racket/c/gc.c
dybvig 7d145e37a8 Various enhancements and fixes highlighted by profiling performance
and functionality improvements (including support for measuring
coverage), primitive argument-checking fixes, and object-file changes
resulting in reduced load times (and some backward incompatibility):
- annotations are now preserved in object files for debug
  only, for profiling only, for both, or not at all, depending
  on the settings of generate-inspector-information and
  compile-profile.  in particular, when inspector information
  is not enabled but profiling is, source information does
  not leak into error messages and inspector output, though it is
  still available via the profile tools.  The mechanics of this
  involved repurposing the fasl a? parameter to hold an annotation
  flags value when it is not #f and remaking annotations with
  new flags if necessary before emitting them.
    compile.ss, fasl.ss, misc.ms
- altered a number of mats to produce correct results even
  when the 's' directory is profiled.
    misc.ms, cp0.ms, record.ms
- profile-release-counters is now generation-friendly; that is,
  it doesn't look for dropped code objects in generations that have
  not been collected since the last call to profile-release-counters.
  also, it no longer allocates memory when it releases counters.
    pdhtml.ss,
    gc.c, gcwrapper.c, globals.h, prim5.c
- removed unused entry points S_ifile, S_ofile, and S_iofile
    alloc.c, externs.h
- mats that test loading profile info into the compiler's database
  to guide optimization now weed out preexisting entries, in case
  the 's' directory is profiled.
    4.ms, mat.ss, misc.ms, primvars.ms
- counters for dropped code objects are now released at the start
  of each mat group.
    mat.ss
- replaced ehc (enable-heap-check) option with hci (heap-check-interval)
  option that allows heap checks to be performed periodically rather
  than on each collection.  hci=0 is equivalent to ehc=f (disabling
  heap checks) and hci=1 is equivalent to ehc=t (enabling heap
  checks every collection), while hci=100 enables heap checks only
  every 100th collection.  allx and bullyx mats use this feature
  to reduce heap-checking overhead to a more reasonable level.  this
  is particularly important when the 's' directory is profiled,
  since the amount of static memory to be checked is greatly increased
  due to the counters.
    mats/Mf-base, mat.ss, primvars.ms
- added a mat that calls #%show-allocation, which was otherwise not
  being tested.
    misc.ms
- removed a broken primvars mat and updated two others.  in each case,
  the mat was looking for information about primitives in the wrong
  (i.e., old) place and silently succeeding when it didn't find any
  primitives to tests.  the revised mats (along with a few others) now
  check to make sure at least one identifier has the information they
  look for.  the removed mat was checking for library information that
  is now compiled in, so the mat is now unnecessary.  the others were
  (not) doing argument-error checks.  fixing these turned up a handful of
  problems that have also been fixed: a couple of unbound variables in the
  mat driver, two broken primdata declarations, a tardy argument check
  by profile-load-data, and a bug in char-ready?, which was requiring
  an argument rather than defaulting it to the current input port.
    primdata.ss, pdhtml.ss, io.ms,
    primdvars.ms, 4.ms, 6.ms, misc.ms, patch*
- added initial support for recording coverage information.  when the
  new parameter generate-covin-files is set, the compiler generates
  .covin files containing the universe of all source objects for which
  profile forms are present in the expander output.  when profiling
  and generation of covin files are enabled in the 's' directory, the
  mats optionally generate .covout files for each mat file giving
  the subset of the universe covered by the mat file, along with an
  all.covout in each mat output directory aggregating the coverage
  for the directory and another all.covout in the top-level mat
  directory aggregating the coverage for all directories.
    back.ss, compile.ss, cprep.ss, primdata.ss, s/Mf-base,
    mat.ss, mats/Mf-base, mats/primvars.ms
- support for generating covout files is now built in.  with-coverage-output
  gathers and dumps coverage information, and aggregate-coverage-output
  combines (aggregates) covout files.
    pdhtml.ss, primdata.ss, compile.ss,
    mat.ss, mats/Mf-base, primvars.ms
- profile-clear now adjusts active coverage trackers to avoid losing
  coverage information.
    pdhtml.ss,
    prim5.c
- nested with-coverage calls are now supported.
    pdhtml.ss
- switched to a more compact representation for covin and covout files;
  reduces disk space (compressed or not) by about a factor of four
  and read time by about a factor of two with no increase in write time.
    primdata.ss, pdhtml.ss, cprep.ss, compile.ss,
    mat.ss, mats/Mf-base
- added support for determining coverage for an entire run, including
  coverage for expressions hit during boot time.  'all' mats now produce
  run.covout files in each output directory, and 'allx' mats produce
  an aggregate run.covout file in the mat directory.
    pdhtml.ss,
    mat.ss, mats/Mf-base
- profile-release-counters now adjusts active coverage trackers to
  account for the counters that have been released.
    pdhtml.ss,
    prim5.c
- replaced the artificial "examples" target with a real "build-examples"
  target so make won't think it always has to mats that depend upon
  the examples directory having been compiled.  mats make clean now
  runs make clean in the examples directory.
    mats/Mf-base
  importing a library from an object file now just visits the object
  file rather than doing a full load so that the run-time code for
  the library is not retained.  The run-time code is still read
  because the current fasl format forces the entire file to be read,
  but not retaining the code can lower heap size and garbage-collection
  cost, particularly when many object-code libraries are imported.
  The downside is that the file must be revisited if the run-time
  code turns out to be required.   This change exposed several
  places where the code was failing to check if a revisit is needed.
    syntax.ss,
    7.ms, 8.ms, misc.ms, root-experr*
- fixed typos: was passing unquoted load rather than quoted load
  to $load-library along one path (where it is loading source code
  and therefore irrelevant), and was reporting src-path rather than
  obj-path in a message about failing to define a library.
    syntax.ss
- compile-file and friends now put all recompile information in
  the first fasl object after the header so the library manager can
  find it without loading the entire fasl file.  The library manager
  now does so.  It also now checks to see if library object files
  need to be recreated before loading them rather than loading them and
  possibly recompiling them after discovering they are out of date, since
  the latter requires loading the full object file even if it's out of
  date, while the former takes advantage of the ability to extract just
  recompile information.  as well as reducing overhead, this eliminates
  possibly undesirable side effects, such as creation and registration
  of out-of-date nongenerative record-type descriptors.  because the
  library manager expects to find recompile information at the front of
  an object file, it will not find all recompile information if object
  files are "catted" together.  also, compile-file has to hold in memory
  the object code for all expressions in the file so that it can emit the
  unified recompile information, rather than writing to the object file
  incrementally, which can significantly increase the memory required
  to compile a large file full of individual top-level forms.  This does
  not affect top-level programs, which were already handled as a whole,
  or a typical library file that contains just a single library form.
    compile.ss, syntax.ss
- the library manager now checks include files before library dependencies
  when compile-imported-libraries is false (as it already did when
  compile-imported-libraries is true) in case a source change affects
  the set of imported libraries.  (A library change can affect the set
  of include files as well, but checking dependencies before include
  files can cause unneeded libraries to be loaded.)  The include-file
  check is based on recompile-info rather than dependencies, but the
  library checks are still based on dependencies.
    syntax.ss
- fixed check for binding of scheme-version. (the check prevents
  premature treatment of recompile-info records as Lexpand forms
  to be passed to $interpret-backend.)
    scheme.c
- strip-fasl-file now preserves recompile-info when compile-time info
  is stripped.
    strip.ss
- removed include-req* from library/ct-info and ctdesc records; it
  is no longer needed now that all recompile information is maintained
  separately.
    expand-lang.ss, syntax.ss, compile.ss, cprep.ss, syntax.ss
- changed the fasl format and reworked a lot of code in the expander,
  compiler, fasl writer, and fasl reader to allow the fasl reader
  to skip past run-time information when it isn't needed and
  compile-time information when it isn't needed.  Skipping past
  still involves reading and decoding when encrypted, but the fasl
  reader no longer parses or allocates code and data in the portions
  to be skipped.  Side effects of associating record uids with rtds
  are also avoided, as are the side effects of interning symbols
  present only in the skipped data.  Skipping past code objects
  also reduces or eliminates the need to synchronize data and
  instruction caches.  Since the fasl reader no longer returns
  compile-time (visit) or run-time (revisit) code and data when not
  needed, the fasl reader no longer wraps these objects in a pair
  with a 0 or 1 visit or revisit marker.  To support this change,
  the fasl writer generates separate top-level fasl entries (and
  graphs) for separate forms in the same top-level source form
  (e.g., begin or library).  This reliably breaks eq-ness of shared
  structure across these forms, which was previously broken only
  when visit or revisit code was loaded at different times (this
  is an incompatible change).  Because of the change, fasl "groups"
  are no longer needed, so they are no longer handled.
    7.ss, cmacros.ss, compile.ss, expand-lang.ss, strip.ss,
    externs.h, fasl.c, scheme.c,
    hash.ms
- the change above is surfaced in an optional fasl-read "situation"
  argument (visit, revisit, or load).  The default is load.  visit
  causes it to skip past revisit code and data; revisit causes it
  to skip past visit code and data; and load causes it not to skip
  past either.  visit-revisit data produced by (eval-when (visit
  revisit) ---) is never skipped.
    7.ss, primdata.ss,
    io.stex
- to improve compile-time and run-time error checking, the
  Lexpand recompile-info, library/rt-info, library-ct-info, and
  program-info forms have been replaced with list-structured forms,
  e.g., (recompile-info ,rcinfo).
    expand-lang.ss, compile.ss, cprep.ss, interpret.ss, syntax.ss
- added visit-compiled-from-port and revisit-compiled-from-port
  to complement the existing load-compiled-from-port.
    7.ss, primdata.ss,
    7.ms,
    system.stex
- increased amount read when seeking an lz4-encrypted input
  file from 32 to 1024 bytes at a time
    compress-io.c
- replaced the fasl a? parameter value #t with an "all" flag value
  so it's value is consistently a mask.
    cmacros.ss, fasl.ss, compile.ss
- split off profile mats into a separate file
    misc.ms, profile.ms (new), root-experr*, mats/Mf-base
- added coverage percent computations to mat allx/bullyx output
    mat.ss, mats/Mf-base, primvars.ms
- replaced coverage tables with more generic and generally useful
  source tables, which map source objects to arbitrary values.
    pdhtml.ss, compile.ss, cprep.ss, primdata.ss,
    mat.ss, mats/Mf-base, primvars.ms, profile.ms,
    syntax.stex
- reduced profile counting overhead by using calls to fold-left
  instead of calls to apply and map and by using fixnum operations
  for profile counts on 64-bit machines.
    pdhtml.ss
- used a critical section to fix a race condition in the calculations
  of profile counts that sometimes resulted in bogus (including
  negative) counts, especially when the 's' directory is profiled.
    pdhtml.ss
- added discard flag to declaration for hashtable-size
    primdata.ss
- redesigned the printed representation of source tables and rewrote
  get-source-table! to read and store incrementally to reduce memory
  overhead.
    compile.ss
- added generate-covin-files to the set of parameters preserved
  by compile-file, etc.
    compile.ss,
    system.stex
- moved covop argument before the undocumented machine and hostop
  arguments to compile-port and compile-to-port.  removed the
  undocumented ofn argument from compile-to-port; using
  (port-name ip) instead.
    compile.ss, primdata.ss,
    7.ms,
    system.stex
- compile-port now tries to come up with a file position to supply
  to make-read, which it can do if the port's positions are character
  positions (presently string ports) or if the port is positioned
  at zero.
    compile.ss
- audited the argument-type-error fuzz mat exceptions and fixed a
  host of problems this turned up (entries follow).  added #f as
  an invalid argument for every type for which #f is indeed invalid
  to catch places where the maybe- prefix was missing on the argument
  type.  the mat tries hard to determine if the condition raised
  (if any) as the result of an invalid argument is appropriate and
  redirects the remainder to the mat-output (.mo) file prefixed
  with 'Expected error', causing them to show up in the expected
  error output so developers will be encouraged to audit them in
  the future.
    primvars.ms, mat.ss
- added an initial symbol? test on machine type names so we produce
  an invalid machine type error message rather than something
  confusing like "machine type #f is not supported".
    compile.ss
- fixed declarations for many primitives that were specified as
  accepting arguments of more general types than they actually
  accept, such as number -> real for various numeric operations,
  symbol -> endianness for various bytevector operations,
  time -> time-utc for time-utc->date, and list -> list-of-string-pairs
  for default-library-search-handler.   also replaced some of the
  sub-xxxx types with specific types such as sub-symbol -> endianness
  in utf16->string, but only where they were causing issues with
  the primvars argument-type-error fuzz mat.  (this should be done
  more generally.)
    primdata.ss
- fixed incorrect who arguments (was map instead of fold-right,
  current-date instead of time-utc->date); switched to using
  define-who/set-who! generally.
