) double x; {
ptr tc = get_thread_context();
ptr p;
thread_find_room(tc, type_flonum, size_flonum, p);
FLODAT(p) = x;
return p;
}
ptr S_inexactnum(rp, ip) double rp, ip; {
ptr tc = get_thread_context();
ptr p;
thread_find_room(tc, type_typed_object, size_inexactnum, p);
INEXACTNUM_TYPE(p) = type_inexactnum;
INEXACTNUM_REAL_PART(p) = rp;
INEXACTNUM_IMAG_PART(p) = ip;
return p;
}
/* S_thread is always called with mutex */
ptr S_thread(xtc) ptr xtc; {
ptr p;
/* don't use thread_find_room since we may be building the current thread */
find_room(space_new, 0, type_typed_object, size_thread, p);
TYPEFIELD(p) = (ptr)type_thread;
THREADTC(p) = (uptr)xtc;
return p;
}
ptr S_exactnum(a, b) ptr a, b; {
ptr tc = get_thread_context();
ptr p;
thread_find_room(tc, type_typed_object, size_exactnum, p);
EXACTNUM_TYPE(p) = type_exactnum;
EXACTNUM_REAL_PART(p) = a;
EXACTNUM_IMAG_PART(p) = b;
return p;
}
/* S_string returns a new string of length n. If s is not NULL, it is
* copied into the new string. If n < 0, then s must be non-NULL,
* and the length of s (by strlen) determines the length of the string */
ptr S_string(s, n) const char *s; iptr n; {
ptr tc;
ptr p; iptr d;
iptr i;
if (n < 0) n = strlen(s);
if (n == 0) return S_G.null_string;
if ((uptr)n > (uptr)maximum_string_length)
S_error("", "invalid string size request");
tc = get_thread_context();
d = size_string(n);
thread_find_room(tc, type_typed_object, d, p);
STRTYPE(p) = (n << string_length_offset) | type_string;
/* fill the string with valid characters */
i = 0;
/* first copy input string, if any */
if (s != (char *)NULL) {
while (i != n && *s != 0) {
Sstring_set(p, i, *s++);
i += 1;
}
}
/* fill remaining slots with nul */
while (i != n) {
Sstring_set(p, i, 0);
i += 1;
}
return p;
}
ptr Sstring_utf8(s, n) const char *s; iptr n; {
const char* u8;
iptr cc, d, i, n8;
ptr p, tc;
if (n < 0) n = strlen(s);
if (n == 0) return S_G.null_string;
/* determine code point count cc */
u8 = s;
n8 = n;
cc = 0;
while (n8 > 0) {
unsigned char b1 = *(const unsigned char*)u8++;
n8--;
cc++;
if ((b1 & 0x80) == 0)
;
else if ((b1 & 0x40) == 0)
;
else if ((b1 & 0x20) == 0) {
if ((n8 >= 1) && ((*u8 & 0xc0) == 0x80)) {
u8++;
n8--;
}
} else if ((b1 & 0x10) == 0) {
if ((n8 >= 1) && ((*u8 & 0xc0) == 0x80)) {
u8++;
n8--;
if ((n8 >= 1) && ((*u8 & 0xc0) == 0x80)) {
u8++;
n8--;
}
}
} else if ((b1 & 0x08) == 0) {
if ((n8 >= 1) && ((*u8 & 0xc0) == 0x80)) {
u8++;
n8--;
if ((n8 >= 1) && ((*u8 & 0xc0) == 0x80)) {
u8++;
n8--;
if ((n8 >= 1) && ((*u8 & 0xc0) == 0x80)) {
u8++;
n8--;
}
}
}
}
}
if ((uptr)cc > (uptr)maximum_string_length)
S_error("", "invalid string size request");
tc = get_thread_context();
d = size_string(cc);
thread_find_room(tc, type_typed_object, d, p);
STRTYPE(p) = (cc << string_length_offset) | type_string;
