#lang at-exp racket (provide unicode-chars) (define unicode-chars @string-append|<<<{ \input glyphtounicode \pdfgentounicode=1 \usepackage{accsupp} %$\BeginAccSupp{method=hex,unicode,ActualText=2200}∀\EndAccSupp{} % \BeginAccSupp{method=hex,unicode,ActualText=2192}→\EndAccSupp{}$ \usepackage{bbold} \usepackage{savesym} \savesymbol{iint} \savesymbol{iiint} \savesymbol{dddot} \savesymbol{ddddot} \savesymbol{overleftrightarrow} \savesymbol{underrightarrow} \savesymbol{underleftarrow} \savesymbol{underleftrightarrow} \usepackage{amsmath} \restoresymbol{ams}{iint} \restoresymbol{ams}{iiint} \restoresymbol{ams}{dddot} \restoresymbol{ams}{ddddot} \restoresymbol{ams}{underrightarrow} \restoresymbol{ams}{underleftarrow} \restoresymbol{ams}{underleftrightarrow} \savesymbol{ulcorner} \savesymbol{urcorner} \savesymbol{llcorner} \savesymbol{lrcorner} \usepackage{amsfonts} \restoresymbol{ams}{ulcorner} \restoresymbol{ams}{urcorner} \restoresymbol{ams}{llcorner} \restoresymbol{ams}{lrcorner} \usepackage{mathtools} \usepackage{tikz} % rename mathabx's version of triangleright \let\mathabxtriangleright\triangleright % restore symbol overridden by mathabx in Scribble's preamble to the default one \def\triangleright{\mathchar"212E} \makeatletter % Must be loaded after MnSymbol!!! MnSymbol improperly defines × and ¬ in such a % way that they don't work in math mode. % definition of some characters, for use with % \usepackage[utf8]{inputenc} % \usepackage[T1]{fontenc} % Author: Christoph Lange % Some math characters taken from John Wickerson's MathUnicode.sty % (http://tex.stackexchange.com/questions/110042/ % entering-unicode-math-symbols-into-latex-direct-from-keyboard-on-a-mac) % https://github.com/clange/latex \NeedsTeXFormat{LaTeX2e}[1999/12/01] %\ProvidesPackage{unicode-chars}[2013/10/08] \DeclareUnicodeCharacter{00A0}{~}% " " (nbsp) \DeclareUnicodeCharacter{00A3}{\pounds}% £ \DeclareUnicodeCharacter{00AB}{% \ifmmode\textrm{\guillemotleft}\else\guillemotleft\fi}%« % Declared by MnSymbol: \DeclareUnicodeCharacter{00AC}{\ensuremath{\neg}}% ¬ \DeclareUnicodeCharacter{00AE}{\textsuperscript{\textregistered}}% ® \DeclareUnicodeCharacter{00AF}{\ensuremath{^-}}% ¯ \DeclareUnicodeCharacter{00BB}{% \ifmmode\textrm{\guillemotright}\else\guillemotright\fi}%» % Declared by MnSymbol: \DeclareUnicodeCharacter{00D7}{\ensuremath{\times}}% × \DeclareUnicodeCharacter{00F1}{{\ifmmode\tilde{n}\else\~{n}\fi}}% ñ \DeclareUnicodeCharacter{0101}{\=a}% ā \DeclareUnicodeCharacter{0123}{\c g}% ģ \DeclareUnicodeCharacter{0130}{\. I}% İ \DeclareUnicodeCharacter{0146}{\c n}% ņ \DeclareUnicodeCharacter{016B}{\=u}% ū \DeclareUnicodeCharacter{03B1}{\ensuremath{\alpha}}% α \DeclareUnicodeCharacter{03B4}{\ensuremath{\delta}}% δ \DeclareUnicodeCharacter{0394}{\ensuremath{\Delta}}% Δ \DeclareUnicodeCharacter{03F5}{\ensuremath{\epsilon}}% ϵ \DeclareUnicodeCharacter{03B5}{\ensuremath{\varepsilon}}% ε \DeclareUnicodeCharacter{0395}{\ensuremath{\Epsilon}}% Ε \DeclareUnicodeCharacter{03BB}{\ensuremath{\lambda}}% λ \DeclareUnicodeCharacter{039B}{\ensuremath{\Lambda}}% Λ \DeclareUnicodeCharacter{03C1}{\ensuremath{\rho}}% ρ \DeclareUnicodeCharacter{03A1}{\ensuremath{\Rho}}% Ρ \DeclareUnicodeCharacter{2190}{\ensuremath{\leftarrow}}% ← \DeclareUnicodeCharacter{2192}{\ensuremath{\BeginAccSupp{method=hex,unicode,ActualText=2192}\rightarrow\EndAccSupp{}}}% → % 2192: \textrightarrow is not available in all fonts, % and we need the right arrow in math mode \DeclareUnicodeCharacter{2193}{\ensuremath{\downarrow}}% ↓ \DeclareUnicodeCharacter{2194}{\ensuremath{\leftrightarrow}}% ↔ \DeclareUnicodeCharacter{21A6}{\ensuremath{\mapsto}}% ↦ \DeclareUnicodeCharacter{21C0}{\ensuremath{\rightharpoonup}}% ⇀ \DeclareUnicodeCharacter{21D2}{\ensuremath{\Rightarrow}}% ⇒ % Georges — added \operatorname{} in ∀ . \DeclareUnicodeCharacter{2200}{\ensuremath{\operatorname{\BeginAccSupp{method=hex,unicode,ActualText=2200}\forall\EndAccSupp{}}}}% ∀ \DeclareUnicodeCharacter{2203}{\ensuremath{\exists}}% ∃ \DeclareUnicodeCharacter{2208}{\ensuremath{\in}}% ∈ \DeclareUnicodeCharacter{2209}{\ensuremath{\not\in}}% ∉ \DeclareUnicodeCharacter{2211}{\ensuremath{\sum}}% ∑ \DeclareUnicodeCharacter{220F}{\ensuremath{\prod}}% ∏ \DeclareUnicodeCharacter{2218}{\ensuremath{\circ}}% ∘ \DeclareUnicodeCharacter{2227}{\ensuremath{\mathbin{\wedge}}}% ∧ \DeclareUnicodeCharacter{2228}{\ensuremath{\mathbin{\vee}}}% ∨ \DeclareUnicodeCharacter{2229}{\ensuremath{\mathbin{\cap}}}% ∩ \DeclareUnicodeCharacter{222A}{\ensuremath{\mathbin{\cup}}}% ∪ \DeclareUnicodeCharacter{228D}{\ensuremath{\mathbin{\cupdot}}}% ⊍ \DeclareUnicodeCharacter{228E}{\ensuremath{\mathbin{\uplus}}}% ⊎ %\DeclareUnicodeCharacter{2237}{\ensuremath{::}}% ∷ % 2237: not sure that's a good way to render this symbol \DeclareUnicodeCharacter{2248}{\ensuremath{\approx}}% ≈ \DeclareUnicodeCharacter{2260}{\ensuremath{\ne}}% ≠ \DeclareUnicodeCharacter{2261}{\ensuremath{\equiv}}% ≡ \DeclareUnicodeCharacter{2262}{\ensuremath{\not\equiv}}% ≢ \DeclareUnicodeCharacter{2264}{\ensuremath{\le}}% ≤ \DeclareUnicodeCharacter{2265}{\ensuremath{\ge}}% ≥ \DeclareUnicodeCharacter{2286}{\ensuremath{\subseteq}}% ⊆ \DeclareUnicodeCharacter{2282}{\ensuremath{\subset}}% ⊂ \DeclareUnicodeCharacter{2287}{\ensuremath{\supseteq}}% ⊇ \DeclareUnicodeCharacter{2283}{\ensuremath{\supset}}% ⊃ \DeclareUnicodeCharacter{219D}{\ensuremath{\leadsto}}% ↝ \@ifpackageloaded{MnSymbol}{% \DeclareUnicodeCharacter{2295}{\ensuremath{\oplus}}% ⊕ \DeclareUnicodeCharacter{2296}{\ensuremath{\ominus}}% ⊖ }{} \DeclareUnicodeCharacter{22C0}{\ensuremath{\bigwedge}}% ⋀ \DeclareUnicodeCharacter{22C0}{\ensuremath{\bigcupdot}}% ⋀ % TODO?! \DeclareUnicodeCharacter{22C1}{\ensuremath{\biguplus}}% ⋁ % TODO?! \DeclareUnicodeCharacter{22C2}{\ensuremath{\bigcap}}% ⋂ \DeclareUnicodeCharacter{22C3}{\ensuremath{\bigcup}}% ⋃ \DeclareUnicodeCharacter{2A03}{\ensuremath{\bigcupdot}}% ⨃ \DeclareUnicodeCharacter{2A04}{\ensuremath{\biguplus}}% ⨄ \DeclareUnicodeCharacter{25CB}{\ensuremath{\ocircle}}% ○ \@ifpackageloaded{MnSymbol}{% \DeclareUnicodeCharacter{2605}{\ensuremath{\filledlargestar}}% ★ }{} \DeclareUnicodeCharacter{2713}{\ensuremath{\checkmark}}% ✓ \DeclareUnicodeCharacter{27F6}{\ensuremath{\longrightarrow}}% ⟶ \DeclareUnicodeCharacter{27F7}{\ensuremath{\longleftrightarrow}}% ⟷ \DeclareUnicodeCharacter{27F9}{\ensuremath{\Longrightarrow}}% ⟹ % % Additions by Suzanne Soy \DeclareUnicodeCharacter{2237}{\ensuremath{\dblcolon}}% ∷ \DeclareUnicodeCharacter{228F}{\ensuremath{\sqsubset}}% ⊏ \DeclareUnicodeCharacter{2290}{\ensuremath{\sqsubset}}% ⊐ \DeclareUnicodeCharacter{2291}{\ensuremath{\sqsubseteq}}% ⊑ \DeclareUnicodeCharacter{2292}{\ensuremath{\sqsupseteq}}% ⊒ \DeclareUnicodeCharacter{2293}{\ensuremath{\sqcap}}% ⊓ \DeclareUnicodeCharacter{2294}{\ensuremath{\sqcup}}% ⊔ % \usepackage{graphicx}% \providecommand{\bigsqcap}{% \mathop{% \mathpalette\@updown\bigsqcup }% } \newcommand*{\@updown}[2]{% \rotatebox[origin=c]{180}{$\m@th#1#2$}% } \DeclareUnicodeCharacter{2A05}{\ensuremath{\bigsqcap}}% ⨅ \DeclareUnicodeCharacter{2A06}{\ensuremath{\bigsqcup}}% ⨆ \DeclareUnicodeCharacter{2080}{\ensuremath{{}_0}}% ₀ \DeclareUnicodeCharacter{2081}{\ensuremath{\BeginAccSupp{method=hex,unicode,ActualText=2081}{}_1\EndAccSupp{}}}% ₁ \DeclareUnicodeCharacter{2082}{\ensuremath{{}_2}}% ₂ \DeclareUnicodeCharacter{2083}{\ensuremath{{}_3}}% ₃ \DeclareUnicodeCharacter{2084}{\ensuremath{{}_4}}% ₄ \DeclareUnicodeCharacter{2085}{\ensuremath{{}_5}}% ₅ \DeclareUnicodeCharacter{2086}{\ensuremath{{}_6}}% ₆ \DeclareUnicodeCharacter{2087}{\ensuremath{{}_7}}% ₇ \DeclareUnicodeCharacter{2088}{\ensuremath{{}_8}}% ₈ \DeclareUnicodeCharacter{2089}{\ensuremath{{}_9}}% ₉ \DeclareUnicodeCharacter{208A}{\ensuremath{{}_+}}% ₊ \DeclareUnicodeCharacter{208B}{\ensuremath{{}_-}}% ₋ \DeclareUnicodeCharacter{208C}{\ensuremath{{}_=}}% ₌ \DeclareUnicodeCharacter{208D}{\ensuremath{{}_(}}% ₍ \DeclareUnicodeCharacter{208E}{\ensuremath{{}_)}}% ₎ \DeclareUnicodeCharacter{2098}{\ensuremath{{}_m}}% ₘ \DeclareUnicodeCharacter{2099}{\ensuremath{{}_n}}% ₙ \DeclareUnicodeCharacter{2095}{\ensuremath{{}_h}}% ₕ \DeclareUnicodeCharacter{1D62}{\ensuremath{{}_i}}% ᵢ \DeclareUnicodeCharacter{2C7C}{\ensuremath{{}_j}}% ⱼ \DeclareUnicodeCharacter{2096}{\ensuremath{{}_k}}% ₖ \DeclareUnicodeCharacter{2097}{\ensuremath{{}_l}}% ₗ \DeclareUnicodeCharacter{209B}{\ensuremath{{}_s}}% ₛ % \DeclareUnicodeCharacter{2070}{\ensuremath{{}^0}}% ⁰ %\DeclareUnicodeCharacter{00B9}{\ensuremath{{}^1}}% ¹ %\DeclareUnicodeCharacter{00B2}{\ensuremath{{}^2}}% ² %\DeclareUnicodeCharacter{00B3}{\ensuremath{{}^3}}% ³ \DeclareUnicodeCharacter{2074}{\ensuremath{{}^4}}% ⁴ \DeclareUnicodeCharacter{2075}{\ensuremath{{}^5}}% ⁵ \DeclareUnicodeCharacter{2076}{\ensuremath{{}^6}}% ⁶ \DeclareUnicodeCharacter{2077}{\ensuremath{{}^7}}% ⁷ \DeclareUnicodeCharacter{2078}{\ensuremath{{}^8}}% ⁸ \DeclareUnicodeCharacter{2079}{\ensuremath{{}^9}}% ⁹ \DeclareUnicodeCharacter{207A}{\ensuremath{{}^+}}% ⁺ \DeclareUnicodeCharacter{207B}{\ensuremath{{}^-}}% ⁻ \DeclareUnicodeCharacter{207C}{\ensuremath{{}^=}}% ⁼ \DeclareUnicodeCharacter{207D}{\ensuremath{{}^(}}% ⁽ \DeclareUnicodeCharacter{207E}{\ensuremath{{}^)}}% ⁾ \DeclareUnicodeCharacter{207F}{\ensuremath{{}^n}}% ⁿ \DeclareUnicodeCharacter{2071}{\ensuremath{{}^i}}% ⁱ \DeclareUnicodeCharacter{02B2}{\ensuremath{{}^j}}% ʲ \DeclareUnicodeCharacter{1D4F}{\ensuremath{{}^k}}% ᵏ \DeclareUnicodeCharacter{2093}{\ensuremath{{}_x}}% ₓ %s \DeclareUnicodeCharacter{2026}{\ensuremath{\dots}}% … % Generated from ~/.XCompose using: % cat /tmp/cal.txt | cut -d '"' -f 2- | tr '"' ' ' | cut -d ' ' -f 1,6 \ % | while IFS=' ' read a b; do % echo -n "\\DeclareUnicodeCharacter{$(printf "%X" "'$a")}" % echo "{\\\\ensuremath{\\mathcal{$b}}}% $a"; % done \DeclareUnicodeCharacter{1D49C}{\ensuremath{\mathcal{A}}}% 𝒜 \DeclareUnicodeCharacter{212C}{\ensuremath{\mathcal{B}}}% ℬ \DeclareUnicodeCharacter{1D49E}{\ensuremath{\mathcal{C}}}% 𝒞 \DeclareUnicodeCharacter{1D49F}{\ensuremath{\mathcal{D}}}% 𝒟 \DeclareUnicodeCharacter{2130}{\ensuremath{\mathcal{E}}}% ℰ \DeclareUnicodeCharacter{2131}{\ensuremath{\mathcal{F}}}% ℱ \DeclareUnicodeCharacter{1D4A2}{\ensuremath{\mathcal{G}}}% 𝒢 \DeclareUnicodeCharacter{210B}{\ensuremath{\mathcal{H}}}% ℋ \DeclareUnicodeCharacter{2110}{\ensuremath{\mathcal{I}}}% ℐ \DeclareUnicodeCharacter{1D4A5}{\ensuremath{\mathcal{J}}}% 𝒥 \DeclareUnicodeCharacter{1D4A6}{\ensuremath{\mathcal{K}}}% 𝒦 \DeclareUnicodeCharacter{2112}{\ensuremath{\mathcal{L}}}% ℒ \DeclareUnicodeCharacter{2133}{\ensuremath{\mathcal{M}}}% ℳ \DeclareUnicodeCharacter{1D4A9}{\ensuremath{\mathcal{N}}}% 𝒩 \DeclareUnicodeCharacter{1D4AA}{\ensuremath{\mathcal{O}}}% 𝒪 \DeclareUnicodeCharacter{1D4AB}{\ensuremath{\mathcal{P}}}% 𝒫 \DeclareUnicodeCharacter{1D4AC}{\ensuremath{\mathcal{Q}}}% 𝒬 \DeclareUnicodeCharacter{211B}{\ensuremath{\mathcal{R}}}% ℛ \DeclareUnicodeCharacter{1D4AE}{\ensuremath{\mathcal{S}}}% 𝒮 \DeclareUnicodeCharacter{1D4AF}{\ensuremath{\mathcal{T}}}% 𝒯 \DeclareUnicodeCharacter{1D4B0}{\ensuremath{\mathcal{U}}}% 𝒰 \DeclareUnicodeCharacter{1D4B1}{\ensuremath{\mathcal{V}}}% 𝒱 \DeclareUnicodeCharacter{1D4B2}{\ensuremath{\mathcal{W}}}% 𝒲 \DeclareUnicodeCharacter{1D4B3}{\ensuremath{\mathcal{X}}}% 𝒳 \DeclareUnicodeCharacter{1D4B4}{\ensuremath{\mathcal{Y}}}% 𝒴 \DeclareUnicodeCharacter{1D4B5}{\ensuremath{\mathcal{Z}}}% 𝒵 \DeclareUnicodeCharacter{1D4B6}{\ensuremath{\mathcal{a}}}% 𝒶 \DeclareUnicodeCharacter{1D4B7}{\ensuremath{\mathcal{b}}}% 𝒷 \DeclareUnicodeCharacter{1D4B8}{\ensuremath{\mathcal{c}}}% 𝒸 \DeclareUnicodeCharacter{1D4B9}{\ensuremath{\mathcal{d}}}% 𝒹 \DeclareUnicodeCharacter{212F}{\ensuremath{\mathcal{e}}}% ℯ \DeclareUnicodeCharacter{1D4BB}{\ensuremath{\mathcal{f}}}% 𝒻 \DeclareUnicodeCharacter{210A}{\ensuremath{\mathcal{g}}}% ℊ \DeclareUnicodeCharacter{1D4BD}{\ensuremath{\mathcal{h}}}% 𝒽 \DeclareUnicodeCharacter{1D4BE}{\ensuremath{\mathcal{i}}}% 𝒾 \DeclareUnicodeCharacter{1D4BF}{\ensuremath{\mathcal{j}}}% 𝒿 \DeclareUnicodeCharacter{1D4C0}{\ensuremath{\mathcal{k}}}% 𝓀 \DeclareUnicodeCharacter{1D4C1}{\ensuremath{\mathcal{l}}}% 𝓁 \DeclareUnicodeCharacter{1D4C2}{\ensuremath{\mathcal{m}}}% 