    4.ss, date.ss
- append! now checks all arguments before any mutation
    5_2.ss
- with-source-path now properly supplies itself as who for the
  string? argument check; callers like load now do their own checks.
    7.ss
- added missing integer? check to $fold-bytevector-native-ref whose
  lack could have resulted in a compile-time error.
    cp0.ss
- fixed typo in output-port-buffer-mode error message
    io.ss
- fixed who argument (was fx< rather than fx<?)
    library.ss
- fixed declaration of first source-file-descriptor argument (was
  sfd, now string)
    primdata.ss
- added missing article 'a' in a few error messages
    prims.ss
- fixed the copy-environment argument-type error message for the list
  of symbols argument.
    syntax.ss
- the environment procedure now catches exceptions that occur and
  reraises the exception with itself as who if the condition isn't
  already a who condition.
    syntax.ss
- updated experr and allx patch files for changes to argument-count
  fuzz mat and fixes for problems turned up by them.
    root-experr*, patch*
- fixed a couple of issues setting port sizes: string and bytevector
  output port put handlers don't need room to store the character
  or byte, so they now set the size to the buffer length rather
  than one less.  binary-file-port-clear-output now sets the index
  rather than size to zero; setting the size to zero is inappropriate
  for some types of ports and could result in loss of buffering and
  even suppression of future output.  removed a couple of redundant
  sets of the size that occur immediately after setting the buffer.
    io.ss
- it is now possible to return from a call to with-profile-tracker
  multiple times and not double-count (or worse) any counts.
    pdhtml.ss, profile.ms
- read-token now requires a file position when it is handed a
  source-file descriptor (since the source-file descriptor isn't
  otherwise useful), and the source-file descriptor argument can
  no longer be #f.  the input file position plays the same role as
  the input file position in get-datum/annotations.  these extra
  read-token arguments are now documented.
    read.ss,
    6.ms,
    io.stex
- the source-file descriptor argument to get-datum/annotations can
  no longer be #f.  it was already documented that way.
    read.ss
- read-token and do-read now look for the character-positions port
  flag before asking if the port has port-position, since the latter
  is slightly more expensive.
    read.ss
- rd-error now reports the current port position if it can be determined
  when fp isn't already set, i.e., when reading from a port without
  character positions (presently any non string port) and fp has not
  been passed in explicitly (to read-token or get-datum/annotations).
  the port position might not be a character position, but it should be
  better than nothing.
    read.ss
- added comment noting an invariant for s_profile_release_counters.
    prim5.c
- restored accidentally dropped fasl-write formdef and dropped
  duplicate fasl-read formdef
    io.stex
- added a 'coverage' target that tests the coverage of the Scheme-code
  portions of Chez Scheme by the mats.
    Makefile.in, Makefile-workarea.in
- added .PHONY declarations for all of the targets in the top-level
  and workarea make files, and renamed the create-bintar, create-rpm,
  and create-pkg targets bintar, rpm, and pkg.
    Makefile.in, Makefile-workarea.in
- added missing --retain-static-relocation command-line argument and
  updated the date
    scheme.1.in
- removed a few redundant conditional variable settings
    configure
- fixed declaration of condition wait (timeout -> maybe-timeout)
    primdata.ss

original commit: 88501743001393fa82e89c90da9185fc0086fbcb
2019-09-21 15:37:29 -07:00

2198 lines
76 KiB
C

/* gc.c
* Copyright 1984-2017 Cisco Systems, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "system.h"
#include "sort.h"
#ifndef WIN32
#include <sys/wait.h>
#endif /* WIN32 */
#define enable_object_counts do_not_use_enable_object_counts_in_this_file_use_ifdef_ENABLE_OBJECT_COUNTS_instead
/* locally defined functions */
static ptr append_bang PROTO((ptr ls1, ptr ls2));
static uptr count_unique PROTO((ptr ls));
static uptr list_length PROTO((ptr ls));
static ptr dosort PROTO((ptr ls, uptr n));
static ptr domerge PROTO((ptr l1, ptr l2));
static IBOOL search_locked PROTO((ptr p));
static ptr copy PROTO((ptr pp, seginfo *si));
static void sweep_ptrs PROTO((ptr *p, iptr n));
static void sweep PROTO((ptr tc, ptr p, IBOOL sweep_pure));
static ptr copy_stack PROTO((ptr old, iptr *length, iptr clength));
static void resweep_weak_pairs PROTO((IGEN g));
static void forward_or_bwp PROTO((ptr *pp, ptr p));
static void sweep_generation PROTO((ptr tc, IGEN g));
static iptr size_object PROTO((ptr p));
static iptr sweep_typed_object PROTO((ptr p));
static void sweep_symbol PROTO((ptr p));
static void sweep_port PROTO((ptr p));
static void sweep_thread PROTO((ptr p));
static void sweep_continuation PROTO((ptr p));
static void sweep_stack PROTO((uptr base, uptr size, uptr ret));
static void sweep_record PROTO((ptr x));
static IGEN sweep_dirty_record PROTO((ptr x));
static void sweep_code_object PROTO((ptr tc, ptr co));
static void record_dirty_segment PROTO((IGEN from_g, IGEN to_g, seginfo *si));
static void sweep_dirty PROTO((void));
static void resweep_dirty_weak_pairs PROTO((void));
static void add_ephemeron_to_pending PROTO((ptr p));
static void add_trigger_ephemerons_to_repending PROTO((ptr p));
static void check_trigger_ephemerons PROTO((seginfo *si));
static void check_ephemeron PROTO((ptr pe, int add_to_trigger));
static void check_pending_ephemerons PROTO(());
static int check_dirty_ephemeron PROTO((ptr pe, int tg, int youngest));
static void clear_trigger_ephemerons PROTO(());
/* MAXPTR is used to pad the sorted_locked_object vector. The pad value must be greater than any heap address */
#define MAXPTR ((ptr)-1)
#define OLDSPACE(x) (SPACE(x) & space_old)
/* #define DEBUG */
/* initialized and used each gc cycle. any others should be defined in globals.h */
static IBOOL change;
static IGEN target_generation;
static IGEN max_copied_generation;
static ptr sweep_loc[max_real_space+1];
static ptr orig_next_loc[max_real_space+1];
static ptr sorted_locked_objects;
static ptr tlcs_to_rehash;
static ptr append_bang(ptr ls1, ptr ls2) { /* assumes ls2 pairs are older than ls1 pairs, or that we don't car */
if (ls2 == Snil) {
return ls1;
} else if (ls1 == Snil) {
return ls2;
} else {
ptr this = ls1, next;
while ((next = Scdr(this)) != Snil) this = next;
INITCDR(this) = ls2;
return ls1;
}
}
static uptr count_unique(ls) ptr ls; { /* assumes ls is sorted and nonempty */
uptr i = 1; ptr x = Scar(ls), y;
while ((ls = Scdr(ls)) != Snil) {
if ((y = Scar(ls)) != x) {
i += 1;
x = y;
}
}
return i;
}
#define CARLT(x, y) (Scar(x) < Scar(y))
mkmergesort(dosort, domerge, ptr, Snil, CARLT, INITCDR)
uptr list_length(ptr ls) {
uptr i = 0;
while (ls != Snil) { ls = Scdr(ls); i += 1; }
return i;
}
#define relocate(ppp) {\
ptr PP;\
PP = *ppp;\
relocate_help(ppp, PP)\
}
/* optimization of:
* relocate(ppp)
* if (GENERATION(*ppp) < youngest)
* youngest = GENERATION(*ppp);
*/
#define relocate_dirty(ppp,tg,youngest) {\
ptr PP = *ppp; seginfo *SI;\
if (!IMMEDIATE(PP) && (SI = MaybeSegInfo(ptr_get_segment(PP))) != NULL) {\
if (SI->space & space_old) {\
relocate_help_help(ppp, PP, SI)\
youngest = tg;\
} else {\
IGEN pg;\
if (youngest != tg && (pg = SI->generation) < youngest) {\
youngest = pg;\
}\
}\
}\
}
#define relocate_help(ppp, pp) {\
seginfo *SI; \
if (!IMMEDIATE(pp) && (SI = MaybeSegInfo(ptr_get_segment(pp))) != NULL && SI->space & space_old)\
relocate_help_help(ppp, pp, SI)\
}
#define relocate_help_help(ppp, pp, si) {\
if (FWDMARKER(pp) == forward_marker && TYPEBITS(pp) != type_flonum)\
*ppp = FWDADDRESS(pp);\
else\
*ppp = copy(pp, si);\
}
#define relocate_return_addr(pcp) {\
seginfo *SI;\
ptr XCP;\
XCP = *(pcp);\
if ((SI = SegInfo(ptr_get_segment(XCP)))->space & space_old) { \
iptr CO;\
CO = ENTRYOFFSET(XCP) + ((uptr)XCP - (uptr)&ENTRYOFFSET(XCP));\
relocate_code(pcp,XCP,CO,SI)\
}\
}
/* in the call to copy below, assuming SPACE(PP) == SPACE(XCP) since
PP and XCP point to/into the same object */
#define relocate_code(pcp,XCP,CO,SI) {\
ptr PP;\
PP = (ptr)((uptr)XCP - CO);\
if (FWDMARKER(PP) == forward_marker)\
PP = FWDADDRESS(PP);\
else\
PP = copy(PP, SI);\
*pcp = (ptr)((uptr)PP + CO);\
}
/* rkd 2015/06/05: tried to use sse instructions. abandoned the code
because the collector ran slower */
#define copy_ptrs(ty, p1, p2, n) {\
ptr *Q1, *Q2, *Q1END;\
Q1 = (ptr *)UNTYPE((p1),ty);\
Q2 = (ptr *)UNTYPE((p2),ty);\
Q1END = (ptr *)((uptr)Q1 + n);\
while (Q1 != Q1END) *Q1++ = *Q2++;}
static IBOOL search_locked(ptr p) {
uptr k; ptr v, *vp, x;
v = sorted_locked_objects;
k = Svector_length(v);
vp = &INITVECTIT(v, 0);
for (;;) {
k >>= 1;
if ((x = vp[k]) == p) return 1;
if (k == 0) return 0;
if (x < p) vp += k + 1;
}
}
#define locked(p) (sorted_locked_objects != FIX(0) && search_locked(p))
FORCEINLINE void check_trigger_ephemerons(seginfo *si) {
/* Registering ephemerons to recheck at the granularity of a segment
means that the worst-case complexity of GC is quadratic in the
number of objects that fit into a segment (but that only happens
if the objects are ephemeron keys that are reachable just through
a chain via the value field of the same ephemerons). */
if (si->trigger_ephemerons) {
add_trigger_ephemerons_to_repending(si->trigger_ephemerons);
si->trigger_ephemerons = NULL;
}
}
static ptr copy(pp, si) ptr pp; seginfo *si; {
ptr p, tf; ITYPE t; IGEN tg;
if (locked(pp)) return pp;
tg = target_generation;
change = 1;
check_trigger_ephemerons(si);
if ((t = TYPEBITS(pp)) == type_typed_object) {
tf = TYPEFIELD(pp);
if (TYPEP(tf, mask_record, type_record)) {
ptr rtd; iptr n; ISPC s;
/* relocate to make sure we aren't using an oldspace descriptor
that has been overwritten by a forwarding marker, but don't loop
on tag-reflexive base descriptor */
if ((rtd = tf) != pp) relocate(&rtd)
n = size_record_inst(UNFIX(RECORDDESCSIZE(rtd)));
#ifdef ENABLE_OBJECT_COUNTS
{ ptr counts; IGEN g;
counts = RECORDDESCCOUNTS(rtd);
if (counts == Sfalse) {
IGEN grtd = rtd == pp ? tg : GENERATION(rtd);
S_G.countof[grtd][countof_rtd_counts] += 1;
/* allocate counts struct in same generation as rtd. initialize timestamp & counts */
find_room(space_data, grtd, type_typed_object, size_rtd_counts, counts);
RTDCOUNTSTYPE(counts) = type_rtd_counts;
RTDCOUNTSTIMESTAMP(counts) = S_G.gctimestamp[0];
for (g = 0; g <= static_generation; g += 1) RTDCOUNTSIT(counts, g) = 0;
RECORDDESCCOUNTS(rtd) = counts;
S_G.rtds_with_counts[grtd] = S_cons_in((grtd == 0 ? space_new : space_impure), grtd, rtd, S_G.rtds_with_counts[grtd]);
S_G.countof[grtd][countof_pair] += 1;
} else {
relocate(&counts)
RECORDDESCCOUNTS(rtd) = counts;
if (RTDCOUNTSTIMESTAMP(counts) != S_G.gctimestamp[0]) S_fixup_counts(counts);
}
RTDCOUNTSIT(counts, tg) += 1;
}
#endif /* ENABLE_OBJECT_COUNTS */
/* if the rtd is the only pointer and is immutable, put the record
into space data. if the record contains only pointers, put it
into space_pure or space_impure. otherwise put it into
space_pure_typed_object or space_impure_record. we could put all
records into space_{pure,impure}_record or even into
space_impure_record, but by picking the target space more
carefully we may reduce fragmentation and sweeping cost */
s = RECORDDESCPM(rtd) == FIX(1) && RECORDDESCMPM(rtd) == FIX(0) ?