/* fill the string */
u8 = s;
n8 = n;
i = 0;
while (n8 > 0) {
unsigned char b1 = *u8++;
int c = 0xfffd;
n8--;
if ((b1 & 0x80) == 0)
c = b1;
else if ((b1 & 0x40) == 0)
;
else if ((b1 & 0x20) == 0) {
unsigned char b2;
if ((n8 >= 1) && (((b2 = *u8) & 0xc0) == 0x80)) {
int x = ((b1 & 0x1f) << 6) | (b2 & 0x3f);
u8++;
n8--;
if (x >= 0x80)
c = x;
}
} else if ((b1 & 0x10) == 0) {
unsigned char b2;
if ((n8 >= 1) && (((b2 = *u8) & 0xc0) == 0x80)) {
unsigned char b3;
u8++;
n8--;
if ((n8 >= 1) && (((b3 = *u8) & 0xc0) == 0x80)) {
int x = ((b1 & 0x0f) << 12) | ((b2 & 0x3f) << 6) | (b3 & 0x3f);
u8++;
n8--;
if ((x >= 0x800) && ((x < 0xd800) || (x > 0xdfff)))
c = x;
}
}
} else if ((b1 & 0x08) == 0) {
unsigned char b2;
if ((n8 >= 1) && (((b2 = *u8) & 0xc0) == 0x80)) {
unsigned char b3;
u8++;
n8--;
if ((n8 >= 1) && (((b3 = *u8) & 0xc0) == 0x80)) {
unsigned char b4;
u8++;
n8--;
if ((n8 >= 1) && (((b4 = *u8) & 0xc0) == 0x80)) {
int x = ((b1 & 0x07) << 18) | ((b2 & 0x3f) << 12) | ((b3 & 0x3f) << 6) | (b4 & 0x3f);
u8++;
n8--;
if ((x >= 0x10000) && (x <= 0x10ffff))
c = x;
}
}
}
}
Sstring_set(p, i++, c);
}
return p;
}
ptr S_bignum(tc, n, sign) ptr tc; iptr n; IBOOL sign; {
ptr p; iptr d;
if ((uptr)n > (uptr)maximum_bignum_length)
S_error("", "invalid bignum size request");
d = size_bignum(n);
thread_find_room(tc, type_typed_object, d, p);
BIGTYPE(p) = (uptr)n << bignum_length_offset | sign << bignum_sign_offset | type_bignum;
return p;
}
/* S_code is always called with mutex */
ptr S_code(tc, type, n) ptr tc; iptr type, n; {
ptr p; iptr d;
d = size_code(n);
find_room(space_code, 0, type_typed_object, d, p);
CODETYPE(p) = type;
CODELEN(p) = n;
/* we record the code modification here, even though we haven't
even started modifying the code yet, since we always create
and fill the code object within a critical section. */
S_record_code_mod(tc, (uptr)TO_PTR(&CODEIT(p,0)), (uptr)n);
return p;
}
ptr S_relocation_table(n) iptr n; {
ptr tc = get_thread_context();
ptr p; iptr d;
d = size_reloc_table(n);
thread_find_room(tc, typemod, d, p);
RELOCSIZE(p) = n;
return p;
}
ptr S_weak_cons(ptr car, ptr cdr) {
ptr p;
tc_mutex_acquire();
p = S_cons_in(space_weakpair, 0, car, cdr);
tc_mutex_release();
return p;
}
ptr S_phantom_bytevector(sz) uptr sz; {
ptr tc = get_thread_context();
ptr p;
thread_find_room(tc, type_typed_object, size_phantom, p);
PHANTOMTYPE(p) = type_phantom;
PHANTOMLEN(p) = 0;
S_phantom_bytevector_adjust(p, sz);
return p;
}
void S_phantom_bytevector_adjust(ph, new_sz) ptr ph; uptr new_sz; {
uptr old_sz = PHANTOMLEN(ph);
seginfo *si;
IGEN g;
tc_mutex_acquire()
si = SegInfo(ptr_get_segment(ph));
g = si->generation;
S_G.bytesof[g][countof_phantom] += (new_sz - old_sz);
S_adjustmembytes(new_sz - old_sz);
PHANTOMLEN(ph) = new_sz;
tc_mutex_release()
}