space_data :
RECORDDESCPM(rtd) == FIX(-1) ?
RECORDDESCMPM(rtd) == FIX(0) ?
space_pure :
space_impure :
RECORDDESCMPM(rtd) == FIX(0) ?
space_pure_typed_object :
space_impure_record;
find_room(s, tg, type_typed_object, n, p);
copy_ptrs(type_typed_object, p, pp, n);
/* overwrite type field with forwarded descriptor */
RECORDINSTTYPE(p) = rtd == pp ? p : rtd;
/* pad if necessary */
if (s == space_pure || s == space_impure) {
iptr m = unaligned_size_record_inst(UNFIX(RECORDDESCSIZE(rtd)));
if (m != n)
*((ptr *)((uptr)UNTYPE(p,type_typed_object) + m)) = FIX(0);
}
} else if (TYPEP(tf, mask_vector, type_vector)) {
iptr len, n;
len = Svector_length(pp);
n = size_vector(len);
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_vector] += 1;
S_G.bytesof[tg][countof_vector] += n;
#endif /* ENABLE_OBJECT_COUNTS */
/* assumes vector lengths look like fixnums; if not, vectors will need their own space */
if ((uptr)tf & vector_immutable_flag) {
find_room(space_pure, tg, type_typed_object, n, p);
} else {
find_room(space_impure, tg, type_typed_object, n, p);
}
copy_ptrs(type_typed_object, p, pp, n);
/* pad if necessary */
if ((len & 1) == 0) INITVECTIT(p, len) = FIX(0);
} else if (TYPEP(tf, mask_string, type_string)) {
iptr n;
n = size_string(Sstring_length(pp));
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_string] += 1;
S_G.bytesof[tg][countof_string] += n;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_data, tg, type_typed_object, n, p);
copy_ptrs(type_typed_object, p, pp, n);
} else if (TYPEP(tf, mask_fxvector, type_fxvector)) {
iptr n;
n = size_fxvector(Sfxvector_length(pp));
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_fxvector] += 1;
S_G.bytesof[tg][countof_fxvector] += n;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_data, tg, type_typed_object, n, p);
copy_ptrs(type_typed_object, p, pp, n);
} else if (TYPEP(tf, mask_bytevector, type_bytevector)) {
iptr n;
n = size_bytevector(Sbytevector_length(pp));
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_bytevector] += 1;
S_G.bytesof[tg][countof_bytevector] += n;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_data, tg, type_typed_object, n, p);
copy_ptrs(type_typed_object, p, pp, n);
} else if ((iptr)tf == type_tlc) {
ptr keyval, next;
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_tlc] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_impure, tg, type_typed_object, size_tlc, p);
TLCTYPE(p) = type_tlc;
INITTLCKEYVAL(p) = keyval = TLCKEYVAL(pp);
INITTLCHT(p) = TLCHT(pp);
INITTLCNEXT(p) = next = TLCNEXT(pp);
/* if next isn't false and keyval is old, add tlc to a list of tlcs
* to process later. determining if keyval is old is a (conservative)
* approximation to determining if key is old. we can't easily
* determine if key is old, since keyval might or might not have been
* swept already. NB: assuming keyvals are always pairs. */
if (next != Sfalse && SPACE(keyval) & space_old)
tlcs_to_rehash = S_cons_in(space_new, 0, p, tlcs_to_rehash);
} else if (TYPEP(tf, mask_box, type_box)) {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_box] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
if ((uptr)tf == type_immutable_box) {
find_room(space_pure, tg, type_typed_object, size_box, p);
} else {
find_room(space_impure, tg, type_typed_object, size_box, p);
}
BOXTYPE(p) = (iptr)tf;
INITBOXREF(p) = Sunbox(pp);
} else if ((iptr)tf == type_ratnum) {
/* not recursive: place in space_data and relocate fields immediately */
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_ratnum] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_data, tg,
type_typed_object, size_ratnum, p);
RATTYPE(p) = type_ratnum;
RATNUM(p) = RATNUM(pp);
RATDEN(p) = RATDEN(pp);
relocate(&RATNUM(p))
relocate(&RATDEN(p))
} else if ((iptr)tf == type_exactnum) {
/* not recursive: place in space_data and relocate fields immediately */
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_exactnum] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_data, tg,
type_typed_object, size_exactnum, p);
EXACTNUM_TYPE(p) = type_exactnum;
EXACTNUM_REAL_PART(p) = EXACTNUM_REAL_PART(pp);
EXACTNUM_IMAG_PART(p) = EXACTNUM_IMAG_PART(pp);
relocate(&EXACTNUM_REAL_PART(p))
relocate(&EXACTNUM_IMAG_PART(p))
} else if ((iptr)tf == type_inexactnum) {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_inexactnum] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_data, tg,
type_typed_object, size_inexactnum, p);
INEXACTNUM_TYPE(p) = type_inexactnum;
INEXACTNUM_REAL_PART(p) = INEXACTNUM_REAL_PART(pp);
INEXACTNUM_IMAG_PART(p) = INEXACTNUM_IMAG_PART(pp);
} else if (TYPEP(tf, mask_bignum, type_bignum)) {
iptr n;
n = size_bignum(BIGLEN(pp));
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_bignum] += 1;
S_G.bytesof[tg][countof_bignum] += n;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_data, tg, type_typed_object, n, p);
copy_ptrs(type_typed_object, p, pp, n);
} else if (TYPEP(tf, mask_port, type_port)) {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_port] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_port, tg,
type_typed_object, size_port, p);
PORTTYPE(p) = PORTTYPE(pp);
PORTHANDLER(p) = PORTHANDLER(pp);
PORTNAME(p) = PORTNAME(pp);
PORTINFO(p) = PORTINFO(pp);
PORTOCNT(p) = PORTOCNT(pp);
PORTICNT(p) = PORTICNT(pp);
PORTOBUF(p) = PORTOBUF(pp);
PORTOLAST(p) = PORTOLAST(pp);
PORTIBUF(p) = PORTIBUF(pp);
PORTILAST(p) = PORTILAST(pp);
} else if (TYPEP(tf, mask_code, type_code)) {
iptr n;
n = size_code(CODELEN(pp));
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_code] += 1;
S_G.bytesof[tg][countof_code] += n;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_code, tg, type_typed_object, n, p);
copy_ptrs(type_typed_object, p, pp, n);
} else if ((iptr)tf == type_thread) {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_thread] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_pure_typed_object, tg,
type_typed_object, size_thread, p);
TYPEFIELD(p) = (ptr)type_thread;
THREADTC(p) = THREADTC(pp); /* static */
} else if ((iptr)tf == type_rtd_counts) {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_rtd_counts] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_data, tg, type_typed_object, size_rtd_counts, p);
copy_ptrs(type_typed_object, p, pp, size_rtd_counts);
} else {
S_error_abort("copy(gc): illegal type");
return (ptr)0 /* not reached */;
}
} else if (t == type_pair) {
if (si->space == (space_ephemeron | space_old)) {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_ephemeron] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_ephemeron, tg, type_pair, size_ephemeron, p);
INITCAR(p) = Scar(pp);
INITCDR(p) = Scdr(pp);
} else {
ptr qq = Scdr(pp); ptr q; seginfo *qsi;
if (qq != pp && TYPEBITS(qq) == type_pair && (qsi = MaybeSegInfo(ptr_get_segment(qq))) != NULL && qsi->space == si->space && FWDMARKER(qq) != forward_marker && !locked(qq)) {
check_trigger_ephemerons(qsi);
if (si->space == (space_weakpair | space_old)) {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_weakpair] += 2;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_weakpair, tg, type_pair, 2 * size_pair, p);
} else {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_pair] += 2;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_impure, tg, type_pair, 2 * size_pair, p);
}
q = (ptr)((uptr)p + size_pair);
INITCAR(p) = Scar(pp);
INITCDR(p) = q;
INITCAR(q) = Scar(qq);
INITCDR(q) = Scdr(qq);
FWDMARKER(qq) = forward_marker;
FWDADDRESS(qq) = q;
} else {
if (si->space == (space_weakpair | space_old)) {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_weakpair] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_weakpair, tg, type_pair, size_pair, p);
} else {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_pair] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_impure, tg, type_pair, size_pair, p);
}
INITCAR(p) = Scar(pp);
INITCDR(p) = qq;
}
}
} else if (t == type_closure) {
ptr code;
/* relocate before accessing code type field, which otherwise might
be a forwarding marker */
code = CLOSCODE(pp);
relocate(&code)
if (CODETYPE(code) & (code_flag_continuation << code_flags_offset)) {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_continuation] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_continuation, tg,
type_closure, size_continuation, p);
SETCLOSCODE(p,code);
/* don't promote one-shots */
CONTLENGTH(p) = CONTLENGTH(pp);
CONTCLENGTH(p) = CONTCLENGTH(pp);
CONTWINDERS(p) = CONTWINDERS(pp);
if (CONTLENGTH(p) != scaled_shot_1_shot_flag) {
CONTLINK(p) = CONTLINK(pp);
CONTRET(p) = CONTRET(pp);
CONTSTACK(p) = CONTSTACK(pp);
}
} else {
iptr len, n;
len = CLOSLEN(pp);
n = size_closure(len);
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_closure] += 1;
S_G.bytesof[tg][countof_closure] += n;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_pure, tg, type_closure, n, p);
copy_ptrs(type_closure, p, pp, n);
SETCLOSCODE(p,code);
/* pad if necessary */
if ((len & 1) == 0) CLOSIT(p, len) = FIX(0);
}
} else if (t == type_symbol) {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_symbol] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_symbol, tg, type_symbol, size_symbol, p);
INITSYMVAL(p) = SYMVAL(pp);
INITSYMPVAL(p) = SYMPVAL(pp);
INITSYMPLIST(p) = SYMPLIST(pp);
INITSYMSPLIST(p) = SYMSPLIST(pp);
INITSYMNAME(p) = SYMNAME(pp);
INITSYMHASH(p) = SYMHASH(pp);
} else if (t == type_flonum) {
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_flonum] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_data, tg, type_flonum, size_flonum, p);
FLODAT(p) = FLODAT(pp);
/* no room for forwarding address, so let 'em be duplicated */
return p;
} else {
S_error_abort("copy(gc): illegal type");
return (ptr)0 /* not reached */;
}
FWDMARKER(pp) = forward_marker;
FWDADDRESS(pp) = p;
return p;
}
static void sweep_ptrs(pp, n) ptr *pp; iptr n; {
ptr *end = pp + n;
while (pp != end) {
relocate(pp)
pp += 1;
}
}
static void sweep(ptr tc, ptr p, IBOOL sweep_pure) {
ptr tf; ITYPE t;
if ((t = TYPEBITS(p)) == type_pair) {
ISPC s = SPACE(p) & ~(space_locked | space_old);
if (s == space_ephemeron)
add_ephemeron_to_pending(p);
else {
if (s != space_weakpair) {
relocate(&INITCAR(p))
}
relocate(&INITCDR(p))
}
} else if (t == type_closure) {
if (sweep_pure) {
ptr code;
code = CLOSCODE(p);
relocate(&code)
SETCLOSCODE(p,code);
if (CODETYPE(code) & (code_flag_continuation << code_flags_offset))
sweep_continuation(p);
else
sweep_ptrs(&CLOSIT(p, 0), CLOSLEN(p));
}
} else if (t == type_symbol) {
sweep_symbol(p);
} else if (t == type_flonum) {
/* nothing to sweep */;
/* typed objects */
} else if (tf = TYPEFIELD(p), TYPEP(tf, mask_vector, type_vector)) {
sweep_ptrs(&INITVECTIT(p, 0), Svector_length(p));
} else if (TYPEP(tf, mask_string, type_string) || TYPEP(tf, mask_bytevector, type_bytevector) || TYPEP(tf, mask_fxvector, type_fxvector)) {
/* nothing to sweep */;
} else if (TYPEP(tf, mask_record, type_record)) {
relocate(&RECORDINSTTYPE(p));
if (sweep_pure || RECORDDESCMPM(RECORDINSTTYPE(p)) != FIX(0)) {
sweep_record(p);
}
} else if (TYPEP(tf, mask_box, type_box)) {
relocate(&INITBOXREF(p))
} else if ((iptr)tf == type_ratnum) {
if (sweep_pure) {
relocate(&RATNUM(p))
relocate(&RATDEN(p))
}
} else if ((iptr)tf == type_exactnum) {
if (sweep_pure) {
relocate(&EXACTNUM_REAL_PART(p))
relocate(&EXACTNUM_IMAG_PART(p))
}
} else if ((iptr)tf == type_inexactnum) {
/* nothing to sweep */;
} else if (TYPEP(tf, mask_bignum, type_bignum)) {
/* nothing to sweep */;
} else if (TYPEP(tf, mask_port, type_port)) {
sweep_port(p);
} else if (TYPEP(tf, mask_code, type_code)) {
if (sweep_pure) {
sweep_code_object(tc, p);
}
} else if ((iptr)tf == type_thread) {
sweep_thread(p);
} else if ((iptr)tf == type_rtd_counts) {
/* nothing to sweep */;
} else {
S_error_abort("sweep(gc): illegal type");
}
}
static ptr copy_stack(old, length, clength) ptr old; iptr *length, clength; {
iptr n, m; ptr new;
/* Don't copy non-oldspace stacks, since we may be sweeping a locked
continuation that is older than target_generation. Doing so would
be a waste of work anyway. */
if (!OLDSPACE(old)) return old;
/* reduce headroom created for excessively large frames (typically resulting from apply with long lists) */
if ((n = *length) != clength && n > default_stack_size && n > (m = clength + one_shot_headroom)) {
*length = n = m;
}
n = ptr_align(n);
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[target_generation][countof_stack] += 1;
S_G.bytesof[target_generation][countof_stack] += n;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_data, target_generation, typemod, n, new);
n = ptr_align(clength);
/* warning: stack may have been left non-double-aligned by split_and_resize */
copy_ptrs(typemod, new, old, n);
/* also returning possibly updated value in *length */
return new;
}
#define NONSTATICINHEAP(si, x) (!IMMEDIATE(x) && (si = MaybeSegInfo(ptr_get_segment(x))) != NULL && si->generation != static_generation)
#define ALWAYSTRUE(si, x) (si = SegInfo(ptr_get_segment(x)), 1)
#define partition_guardians(LS, FILTER) { \
ptr ls; seginfo *si;\
for (ls = LS; ls != Snil; ls = next) { \
obj = GUARDIANOBJ(ls); \
next = GUARDIANNEXT(ls); \
\
if (FILTER(si, obj)) { \
if (!(si->space & space_old) || locked(obj)) { \
INITGUARDIANNEXT(ls) = pend_hold_ls; \
pend_hold_ls = ls; \
} else if (FWDMARKER(obj) == forward_marker && TYPEBITS(obj) != type_flonum) { \
INITGUARDIANOBJ(ls) = FWDADDRESS(obj); \
INITGUARDIANNEXT(ls) = pend_hold_ls; \
pend_hold_ls = ls; \
} else { \
tconc = GUARDIANTCONC(ls); \
if (!OLDSPACE(tconc) || locked(tconc)) { \
INITGUARDIANNEXT(ls) = final_ls; \
final_ls = ls; \
} else if (FWDMARKER(tconc) == forward_marker) { \
INITGUARDIANTCONC(ls) = FWDADDRESS(tconc); \
INITGUARDIANNEXT(ls) = final_ls; \
final_ls = ls; \
} else { \
INITGUARDIANNEXT(ls) = pend_final_ls; \
pend_final_ls = ls; \
} \
} \
} \
} \
}
void GCENTRY(ptr tc, IGEN mcg, IGEN tg) {
IGEN g; ISPC s;
seginfo *oldspacesegments, *si, *nextsi;
ptr ls;
bucket_pointer_list *buckets_to_rebuild;
ptr locked_oldspace_objects;
/* flush instruction cache: effectively clear_code_mod but safer */
for (ls = S_threads; ls != Snil; ls = Scdr(ls)) {
ptr tc = (ptr)THREADTC(Scar(ls));
S_flush_instruction_cache(tc);
}
tlcs_to_rehash = Snil;
for (ls = S_threads; ls != Snil; ls = Scdr(ls)) {
ptr tc = (ptr)THREADTC(Scar(ls));
S_scan_dirty((ptr **)EAP(tc), (ptr **)REAL_EAP(tc));
EAP(tc) = REAL_EAP(tc) = AP(tc) = (ptr)0;
}
/* perform after ScanDirty */
if (S_checkheap) S_check_heap(0);
#ifdef DEBUG
(void)printf("mcg = %x; go? ", mcg); (void)fflush(stdout); (void)getc(stdin);
#endif
target_generation = tg;
max_copied_generation = mcg;
/* set up generations to be copied */
for (s = 0; s <= max_real_space; s++)
for (g = 0; g <= mcg; g++) {
S_G.base_loc[s][g] = FIX(0);
S_G.first_loc[s][g] = FIX(0);
S_G.next_loc[s][g] = FIX(0);
S_G.bytes_left[s][g] = 0;
S_G.bytes_of_space[s][g] = 0;
}
/* set up target generation sweep_loc and orig_next_loc pointers */
for (s = 0; s <= max_real_space; s++)
orig_next_loc[s] = sweep_loc[s] = S_G.next_loc[s][tg];
/* mark segments from which objects are to be copied */
oldspacesegments = (seginfo *)NULL;
for (s = 0; s <= max_real_space; s += 1) {
for (g = 0; g <= mcg; g += 1) {
for (si = S_G.occupied_segments[s][g]; si != NULL; si = nextsi) {
nextsi = si->next;
si->next = oldspacesegments;
oldspacesegments = si;
si->space = s | space_old; /* NB: implicitly clearing space_locked */
}
S_G.occupied_segments[s][g] = NULL;
}
}
#ifdef ENABLE_OBJECT_COUNTS
/* clear object counts & bytes for copied generations; bump timestamp */
{INT i;
for (g = 0; g <= mcg; g += 1) {
for (i = 0; i < countof_types; i += 1) {
S_G.countof[g][i] = 0;
S_G.bytesof[g][i] = 0;
}
if (g == 0) {
S_G.gctimestamp[g] += 1;
} else {
S_G.gctimestamp[g] = S_G.gctimestamp[0];
}
}
}
#endif /* ENABLE_OBJECT_COUNTS */
/* pre-collection handling of locked objects. */
/* create a single sorted_locked_object vector for all copied generations
* to accelerate the search for locked objects in copy(). copy wants
* a vector of some size n=2^k-1 so it doesn't have to check bounds */
ls = Snil;
/* note: append_bang and dosort reuse pairs, which can result in older
* objects pointing to newer ones...but we don't care since they are all
* oldspace and going away after this collection. */
for (g = 0; g <= mcg; g += 1) {
ls = append_bang(S_G.locked_objects[g], ls);
S_G.locked_objects[g] = Snil;
S_G.unlocked_objects[g] = Snil;
}
if (ls == Snil) {
sorted_locked_objects = FIX(0);
locked_oldspace_objects = Snil;
} else {
ptr v, x, y; uptr i, n;
/* dosort is destructive, so have to store the result back */
locked_oldspace_objects = ls = dosort(ls, list_length(ls));
/* create vector of smallest size n=2^k-1 that will fit all of
the list's unique elements */
i = count_unique(ls);
for (n = 1; n < i; n = (n << 1) | 1);
sorted_locked_objects = v = S_vector_in(space_new, 0, n);
/* copy list elements in, skipping duplicates */
INITVECTIT(v,0) = x = Scar(ls);
i = 1;
while ((ls = Scdr(ls)) != Snil) {
if ((y = Scar(ls)) != x) {
INITVECTIT(v, i) = x = y;
i += 1;
}
}
/* fill remaining slots with largest ptr value */
while (i < n) { INITVECTIT(v, i) = MAXPTR; i += 1; }
}
/* sweep older locked and unlocked objects */
for (g = mcg + 1; g <= static_generation; INCRGEN(g)) {
for (ls = S_G.locked_objects[g]; ls != Snil; ls = Scdr(ls))
sweep(tc, Scar(ls), 0);
for (ls = S_G.unlocked_objects[g]; ls != Snil; ls = Scdr(ls))
sweep(tc, Scar(ls), 0);
}
/* sweep younger locked objects, working from sorted vector to avoid redundant sweeping of duplicates */
if (sorted_locked_objects != FIX(0)) {
uptr i; ptr x, v, *vp;
v = sorted_locked_objects;
i = Svector_length(v);
x = *(vp = &INITVECTIT(v, 0));
do sweep(tc, x, 1); while (--i != 0 && (x = *++vp) != MAXPTR);
}
/* sweep non-oldspace threads, since any thread may have an active stack */
for (ls = S_threads; ls != Snil; ls = Scdr(ls)) {
ptr thread;
/* someone may have their paws on the list */
if (FWDMARKER(ls) == forward_marker) ls = FWDADDRESS(ls);
thread = Scar(ls);
if (!OLDSPACE(thread)) sweep_thread(thread);
}
relocate(&S_threads)
/* relocate nonempty oldspace symbols and set up list of buckets to rebuild later */
buckets_to_rebuild = NULL;
for (g = 0; g <= mcg; g += 1) {
bucket_list *bl, *blnext; bucket *b; bucket_pointer_list *bpl; bucket **oblist_cell; ptr sym; iptr idx;
for (bl = S_G.buckets_of_generation[g]; bl != NULL; bl = blnext) {
blnext = bl->cdr;
b = bl->car;
/* mark this bucket old for the rebuilding loop */
b->next = (bucket *)((uptr)b->next | 1);
sym = b->sym;
idx = UNFIX(SYMHASH(sym)) % S_G.oblist_length;
oblist_cell = &S_G.oblist[idx];
if (!((uptr)*oblist_cell & 1)) {
/* mark this bucket in the set */
*oblist_cell = (bucket *)((uptr)*oblist_cell | 1);
/* repurpose the bucket list element for the list of buckets to rebuild later */
/* idiot_checks verifies these have the same size */
bpl = (bucket_pointer_list *)bl;
bpl->car = oblist_cell;
bpl->cdr = buckets_to_rebuild;
buckets_to_rebuild = bpl;
}
if (FWDMARKER(sym) != forward_marker &&
/* coordinate with alloc.c */
(SYMVAL(sym) != sunbound || SYMPLIST(sym) != Snil || SYMSPLIST(sym) != Snil))
(void)copy(sym, SegInfo(ptr_get_segment(sym)));
}
S_G.buckets_of_generation[g] = NULL;
}
/* relocate the protected C pointers */
{uptr i;
for (i = 0; i < S_G.protect_next; i++)
relocate(S_G.protected[i])
}
/* sweep areas marked dirty by assignments into older generations */
sweep_dirty();
sweep_generation(tc, tg);
/* handle guardians */
{ ptr hold_ls, pend_hold_ls, final_ls, pend_final_ls;
ptr obj, rep, tconc, next;
/* move each entry in guardian lists into one of:
* pend_hold_ls if obj accessible
* final_ls if obj not accessible and tconc accessible
* pend_final_ls if obj not accessible and tconc not accessible */
pend_hold_ls = final_ls = pend_final_ls = Snil;
for (ls = S_threads; ls != Snil; ls = Scdr(ls)) {
ptr tc = (ptr)THREADTC(Scar(ls));
partition_guardians(GUARDIANENTRIES(tc), NONSTATICINHEAP);
GUARDIANENTRIES(tc) = Snil;
}
for (g = 0; g <= mcg; g += 1) {
partition_guardians(S_G.guardians[g], ALWAYSTRUE);
S_G.guardians[g] = Snil;
}
/* invariants after partition_guardians:
* for entry in pend_hold_ls, obj is !OLDSPACE or locked
* for entry in final_ls, obj is OLDSPACE and !locked
* for entry in final_ls, tconc is !OLDSPACE or locked
* for entry in pend_final_ls, obj and tconc are OLDSPACE and !locked
*/
hold_ls = S_G.guardians[tg];
while (1) {
IBOOL relocate_rep = final_ls != Snil;
/* relocate & add the final objects to their tconcs */
for (ls = final_ls; ls != Snil; ls = GUARDIANNEXT(ls)) {
ptr old_end, new_end;
rep = GUARDIANREP(ls);
/* ftype_guardian_rep is a marker for reference-counted ftype pointer */
if (rep == ftype_guardian_rep) {
int b; uptr *addr;
rep = GUARDIANOBJ(ls);
if (FWDMARKER(rep) == forward_marker) rep = FWDADDRESS(rep);
/* Caution: Building in assumption about shape of an ftype pointer */
addr = RECORDINSTIT(rep, 0);
LOCKED_DECR(addr, b);
if (!b) continue;
}
relocate(&rep);
/* if tconc was old it's been forwarded */
tconc = GUARDIANTCONC(ls);
old_end = Scdr(tconc);
/* allocating pair in tg means it will be swept, which is wasted effort, but should cause no harm */
new_end = S_cons_in(space_impure, 0, FIX(0), FIX(0));
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_pair] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
SETCAR(old_end,rep);
SETCDR(old_end,new_end);
SETCDR(tconc,new_end);
}
/* discard static pend_hold_ls entries */
if (tg != static_generation) {
/* copy each entry in pend_hold_ls into hold_ls if tconc accessible */
ls = pend_hold_ls; pend_hold_ls = Snil;
for ( ; ls != Snil; ls = next) {
tconc = GUARDIANTCONC(ls); next = GUARDIANNEXT(ls); ptr p;
if (OLDSPACE(tconc) && !locked(tconc)) {
if (FWDMARKER(tconc) == forward_marker)
tconc = FWDADDRESS(tconc);
else {
INITGUARDIANNEXT(ls) = pend_hold_ls;
pend_hold_ls = ls;
continue;
}
}
rep = GUARDIANREP(ls);
relocate(&rep);
relocate_rep = 1;
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_guardian] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_pure, tg, typemod, size_guardian_entry, p);
INITGUARDIANOBJ(p) = GUARDIANOBJ(ls);
INITGUARDIANREP(p) = rep;
INITGUARDIANTCONC(p) = tconc;
INITGUARDIANNEXT(p) = hold_ls;
hold_ls = p;
}
}
if (!relocate_rep) break;
sweep_generation(tc, tg);
/* move each entry in pend_final_ls into one of:
* final_ls if tconc forwarded
* pend_final_ls if tconc not forwarded */
ls = pend_final_ls; final_ls = pend_final_ls = Snil;
for ( ; ls != Snil; ls = next) {
tconc = GUARDIANTCONC(ls); next = GUARDIANNEXT(ls);
if (FWDMARKER(tconc) == forward_marker) {
INITGUARDIANTCONC(ls) = FWDADDRESS(tconc);
INITGUARDIANNEXT(ls) = final_ls;
final_ls = ls;
} else {
INITGUARDIANNEXT(ls) = pend_final_ls;
pend_final_ls = ls;
}
}
}
S_G.guardians[tg] = hold_ls;
}
/* handle weak pairs */
resweep_dirty_weak_pairs();
resweep_weak_pairs(tg);
/* still-pending ephemerons all go to bwp */
clear_trigger_ephemerons();
/* forward car fields of locked and unlocked older weak pairs */
for (g = mcg + 1; g <= static_generation; INCRGEN(g)) {
for (ls = S_G.locked_objects[g]; ls != Snil; ls = Scdr(ls)) {
ptr x = Scar(ls);
if (Spairp(x) && (SPACE(x) & ~(space_old|space_locked)) == space_weakpair)
forward_or_bwp(&INITCAR(x), Scar(x));
}
for (ls = S_G.unlocked_objects[g]; ls != Snil; ls = Scdr(ls)) {
ptr x = Scar(ls);
if (Spairp(x) && (SPACE(x) & ~(space_old|space_locked)) == space_weakpair)
forward_or_bwp(&INITCAR(x), Scar(x));
}
}
/* forward car fields of locked oldspace weak pairs */
if (sorted_locked_objects != FIX(0)) {
uptr i; ptr x, v, *vp;
v = sorted_locked_objects;
i = Svector_length(v);
x = *(vp = &INITVECTIT(v, 0));
do {
if (Spairp(x) && (SPACE(x) & ~(space_old|space_locked)) == space_weakpair) {
forward_or_bwp(&INITCAR(x), Scar(x));
}
} while (--i != 0 && (x = *++vp) != MAXPTR);
}
/* post-gc oblist handling. rebuild old buckets in the target generation, pruning unforwarded symbols */
{ bucket_list *bl, *blnext; bucket *b, *bnext; bucket_pointer_list *bpl; bucket **pb; ptr sym;
bl = tg == static_generation ? NULL : S_G.buckets_of_generation[tg];
for (bpl = buckets_to_rebuild; bpl != NULL; bpl = bpl->cdr) {
pb = bpl->car;
for (b = (bucket *)((uptr)*pb - 1); b != NULL && ((uptr)(b->next) & 1); b = bnext) {
bnext = (bucket *)((uptr)(b->next) - 1);
sym = b->sym;
if (locked(sym) || (FWDMARKER(sym) == forward_marker && ((sym = FWDADDRESS(sym)) || 1))) {
find_room(space_data, tg, typemod, sizeof(bucket), b);
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_oblist] += 1;
S_G.bytesof[tg][countof_oblist] += sizeof(bucket);
#endif /* ENABLE_OBJECT_COUNTS */
b->sym = sym;
*pb = b;
pb = &b->next;
if (tg != static_generation) {
blnext = bl;
find_room(space_data, tg, typemod, sizeof(bucket_list), bl);
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_oblist] += 1;
S_G.bytesof[tg][countof_oblist] += sizeof(bucket_list);
#endif /* ENABLE_OBJECT_COUNTS */
bl->cdr = blnext;
bl->car = b;
}
} else {
S_G.oblist_count -= 1;
}
}
*pb = b;
}
if (tg != static_generation) S_G.buckets_of_generation[tg] = bl;
}
/* rebuild rtds_with_counts lists, dropping otherwise inaccessible rtds */
{ IGEN g; ptr ls, p, newls = tg == mcg ? Snil : S_G.rtds_with_counts[tg];
for (g = 0; g <= mcg; g += 1) {
for (ls = S_G.rtds_with_counts[g], S_G.rtds_with_counts[g] = Snil; ls != Snil; ls = Scdr(ls)) {
p = Scar(ls);
if (!OLDSPACE(p) || locked(p)) {
newls = S_cons_in(space_impure, tg, p, newls);
S_G.countof[tg][countof_pair] += 1;
} else if (FWDMARKER(p) == forward_marker) {
newls = S_cons_in(space_impure, tg, FWDADDRESS(p), newls);
S_G.countof[tg][countof_pair] += 1;
}
}
}
S_G.rtds_with_counts[tg] = newls;
}
#ifndef WIN32
/* rebuild child_process list, reaping any that have died and refusing
to promote into the static generation. */
{
ptr old_ls, new_ls; IGEN gtmp, cpgen;
cpgen = tg == static_generation ? S_G.max_nonstatic_generation : tg;
new_ls = cpgen <= mcg ? Snil : S_child_processes[cpgen];
for (gtmp = 0; gtmp <= mcg; gtmp += 1) {
for (old_ls = S_child_processes[gtmp]; old_ls != Snil; old_ls = Scdr(old_ls)) {
INT pid = UNFIX(Scar(old_ls)), status, retpid;
retpid = waitpid(pid, &status, WNOHANG);
if (retpid == 0 || (retpid == pid && !(WIFEXITED(status) || WIFSIGNALED(status)))) {
new_ls = S_cons_in(space_impure, cpgen, FIX(pid), new_ls);
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[cpgen][countof_pair] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
}
}
S_child_processes[gtmp] = Snil;
}
S_child_processes[cpgen] = new_ls;
}
#endif /* WIN32 */
/* post-collection handling of locked objects. This must come after
any use of relocate or any other use of sorted_locked_objects */
if (sorted_locked_objects != FIX(0)) {
ptr ls, lsnew, x, v, *vp; iptr i;
v = sorted_locked_objects;
lsnew = tg == mcg ? Snil : S_G.locked_objects[tg];
/* work from sorted vector to avoid redundant processing of duplicates */
i = Svector_length(v);
x = *(vp = &INITVECTIT(v, 0));
do {
ptr a1, a2; uptr seg; uptr n;
/* promote the segment(s) containing x to the target generation.
reset the space_old bit to prevent the segments from being
reclaimed; set the locked bit to prevent sweeping by
sweep_dirty (since the segments may contain a mix of objects,
many of which have been discarded). */
n = size_object(x);
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[target_generation][countof_locked] += 1;
S_G.bytesof[target_generation][countof_locked] += n;
#endif /* ENABLE_OBJECT_COUNTS */
a1 = UNTYPE_ANY(x);
a2 = (ptr)((uptr)a1 + n - 1);
for (seg = addr_get_segment(a1); seg <= addr_get_segment(a2); seg += 1) {
seginfo *si = SegInfo(seg);
si->generation = tg;
si->space = (si->space & ~space_old) | space_locked;
}
} while (--i != 0 && (x = *++vp) != MAXPTR);
/* append entire list, including duplicates, to target-generation list. we do so
even when tg == static_generation so we can keep track of static objects that need to
be swept at the start of collection. (we could weed out pure static objects.) */
for (ls = locked_oldspace_objects; ls != Snil; ls = Scdr(ls)) {
lsnew = S_cons_in(space_impure, tg, Scar(ls), lsnew);
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[tg][countof_pair] += 1;
#endif /* ENABLE_OBJECT_COUNTS */
}
S_G.locked_objects[tg] = lsnew;
}
/* move old space segments to empty space */
for (si = oldspacesegments; si != NULL; si = nextsi) {
nextsi = si->next;
s = si->space;
if (s & space_locked) {
/* note: the oldspace bit is cleared above for locked objects */
s &= ~space_locked;
g = si->generation;
if (g == static_generation) S_G.number_of_nonstatic_segments -= 1;
si->next = S_G.occupied_segments[s][g];
S_G.occupied_segments[s][g] = si;
} else {
chunkinfo *chunk = si->chunk;
if (si->generation != static_generation) S_G.number_of_nonstatic_segments -= 1;
S_G.number_of_empty_segments += 1;
si->space = space_empty;
si->next = chunk->unused_segs;
chunk->unused_segs = si;
#ifdef WIPECLEAN
memset((void *)build_ptr(seg,0), 0xc7, bytes_per_segment);
#endif
if ((chunk->nused_segs -= 1) == 0) {
if (chunk->bytes != (minimum_segment_request + 1) * bytes_per_segment) {
/* release oversize chunks back to the O/S immediately to avoid allocating
* small stuff into them and thereby invite fragmentation */
S_free_chunk(chunk);
} else {
S_move_to_chunk_list(chunk, &S_chunks[PARTIAL_CHUNK_POOLS]);
}
} else {
S_move_to_chunk_list(chunk, &S_chunks[PARTIAL_CHUNK_POOLS-1]);
}
}
}
if (mcg >= S_G.min_free_gen) S_free_chunks();
S_flush_instruction_cache(tc);
if (S_checkheap) S_check_heap(1);
/* post-collection rehashing of tlcs.
must come after any use of relocate.
logically comes after gc is entirely complete */
while (tlcs_to_rehash != Snil) {
ptr b, next; uptr old_idx, new_idx;
ptr tlc = Scar(tlcs_to_rehash);
ptr ht = TLCHT(tlc);
ptr vec = PTRFIELD(ht,eq_hashtable_vec_disp);
uptr veclen = Svector_length(vec);
ptr key = Scar(TLCKEYVAL(tlc));
/* scan to end of bucket to find the index */
for (b = TLCNEXT(tlc); !Sfixnump(b); b = TLCNEXT(b));
old_idx = UNFIX(b);
if (key == Sbwp_object && PTRFIELD(ht,eq_hashtable_subtype_disp) != FIX(eq_hashtable_subtype_normal)) {
/* remove tlc */
b = Svector_ref(vec, old_idx);
if (b == tlc) {
SETVECTIT(vec, old_idx, TLCNEXT(b));
} else {
for (;;) { next = TLCNEXT(b); if (next == tlc) break; b = next; }
SETTLCNEXT(b,TLCNEXT(next));
}
INITTLCNEXT(tlc) = Sfalse;
INITPTRFIELD(ht,eq_hashtable_size_disp) = FIX(UNFIX(PTRFIELD(ht,eq_hashtable_size_disp)) - 1);
} else if ((new_idx = ((uptr)key >> primary_type_bits) & (veclen - 1)) != old_idx) {
/* remove tlc from old bucket */
b = Svector_ref(vec, old_idx);
if (b == tlc) {
SETVECTIT(vec, old_idx, TLCNEXT(b));
} else {
for (;;) { next = TLCNEXT(b); if (next == tlc) break; b = next; }
SETTLCNEXT(b,TLCNEXT(next));
}
/* and add to new bucket */
SETTLCNEXT(tlc, Svector_ref(vec, new_idx));
SETVECTIT(vec, new_idx, tlc);
}
tlcs_to_rehash = Scdr(tlcs_to_rehash);
}
S_resize_oblist();
/* tell profile_release_counters to look for bwp'd counters at least through tg */
if (S_G.prcgeneration < tg) S_G.prcgeneration = tg;
}
#define sweep_space(s, body)\
slp = &sweep_loc[s];\
nlp = &S_G.next_loc[s][g];\
if (*slp == 0) *slp = S_G.first_loc[s][g];\
pp = (ptr *)*slp;\
while (pp != (nl = (ptr *)*nlp))\
do\
if ((p = *pp) == forward_marker)\
pp = (ptr *)*(pp + 1);\
else\
body\
while (pp != nl);\
*slp = (ptr)pp;
static void resweep_weak_pairs(g) IGEN g; {
ptr *slp, *nlp; ptr *pp, p, *nl;
sweep_loc[space_weakpair] = S_G.first_loc[space_weakpair][g];
sweep_space(space_weakpair, {
forward_or_bwp(pp, p);
pp += 2;
})
}
static void forward_or_bwp(pp, p) ptr *pp; ptr p; {
seginfo *si;
/* adapted from relocate */
if (!IMMEDIATE(p) && (si = MaybeSegInfo(ptr_get_segment(p))) != NULL && si->space & space_old && !locked(p)) {
if (FWDMARKER(p) == forward_marker && TYPEBITS(p) != type_flonum) {
*pp = FWDADDRESS(p);
} else {
*pp = Sbwp_object;
}
}
}
static void sweep_generation(tc, g) ptr tc; IGEN g; {
ptr *slp, *nlp; ptr *pp, p, *nl;
do {
change = 0;
sweep_space(space_impure, {
relocate_help(pp, p)
p = *(pp += 1);
relocate_help(pp, p)
pp += 1;
})
sweep_space(space_symbol, {
p = TYPE((ptr)pp, type_symbol);
sweep_symbol(p);
pp += size_symbol / sizeof(ptr);
})
sweep_space(space_port, {
p = TYPE((ptr)pp, type_typed_object);
sweep_port(p);
pp += size_port / sizeof(ptr);
})
sweep_space(space_weakpair, {
p = *(pp += 1);
relocate_help(pp, p)
pp += 1;
})
sweep_space(space_ephemeron, {
p = TYPE((ptr)pp, type_pair);
add_ephemeron_to_pending(p);
pp += size_ephemeron / sizeof(ptr);
})
sweep_space(space_pure, {
relocate_help(pp, p)
p = *(pp += 1);
relocate_help(pp, p)
pp += 1;
})
sweep_space(space_continuation, {
p = TYPE((ptr)pp, type_closure);
sweep_continuation(p);
pp += size_continuation / sizeof(ptr);
})
sweep_space(space_pure_typed_object, {
p = TYPE((ptr)pp, type_typed_object);
pp = (ptr *)((uptr)pp + sweep_typed_object(p));
})
sweep_space(space_code, {
p = TYPE((ptr)pp, type_typed_object);
sweep_code_object(tc, p);
pp += size_code(CODELEN(p)) / sizeof(ptr);
})
sweep_space(space_impure_record, {
p = TYPE((ptr)pp, type_typed_object);
sweep_record(p);
pp = (ptr *)((iptr)pp +
size_record_inst(UNFIX(RECORDDESCSIZE(RECORDINSTTYPE(p)))));
})
/* Waiting until sweeping doesn't trigger a change reduces the
chance that an ephemeron must be reigistered as a
segment-specific trigger or gets triggered for recheck, but
it doesn't change the worst-case complexity. */
if (!change)
check_pending_ephemerons();
} while (change);
}
static iptr size_object(p) ptr p; {
ITYPE t; ptr tf;
if ((t = TYPEBITS(p)) == type_pair) {
seginfo *si;
if ((si = MaybeSegInfo(ptr_get_segment(p))) != NULL && (si->space & ~(space_locked | space_old)) == space_ephemeron)
return size_ephemeron;
else
return size_pair;
} else if (t == type_closure) {
ptr code = CLOSCODE(p);
if (CODETYPE(code) & (code_flag_continuation << code_flags_offset))
return size_continuation;
else
return size_closure(CLOSLEN(p));
} else if (t == type_symbol) {
return size_symbol;
} else if (t == type_flonum) {
return size_flonum;
/* typed objects */
} else if (tf = TYPEFIELD(p), TYPEP(tf, mask_vector, type_vector)) {
return size_vector(Svector_length(p));
} else if (TYPEP(tf, mask_string, type_string)) {
return size_string(Sstring_length(p));
} else if (TYPEP(tf, mask_bytevector, type_bytevector)) {
return size_bytevector(Sbytevector_length(p));
} else if (TYPEP(tf, mask_record, type_record)) {
return size_record_inst(UNFIX(RECORDDESCSIZE(tf)));
} else if (TYPEP(tf, mask_fxvector, type_fxvector)) {
return size_fxvector(Sfxvector_length(p));
} else if (TYPEP(tf, mask_box, type_box)) {
return size_box;
} else if ((iptr)tf == type_ratnum) {
return size_ratnum;
} else if ((iptr)tf == type_exactnum) {
return size_exactnum;
} else if ((iptr)tf == type_inexactnum) {
return size_inexactnum;
} else if (TYPEP(tf, mask_bignum, type_bignum)) {
return size_bignum(BIGLEN(p));
} else if (TYPEP(tf, mask_port, type_port)) {
return size_port;
} else if (TYPEP(tf, mask_code, type_code)) {
return size_code(CODELEN(p));
} else if ((iptr)tf == type_thread) {
return size_thread;
} else if ((iptr)tf == type_rtd_counts) {
return size_rtd_counts;
} else {
S_error_abort("size_object(gc): illegal type");
return 0 /* not reached */;
}
}
static iptr sweep_typed_object(p) ptr p; {
ptr tf = TYPEFIELD(p);
if (TYPEP(tf, mask_record, type_record)) {
sweep_record(p);
return size_record_inst(UNFIX(RECORDDESCSIZE(RECORDINSTTYPE(p))));
} else if (TYPEP(tf, mask_thread, type_thread)) {
sweep_thread(p);
return size_thread;
} else {
S_error_abort("sweep_typed_object(gc): unexpected type");
return 0 /* not reached */;
}
}
static void sweep_symbol(p) ptr p; {
ptr val, code;
val = SYMVAL(p);
relocate(&val);
INITSYMVAL(p) = val;
code = Sprocedurep(val) ? CLOSCODE(val) : SYMCODE(p);
relocate(&code);
INITSYMCODE(p,code);
relocate(&INITSYMPLIST(p))
relocate(&INITSYMSPLIST(p))
relocate(&INITSYMNAME(p))
relocate(&INITSYMHASH(p))
}
static void sweep_port(p) ptr p; {
relocate(&PORTHANDLER(p))
relocate(&PORTINFO(p))
relocate(&PORTNAME(p))
if (PORTTYPE(p) & PORT_FLAG_OUTPUT) {
iptr n = (iptr)PORTOLAST(p) - (iptr)PORTOBUF(p);
relocate(&PORTOBUF(p))
PORTOLAST(p) = (ptr)((iptr)PORTOBUF(p) + n);
}
if (PORTTYPE(p) & PORT_FLAG_INPUT) {
iptr n = (iptr)PORTILAST(p) - (iptr)PORTIBUF(p);
relocate(&PORTIBUF(p))
PORTILAST(p) = (ptr)((iptr)PORTIBUF(p) + n);
}
}
static void sweep_thread(p) ptr p; {
ptr tc = (ptr)THREADTC(p);
INT i;
if (tc != (ptr)0) {
ptr old_stack = SCHEMESTACK(tc);
if (OLDSPACE(old_stack)) {
iptr clength = (uptr)SFP(tc) - (uptr)old_stack;
/* include SFP[0], which contains the return address */
SCHEMESTACK(tc) = copy_stack(old_stack, &SCHEMESTACKSIZE(tc), clength + sizeof(ptr));
SFP(tc) = (ptr)((uptr)SCHEMESTACK(tc) + clength);
ESP(tc) = (ptr)((uptr)SCHEMESTACK(tc) + SCHEMESTACKSIZE(tc) - stack_slop);
}
STACKCACHE(tc) = Snil;
relocate(&CCHAIN(tc))
/* U32 RANDOMSEED(tc) */
/* I32 ACTIVE(tc) */
relocate(&STACKLINK(tc))
/* iptr SCHEMESTACKSIZE */
relocate(&WINDERS(tc))
relocate_return_addr(&FRAME(tc,0))
sweep_stack((uptr)SCHEMESTACK(tc), (uptr)SFP(tc), (uptr)FRAME(tc,0));
relocate(&U(tc))
relocate(&V(tc))
relocate(&W(tc))
relocate(&X(tc))
relocate(&Y(tc))
/* immediate SOMETHINGPENDING(tc) */
/* immediate TIMERTICKS */
/* immediate DISABLE_COUNT */
/* immediate SIGNALINTERRUPTPENDING */
/* immediate KEYBOARDINTERRUPTPENDING */
relocate(&THREADNO(tc))
relocate(&CURRENTINPUT(tc))
relocate(&CURRENTOUTPUT(tc))
relocate(&CURRENTERROR(tc))
/* immediate BLOCKCOUNTER */
relocate(&SFD(tc))
relocate(&CURRENTMSO(tc))
relocate(&TARGETMACHINE(tc))
relocate(&FXLENGTHBV(tc))
relocate(&FXFIRSTBITSETBV(tc))
relocate(&NULLIMMUTABLEVECTOR(tc))
relocate(&NULLIMMUTABLEFXVECTOR(tc))
relocate(&NULLIMMUTABLEBYTEVECTOR(tc))
relocate(&NULLIMMUTABLESTRING(tc))
/* immediate METALEVEL */
relocate(&COMPILEPROFILE(tc))
/* immediate GENERATEINSPECTORINFORMATION */
/* immediate GENERATEPROFILEFORMS */
/* immediate OPTIMIZELEVEL */
relocate(&SUBSETMODE(tc))
/* immediate SUPPRESSPRIMITIVEINLINING */
relocate(&DEFAULTRECORDEQUALPROCEDURE(tc))
relocate(&DEFAULTRECORDHASHPROCEDURE(tc))
relocate(&COMPRESSFORMAT(tc))
relocate(&COMPRESSLEVEL(tc))
/* void* LZ4OUTBUFFER(tc) */
/* U64 INSTRCOUNTER(tc) */
/* U64 ALLOCCOUNTER(tc) */
relocate(&PARAMETERS(tc))
for (i = 0 ; i < virtual_register_count ; i += 1) {
relocate(&VIRTREG(tc, i));
}
}
}
static void sweep_continuation(p) ptr p; {
relocate(&CONTWINDERS(p))
/* bug out for shot 1-shot continuations */
if (CONTLENGTH(p) == scaled_shot_1_shot_flag) return;
if (OLDSPACE(CONTSTACK(p)))
CONTSTACK(p) = copy_stack(CONTSTACK(p), &CONTLENGTH(p), CONTCLENGTH(p));
relocate(&CONTLINK(p))
relocate_return_addr(&CONTRET(p))
/* use CLENGTH to avoid sweeping unoccupied portion of one-shots */
sweep_stack((uptr)CONTSTACK(p), (uptr)CONTSTACK(p) + CONTCLENGTH(p), (uptr)CONTRET(p));
}
/* assumes stack has already been copied to newspace */
static void sweep_stack(base, fp, ret) uptr base, fp, ret; {
ptr *pp; iptr oldret;
ptr num;
while (fp != base) {
if (fp < base)
S_error_abort("sweep_stack(gc): malformed stack");
fp = fp - ENTRYFRAMESIZE(ret);
pp = (ptr *)fp;
oldret = ret;
ret = (iptr)(*pp);
relocate_return_addr(pp)
num = ENTRYLIVEMASK(oldret);
if (Sfixnump(num)) {
uptr mask = UNFIX(num);
while (mask != 0) {
pp += 1;
if (mask & 0x0001) relocate(pp)
mask >>= 1;
}
} else {
iptr index;
relocate(&ENTRYLIVEMASK(oldret))
num = ENTRYLIVEMASK(oldret);
index = BIGLEN(num);
while (index-- != 0) {
INT bits = bigit_bits;
bigit mask = BIGIT(num,index);
while (bits-- > 0) {
pp += 1;
if (mask & 1) relocate(pp)
mask >>= 1;
}
}
}
}
}
static void sweep_record(x) ptr x; {
ptr *pp; ptr num; ptr rtd;
/* record-type descriptor was forwarded in copy */
rtd = RECORDINSTTYPE(x);
num = RECORDDESCPM(rtd);
pp = &RECORDINSTIT(x,0);
/* sweep cells for which bit in pm is set; quit when pm == 0. */
if (Sfixnump(num)) {
/* ignore bit for already forwarded rtd */
uptr mask = (uptr)UNFIX(num) >> 1;
if (mask == (uptr)-1 >> 1) {
ptr *ppend = (ptr *)((uptr)pp + UNFIX(RECORDDESCSIZE(rtd))) - 1;
while (pp < ppend) {
relocate(pp)
pp += 1;
}
} else {
while (mask != 0) {
if (mask & 1) relocate(pp)
mask >>= 1;
pp += 1;
}
}
} else {
iptr index; bigit mask; INT bits;
/* bignum pointer mask may have been forwarded */
relocate(&RECORDDESCPM(rtd))
num = RECORDDESCPM(rtd);
index = BIGLEN(num) - 1;
/* ignore bit for already forwarded rtd */
mask = BIGIT(num,index) >> 1;
bits = bigit_bits - 1;
for (;;) {
do {
if (mask & 1) relocate(pp)
mask >>= 1;
pp += 1;
} while (--bits > 0);
if (index-- == 0) break;
mask = BIGIT(num,index);
bits = bigit_bits;
}
}
}
static IGEN sweep_dirty_record(x) ptr x; {
ptr *pp; ptr num; ptr rtd; IGEN tg, youngest;
tg = target_generation;
youngest = 0xff;
/* warning: assuming rtd is immutable */
rtd = RECORDINSTTYPE(x);
/* warning: assuming MPM field is immutable */
num = RECORDDESCMPM(rtd);
pp = &RECORDINSTIT(x,0);
/* sweep cells for which bit in mpm is set
include rtd in case it's mutable */
if (Sfixnump(num)) {
/* ignore bit for assumed immutable rtd */
uptr mask = (uptr)UNFIX(num) >> 1;
while (mask != 0) {
if (mask & 1) relocate_dirty(pp,tg,youngest)
mask >>= 1;
pp += 1;
}
} else {
iptr index; bigit mask; INT bits;
index = BIGLEN(num) - 1;
/* ignore bit for assumed immutable rtd */
mask = BIGIT(num,index) >> 1;
bits = bigit_bits - 1;
for (;;) {
do {
if (mask & 1) relocate_dirty(pp,tg,youngest)
mask >>= 1;
pp += 1;
} while (--bits > 0);
if (index-- == 0) break;
mask = BIGIT(num,index);
bits = bigit_bits;
}
}
return youngest;
}
static void sweep_code_object(tc, co) ptr tc, co; {
ptr t, oldco; iptr a, m, n;
#ifdef DEBUG
if ((CODETYPE(co) & mask_code) != type_code) {
(void)printf("unexpected type %x sweeping code object %p\n", CODETYPE(co), co);
(void)fflush(stdout);
}
#endif
relocate(&CODENAME(co))
relocate(&CODEARITYMASK(co))
relocate(&CODEINFO(co))
relocate(&CODEPINFOS(co))
t = CODERELOC(co);
m = RELOCSIZE(t);
oldco = RELOCCODE(t);
a = 0;
n = 0;
while (n < m) {
uptr entry, item_off, code_off; ptr obj;
entry = RELOCIT(t, n); n += 1;
if (RELOC_EXTENDED_FORMAT(entry)) {
item_off = RELOCIT(t, n); n += 1;
code_off = RELOCIT(t, n); n += 1;
} else {
item_off = RELOC_ITEM_OFFSET(entry);
code_off = RELOC_CODE_OFFSET(entry);
}
a += code_off;
obj = S_get_code_obj(RELOC_TYPE(entry), oldco, a, item_off);
relocate(&obj)
S_set_code_obj("gc", RELOC_TYPE(entry), co, a, obj, item_off);
}
if (target_generation == static_generation && !S_G.retain_static_relocation && (CODETYPE(co) & (code_flag_template << code_flags_offset)) == 0) {
CODERELOC(co) = (ptr)0;
} else {
/* Don't copy non-oldspace relocation tables, since we may be
sweeping a locked code object that is older than target_generation
Doing so would be a waste of work anyway. */
if (OLDSPACE(t)) {
ptr oldt = t;
n = size_reloc_table(RELOCSIZE(oldt));
#ifdef ENABLE_OBJECT_COUNTS
S_G.countof[target_generation][countof_relocation_table] += 1;
S_G.bytesof[target_generation][countof_relocation_table] += n;
#endif /* ENABLE_OBJECT_COUNTS */
find_room(space_data, target_generation, typemod, n, t);
copy_ptrs(typemod, t, oldt, n);
}
RELOCCODE(t) = co;
CODERELOC(co) = t;
}
S_record_code_mod(tc, (uptr)&CODEIT(co,0), (uptr)CODELEN(co));
}
typedef struct _weakseginfo {
seginfo *si;
IGEN youngest[cards_per_segment];
struct _weakseginfo *next;
} weakseginfo;
static weakseginfo *weaksegments_to_resweep;
static void record_dirty_segment(IGEN from_g, IGEN to_g, seginfo *si) {
if (si->min_dirty_byte != 0xff) {
S_error_abort("record_dirty(gc): unexpected mutation while sweeping");
}
if (to_g < from_g) {
seginfo *oldfirst = DirtySegments(from_g, to_g);
DirtySegments(from_g, to_g) = si;
si->dirty_prev = &DirtySegments(from_g, to_g);
si->dirty_next = oldfirst;
if (oldfirst != NULL) oldfirst->dirty_prev = &si->dirty_next;
si->min_dirty_byte = to_g;
}
}
static void sweep_dirty(void) {
IGEN tg, mcg, youngest, min_youngest, pg;
ptr *pp, *ppend, *nl;
uptr seg, d;
ISPC s;
IGEN from_g, to_g;
seginfo *dirty_si, *nextsi;
tg = target_generation;
mcg = max_copied_generation;
weaksegments_to_resweep = NULL;
/* clear dirty segment lists for copied generations */
for (from_g = 1; from_g <= mcg; from_g += 1) {
for (to_g = 0; to_g < from_g; to_g += 1) {
DirtySegments(from_g, to_g) = NULL;
}
}
/* NB: could have problems if a card is moved from some current or to-be-swept (from_g, to_g) to some previously
swept list due to a dirty_set while we sweep. believe this can't happen as of 6/14/2013. if it can, it
might be sufficient to process the lists in reverse order. */
for (from_g = mcg + 1; from_g <= static_generation; INCRGEN(from_g)) {
for (to_g = 0; to_g <= mcg; to_g += 1) {
for (dirty_si = DirtySegments(from_g, to_g), DirtySegments(from_g, to_g) = NULL; dirty_si != NULL; dirty_si = nextsi) {
nextsi = dirty_si->dirty_next;
seg = dirty_si->number;
s = dirty_si->space;
if (s & space_locked) continue;
/* reset min dirty byte so we can detect if byte is set while card is swept */
dirty_si->min_dirty_byte = 0xff;
min_youngest = 0xff;
nl = from_g == tg ? (ptr *)orig_next_loc[s] : (ptr *)S_G.next_loc[s][from_g];
ppend = build_ptr(seg, 0);
if (s == space_weakpair) {
weakseginfo *next = weaksegments_to_resweep;
find_room(space_data, 0, typemod, sizeof(weakseginfo), weaksegments_to_resweep);
weaksegments_to_resweep->si = dirty_si;
weaksegments_to_resweep->next = next;
}
d = 0;
while (d < cards_per_segment) {
uptr dend = d + sizeof(iptr);
iptr *dp = (iptr *)(dirty_si->dirty_bytes + d);
/* check sizeof(iptr) bytes at a time for 0xff */
if (*dp == -1) {
pp = ppend;
ppend += bytes_per_card;
if (pp <= nl && nl < ppend) ppend = nl;
d = dend;
} else {
while (d < dend) {
pp = ppend;
ppend += bytes_per_card / sizeof(ptr);
if (pp <= nl && nl < ppend) ppend = nl;
if (dirty_si->dirty_bytes[d] <= mcg) {
/* assume we won't find any wrong-way pointers */
youngest = 0xff;
if (s == space_impure) {
while (pp < ppend && *pp != forward_marker) {
/* handle two pointers at a time */
relocate_dirty(pp,tg,youngest)
pp += 1;
relocate_dirty(pp,tg,youngest)
pp += 1;
}
} else if (s == space_symbol) {
/* old symbols cannot overlap segment boundaries
since any object that spans multiple
generations begins at the start of a segment,
and symbols are much smaller (we assume)
than the segment size. */
pp = (ptr *)build_ptr(seg,0) +
((pp - (ptr *)build_ptr(seg,0)) /
(size_symbol / sizeof(ptr))) *
(size_symbol / sizeof(ptr));
while (pp < ppend && *pp != forward_marker) { /* might overshoot card by part of a symbol. no harm. */
ptr p, val, code;
p = TYPE((ptr)pp, type_symbol);
val = SYMVAL(p);
relocate_dirty(&val,tg,youngest)
INITSYMVAL(p) = val;
code = Sprocedurep(val) ? CLOSCODE(val) : SYMCODE(p);
relocate_dirty(&code,tg,youngest)
INITSYMCODE(p,code);
relocate_dirty(&INITSYMPLIST(p),tg,youngest)
relocate_dirty(&INITSYMSPLIST(p),tg,youngest)
relocate_dirty(&INITSYMNAME(p),tg,youngest)
relocate_dirty(&INITSYMHASH(p),tg,youngest)
pp += size_symbol / sizeof(ptr);
}
} else if (s == space_port) {
/* old ports cannot overlap segment boundaries
since any object that spans multiple
generations begins at the start of a segment,
and ports are much smaller (we assume)
than the segment size. */
pp = (ptr *)build_ptr(seg,0) +
((pp - (ptr *)build_ptr(seg,0)) /
(size_port / sizeof(ptr))) *
(size_port / sizeof(ptr));
while (pp < ppend && *pp != forward_marker) { /* might overshoot card by part of a port. no harm. */
ptr p = TYPE((ptr)pp, type_typed_object);
relocate_dirty(&PORTHANDLER(p),tg,youngest)
relocate_dirty(&PORTINFO(p),tg,youngest)
relocate_dirty(&PORTNAME(p),tg,youngest)
if (PORTTYPE(p) & PORT_FLAG_OUTPUT) {
iptr n = (iptr)PORTOLAST(p) - (iptr)PORTOBUF(p);
relocate_dirty(&PORTOBUF(p),tg,youngest)
PORTOLAST(p) = (ptr)((iptr)PORTOBUF(p) + n);
}
if (PORTTYPE(p) & PORT_FLAG_INPUT) {
iptr n = (iptr)PORTILAST(p) - (iptr)PORTIBUF(p);
relocate_dirty(&PORTIBUF(p),tg,youngest)
PORTILAST(p) = (ptr)((iptr)PORTIBUF(p) + n);
}
pp += size_port / sizeof(ptr);
}
} else if (s == space_impure_record) { /* abandon hope all ye who enter here */
uptr j; ptr p, pnext; seginfo *si;
/* synchronize on first record that overlaps the dirty
area, then relocate any mutable pointers in that
record and those that follow within the dirty area. */
/* find first segment of group of like segments */
j = seg - 1;
while ((si = MaybeSegInfo(j)) != NULL &&
si->space == s &&
si->generation == from_g)
j -= 1;
j += 1;
/* now find first record in segment seg */
/* we count on following fact: if an object spans two
or more segments, then he starts at the beginning
of a segment */
for (;;) {
p = TYPE(build_ptr(j,0),type_typed_object);
pnext = (ptr)((iptr)p +
size_record_inst(UNFIX(RECORDDESCSIZE(
RECORDINSTTYPE(p)))));
if (ptr_get_segment(pnext) >= seg) break;
j = ptr_get_segment(pnext) + 1;
}
/* now find first within dirty area */
while ((ptr *)UNTYPE(pnext, type_typed_object) <= pp) {
p = pnext;
pnext = (ptr)((iptr)p +
size_record_inst(UNFIX(RECORDDESCSIZE(
RECORDINSTTYPE(p)))));
}
/* now sweep */
while ((ptr *)UNTYPE(p, type_typed_object) < ppend) {
/* quit on end of segment */
if (FWDMARKER(p) == forward_marker) break;
pg = sweep_dirty_record(p);
if (pg < youngest) youngest = pg;
p = (ptr)((iptr)p +
size_record_inst(UNFIX(RECORDDESCSIZE(
RECORDINSTTYPE(p)))));
}
} else if (s == space_weakpair) {
while (pp < ppend && *pp != forward_marker) {
/* skip car field and handle cdr field */
pp += 1;
relocate_dirty(pp, tg, youngest)
pp += 1;
}
} else if (s == space_ephemeron) {
while (pp < ppend && *pp != forward_marker) {
ptr p = TYPE((ptr)pp, type_pair);
youngest = check_dirty_ephemeron(p, tg, youngest);
pp += size_ephemeron / sizeof(ptr);
}
} else {
S_error_abort("sweep_dirty(gc): unexpected space");
}
if (s == space_weakpair) {
weaksegments_to_resweep->youngest[d] = youngest;
} else {
dirty_si->dirty_bytes[d] = youngest < from_g ? youngest : 0xff;
}
if (youngest < min_youngest) min_youngest = youngest;
} else {
if (dirty_si->dirty_bytes[d] < min_youngest) min_youngest = dirty_si->dirty_bytes[d];
}
d += 1;
}
}
}
if (s != space_weakpair) {
record_dirty_segment(from_g, min_youngest, dirty_si);
}
}
}
}
}
static void resweep_dirty_weak_pairs() {
weakseginfo *ls;
ptr *pp, *ppend, *nl, p;
IGEN from_g, min_youngest, youngest, tg, mcg, pg;
uptr d;
tg = target_generation;
mcg = max_copied_generation;
for (ls = weaksegments_to_resweep; ls != NULL; ls = ls->next) {
seginfo *dirty_si = ls->si;
from_g = dirty_si->generation;
nl = from_g == tg ? (ptr *)orig_next_loc[space_weakpair] : (ptr *)S_G.next_loc[space_weakpair][from_g];
ppend = build_ptr(dirty_si->number, 0);
min_youngest = 0xff;
d = 0;
while (d < cards_per_segment) {
uptr dend = d + sizeof(iptr);
iptr *dp = (iptr *)(dirty_si->dirty_bytes + d);
/* check sizeof(iptr) bytes at a time for 0xff */
if (*dp == -1) {
d = dend;
ppend += bytes_per_card;
} else {
while (d < dend) {
pp = ppend;
ppend += bytes_per_card / sizeof(ptr);
if (pp <= nl && nl < ppend) ppend = nl;
if (dirty_si->dirty_bytes[d] <= mcg) {
youngest = ls->youngest[d];
while (pp < ppend) {
p = *pp;
seginfo *si;
/* handle car field */
if (!IMMEDIATE(p) && (si = MaybeSegInfo(ptr_get_segment(p))) != NULL) {
if (si->space & space_old) {
if (locked(p)) {
youngest = tg;
} else if (FWDMARKER(p) == forward_marker && TYPEBITS(p) != type_flonum) {
*pp = FWDADDRESS(p);
youngest = tg;
} else {
*pp = Sbwp_object;
}
} else {
if (youngest != tg && (pg = si->generation) < youngest)
youngest = pg;
}
}
/* skip cdr field */
pp += 2;
}
dirty_si->dirty_bytes[d] = youngest < from_g ? youngest : 0xff;
if (youngest < min_youngest) min_youngest = youngest;
} else {
if (dirty_si->dirty_bytes[d] < min_youngest) min_youngest = dirty_si->dirty_bytes[d];
}
d += 1;
}
}
}
record_dirty_segment(from_g, min_youngest, dirty_si);
}
}
static ptr pending_ephemerons = NULL;
/* Ephemerons that we haven't looked at, chained through `next`. */
static ptr trigger_ephemerons = NULL;
/* Ephemerons that we've checked and added to segment triggers,
chained through `next`. Ephemerons attached to a segment are
chained through `trigger-next`. A #t in `trigger-next` means that
the ephemeron has been processed, so we don't need to remove it
from the trigger list in a segment. */
static ptr repending_ephemerons = NULL;
/* Ephemerons in `trigger_ephemerons` that we need to inspect again,
removed from the triggering segment and chained here through
`trigger-next`. */
static void add_ephemeron_to_pending(ptr pe) {
/* We could call check_ephemeron directly here, but the indirection
through `pending_ephemerons` can dramatically decrease the number
of times that we have to trigger re-checking, especially since
check_pending_pehemerons() is run only after all other sweep
opportunities are exhausted. */
EPHEMERONNEXT(pe) = pending_ephemerons;
pending_ephemerons = pe;
}
static void add_trigger_ephemerons_to_repending(ptr pe) {
ptr last_pe = pe, next_pe = EPHEMERONTRIGGERNEXT(pe);
while (next_pe != NULL) {
last_pe = next_pe;
next_pe = EPHEMERONTRIGGERNEXT(next_pe);
}
EPHEMERONTRIGGERNEXT(last_pe) = repending_ephemerons;
repending_ephemerons = pe;
}
static void check_ephemeron(ptr pe, int add_to_trigger) {
ptr p;
seginfo *si;
p = Scar(pe);
if (!IMMEDIATE(p) && (si = MaybeSegInfo(ptr_get_segment(p))) != NULL && si->space & space_old && !locked(p)) {
if (FWDMARKER(p) == forward_marker && TYPEBITS(p) != type_flonum) {
INITCAR(pe) = FWDADDRESS(p);
relocate(&INITCDR(pe))
if (!add_to_trigger)
EPHEMERONTRIGGERNEXT(pe) = Strue; /* in trigger list, #t means "done" */
} else {
/* Not reached, so far; install as trigger */
EPHEMERONTRIGGERNEXT(pe) = si->trigger_ephemerons;
si->trigger_ephemerons = pe;
if (add_to_trigger) {
EPHEMERONNEXT(pe) = trigger_ephemerons;
trigger_ephemerons = pe;
}
}
} else {
relocate(&INITCDR(pe))
}
}
static void check_pending_ephemerons() {
ptr pe, next_pe;
pe = pending_ephemerons;
pending_ephemerons = NULL;
while (pe != NULL) {
next_pe = EPHEMERONNEXT(pe);
check_ephemeron(pe, 1);
pe = next_pe;
}
pe = repending_ephemerons;
repending_ephemerons = NULL;
while (pe != NULL) {
next_pe = EPHEMERONTRIGGERNEXT(pe);
check_ephemeron(pe, 0);
pe = next_pe;
}
}
/* Like check_ephemeron(), but for a dirty, old-generation
ephemeron (that was not yet added to the pending list), so we can
be less pessimistic than setting `youngest` to the target
generation: */
static int check_dirty_ephemeron(ptr pe, int tg, int youngest) {
ptr p;
seginfo *si;
p = Scar(pe);
if (!IMMEDIATE(p) && (si = MaybeSegInfo(ptr_get_segment(p))) != NULL) {
if (si->space & space_old && !locked(p)) {
if (FWDMARKER(p) == forward_marker && TYPEBITS(p) != type_flonum) {
INITCAR(pe) = FWDADDRESS(p);
relocate(&INITCDR(pe))
youngest = tg;
} else {
/* Not reached, so far; add to pending list */
add_ephemeron_to_pending(pe);
/* Make the consistent (but pessimistic w.r.t. to wrong-way
pointers) assumption that the key will stay live and move
to the target generation. That assumption covers the value
part, too, since it can't end up younger than the target
generation. */
youngest = tg;
}
} else {
int pg;
if ((pg = si->generation) < youngest)
youngest = pg;
relocate_dirty(&INITCDR(pe), tg, youngest)
}
} else {
/* Non-collectable key means that the value determines
`youngest`: */
relocate_dirty(&INITCDR(pe), tg, youngest)
}
return youngest;
}
static void clear_trigger_ephemerons() {
ptr pe;
if (pending_ephemerons != NULL)
S_error_abort("clear_trigger_ephemerons(gc): non-empty pending list");
pe = trigger_ephemerons;
trigger_ephemerons = NULL;
while (pe != NULL) {
if (EPHEMERONTRIGGERNEXT(pe) == Strue) {
/* The ephemeron was triggered and retains its key and value */
} else {
seginfo *si;
ptr p = Scar(pe);
/* Key never became reachable, so clear key and value */
INITCAR(pe) = Sbwp_object;
INITCDR(pe) = Sbwp_object;
/* Remove trigger */
si = SegInfo(ptr_get_segment(p));
si->trigger_ephemerons = NULL;
}
pe = EPHEMERONNEXT(pe);
}
}