𝓂 \DeclareUnicodeCharacter{1D4C3}{\ensuremath{\mathcal{n}}}% 𝓃 \DeclareUnicodeCharacter{2134}{\ensuremath{\mathcal{o}}}% ℴ \DeclareUnicodeCharacter{1D4C5}{\ensuremath{\mathcal{p}}}% 𝓅 \DeclareUnicodeCharacter{1D4C6}{\ensuremath{\mathcal{q}}}% 𝓆 \DeclareUnicodeCharacter{1D4C7}{\ensuremath{\mathcal{r}}}% 𝓇 \DeclareUnicodeCharacter{1D4C8}{\ensuremath{\mathcal{s}}}% 𝓈 \DeclareUnicodeCharacter{1D4C9}{\ensuremath{\mathcal{t}}}% 𝓉 \DeclareUnicodeCharacter{1D4CA}{\ensuremath{\mathcal{u}}}% 𝓊 \DeclareUnicodeCharacter{1D4CB}{\ensuremath{\mathcal{v}}}% 𝓋 \DeclareUnicodeCharacter{1D4CC}{\ensuremath{\mathcal{w}}}% 𝓌 \DeclareUnicodeCharacter{1D4CD}{\ensuremath{\mathcal{x}}}% 𝓍 \DeclareUnicodeCharacter{1D4CE}{\ensuremath{\mathcal{y}}}% 𝓎 \DeclareUnicodeCharacter{1D4CF}{\ensuremath{\mathcal{z}}}% 𝓏 \DeclareUnicodeCharacter{220C}{\ensuremath{\not\ni}}% ∌ \DeclareUnicodeCharacter{220B}{\ensuremath{\ni}}% ∋ \DeclareUnicodeCharacter{2008}{\,}% Punctuation space \DeclareUnicodeCharacter{2032}{\ensuremath{'}}% ′ (Prime) \DeclareUnicodeCharacter{2033}{\ensuremath{''}}% ″ (2x Prime) \DeclareUnicodeCharacter{2034}{\ensuremath{'''}}% ‴ (3x Prime) \DeclareUnicodeCharacter{2057}{\ensuremath{''''}}% ⁗ (4x Prime) \DeclareUnicodeCharacter{1D538}{\ensuremath{\mathbb{A}}}% 𝔸 \DeclareUnicodeCharacter{1D539}{\ensuremath{\mathbb{B}}}% 𝔹 \DeclareUnicodeCharacter{2102}{\ensuremath{\mathbb{C}}}% ℂ \DeclareUnicodeCharacter{1D53B}{\ensuremath{\mathbb{D}}}% 𝔻 \DeclareUnicodeCharacter{1D53C}{\ensuremath{\mathbb{E}}}% 𝔼 \DeclareUnicodeCharacter{1D53D}{\ensuremath{\mathbb{F}}}% 𝔽 \DeclareUnicodeCharacter{1D53E}{\ensuremath{\mathbb{G}}}% 𝔾 \DeclareUnicodeCharacter{210D}{\ensuremath{\mathbb{H}}}% ℍ \DeclareUnicodeCharacter{1D540}{\ensuremath{\mathbb{I}}}% 𝕀 \DeclareUnicodeCharacter{1D541}{\ensuremath{\mathbb{J}}}% 𝕁 \DeclareUnicodeCharacter{1D542}{\ensuremath{\mathbb{K}}}% 𝕂 \DeclareUnicodeCharacter{1D543}{\ensuremath{\mathbb{L}}}% 𝕃 \DeclareUnicodeCharacter{1D544}{\ensuremath{\mathbb{M}}}% 𝕄 \DeclareUnicodeCharacter{2115}{\ensuremath{\mathbb{N}}}% ℕ \DeclareUnicodeCharacter{1D546}{\ensuremath{\mathbb{O}}}% 𝕆 \DeclareUnicodeCharacter{2119}{\ensuremath{\mathbb{P}}}% ℙ \DeclareUnicodeCharacter{211A}{\ensuremath{\mathbb{Q}}}% ℚ \DeclareUnicodeCharacter{211D}{\ensuremath{\mathbb{R}}}% ℝ \DeclareUnicodeCharacter{1D54A}{\ensuremath{\mathbb{S}}}% 𝕊 \DeclareUnicodeCharacter{1D54B}{\ensuremath{\mathbb{T}}}% 𝕋 \DeclareUnicodeCharacter{1D54C}{\ensuremath{\mathbb{U}}}% 𝕌 \DeclareUnicodeCharacter{1D54D}{\ensuremath{\mathbb{V}}}% 𝕍 \DeclareUnicodeCharacter{1D54E}{\ensuremath{\mathbb{W}}}% 𝕎 \DeclareUnicodeCharacter{1D54F}{\ensuremath{\mathbb{X}}}% 𝕏 \DeclareUnicodeCharacter{1D550}{\ensuremath{\mathbb{Y}}}% 𝕐 \DeclareUnicodeCharacter{2124}{\ensuremath{\mathbb{Z}}}% ℤ \DeclareUnicodeCharacter{213C}{\ensuremath{\mathbb{\pi}}}% ℼ \DeclareUnicodeCharacter{213D}{\ensuremath{\mathbb{\gamma}}}% ℽ \DeclareUnicodeCharacter{213E}{\ensuremath{\mathbb{\Gamma}}}% ℾ \DeclareUnicodeCharacter{213F}{\ensuremath{\mathbb{\Pi}}}% ℿ \DeclareUnicodeCharacter{2140}{\ensuremath{\mathbb{\Sigma}}}% ⅀ \DeclareUnicodeCharacter{1D7D8}{\ensuremath{\mathbb{0}}}% 𝟘 \DeclareUnicodeCharacter{1D7D9}{\ensuremath{\mathbb{1}}}% 𝟙 \DeclareUnicodeCharacter{1D7DA}{\ensuremath{\mathbb{2}}}% 𝟚 \DeclareUnicodeCharacter{1D7DB}{\ensuremath{\mathbb{3}}}% 𝟛 \DeclareUnicodeCharacter{1D7DC}{\ensuremath{\mathbb{4}}}% 𝟜 \DeclareUnicodeCharacter{1D7DD}{\ensuremath{\mathbb{5}}}% 𝟝 \DeclareUnicodeCharacter{1D7DE}{\ensuremath{\mathbb{6}}}% 𝟞 \DeclareUnicodeCharacter{1D7DF}{\ensuremath{\mathbb{7}}}% 𝟟 \DeclareUnicodeCharacter{1D7E0}{\ensuremath{\mathbb{8}}}% 𝟠 \DeclareUnicodeCharacter{1D7E1}{\ensuremath{\mathbb{9}}}% 𝟡 \DeclareUnicodeCharacter{1D552}{\ensuremath{\mathbb{a}}}% 𝕒 \DeclareUnicodeCharacter{1D553}{\ensuremath{\mathbb{b}}}% 𝕓 \DeclareUnicodeCharacter{1D554}{\ensuremath{\mathbb{c}}}% 𝕔 \DeclareUnicodeCharacter{1D555}{\ensuremath{\mathbb{d}}}% 𝕕 \DeclareUnicodeCharacter{1D556}{\ensuremath{\mathbb{e}}}% 𝕖 \DeclareUnicodeCharacter{1D557}{\ensuremath{\mathbb{f}}}% 𝕗 \DeclareUnicodeCharacter{1D558}{\ensuremath{\mathbb{g}}}% 𝕘 \DeclareUnicodeCharacter{1D559}{\ensuremath{\mathbb{h}}}% 𝕙 \DeclareUnicodeCharacter{1D55A}{\ensuremath{\mathbb{i}}}% 𝕚 \DeclareUnicodeCharacter{1D55B}{\ensuremath{\mathbb{j}}}% 𝕛 \DeclareUnicodeCharacter{1D55C}{\ensuremath{\mathbb{k}}}% 𝕜 \DeclareUnicodeCharacter{1D55D}{\ensuremath{\mathbb{l}}}% 𝕝 \DeclareUnicodeCharacter{1D55E}{\ensuremath{\mathbb{m}}}% 𝕞 \DeclareUnicodeCharacter{1D55F}{\ensuremath{\mathbb{n}}}% 𝕟 \DeclareUnicodeCharacter{1D560}{\ensuremath{\mathbb{o}}}% 𝕠 \DeclareUnicodeCharacter{1D561}{\ensuremath{\mathbb{p}}}% 𝕡 \DeclareUnicodeCharacter{1D562}{\ensuremath{\mathbb{q}}}% 𝕢 \DeclareUnicodeCharacter{1D563}{\ensuremath{\mathbb{r}}}% 𝕣 \DeclareUnicodeCharacter{1D564}{\ensuremath{\mathbb{s}}}% 𝕤 \DeclareUnicodeCharacter{1D565}{\ensuremath{\mathbb{t}}}% 𝕥 \DeclareUnicodeCharacter{1D566}{\ensuremath{\mathbb{u}}}% 𝕦 \DeclareUnicodeCharacter{1D567}{\ensuremath{\mathbb{v}}}% 𝕧 \DeclareUnicodeCharacter{1D568}{\ensuremath{\mathbb{w}}}% 𝕨 \DeclareUnicodeCharacter{1D569}{\ensuremath{\mathbb{x}}}% 𝕩 \DeclareUnicodeCharacter{1D56A}{\ensuremath{\mathbb{y}}}% 𝕪 \DeclareUnicodeCharacter{1D56B}{\ensuremath{\mathbb{z}}}% 𝕫 \DeclareUnicodeCharacter{03C4}{\ensuremath{\tau}}% τ \DeclareUnicodeCharacter{221E}{\ensuremath{\infty}}% ∞ \DeclareUnicodeCharacter{219B}{\ensuremath{\nrightarrow}}% ↛ \DeclareUnicodeCharacter{3C5}{\ensuremath{\upsilon}}% υ \DeclareUnicodeCharacter{1D50}{\ensuremath{^m}}% ᵐ \DeclareUnicodeCharacter{2205}{\ensuremath{\emptyset}}% ∅ \DeclareUnicodeCharacter{3C3}{\ensuremath{\sigma}}% σ \DeclareUnicodeCharacter{2254}{\ensuremath{\coloneqq}}% ≔ \DeclareUnicodeCharacter{2A74}{\ensuremath{\Coloneqq}}% ⩴ \DeclareUnicodeCharacter{2184}{\ensuremath{\reflectbox{$c$}}}% ↄ % TODO: \ifmmode \DeclareUnicodeCharacter{A7FB}{\ensuremath{\reflectbox{$F$}}}% ꟻ \DeclareUnicodeCharacter{250}{\ensuremath{\raisebox{\depth}{\rotatebox{180}{a}}}}% ɐ % TODO: \ifmmode \DeclareUnicodeCharacter{393}{\ensuremath{\Gamma}}% Γ \DeclareUnicodeCharacter{22A2}{\ensuremath{\vdash}}% ⊢ \DeclareUnicodeCharacter{21AA}{\ensuremath{\hookrightarrow}}% ↪ \DeclareUnicodeCharacter{2204}{\ensuremath{\nexists}}% ∄ \DeclareUnicodeCharacter{3C6}{\ensuremath{\phi}}% φ \DeclareUnicodeCharacter{3BA}{\ensuremath{\kappa}}% κ \DeclareUnicodeCharacter{3B7}{\ensuremath{\eta}}% η \DeclareUnicodeCharacter{22A4}{\ensuremath{\top}}% ⊤ \DeclareUnicodeCharacter{3C0}{\ensuremath{\pi}}% π \DeclareUnicodeCharacter{3A0}{\ensuremath{\Pi}}% Π \DeclareUnicodeCharacter{2216}{\ensuremath{\setminus}}% ∖ \DeclareUnicodeCharacter{22A5}{\ensuremath{\bot}}% ⊥ \DeclareUnicodeCharacter{3C8}{\ensuremath{\psi}}% ψ \DeclareUnicodeCharacter{3B2}{\ensuremath{\beta}}% β \DeclareUnicodeCharacter{2772}{\tikz[baseline=0.2ex]\draw[line cap=round] (0,0) ++(-30:0.7ex) -- ++(-30:-0.7ex) -- ++(0,1.6ex) -- ++(30:0.7ex) {};}% ❲ \DeclareUnicodeCharacter{2773}{\tikz[baseline=0.2ex]\draw[line cap=round] (0,0) ++(-150:0.7ex) -- ++(-150:-0.7ex) -- ++(0,1.6ex) -- ++(150:0.7ex) {};}% ❳ \def\mediumlangle{% \rlap{$\langle$}\kern 0.1pt% \rlap{$\langle$}\kern 0.1pt% \rlap{$\langle$}\kern 0.1pt% \rlap{$\langle$}\kern 0.1pt% \rlap{$\langle$}\kern 0.1pt% \rlap{$\langle$}\kern 0.1pt% \langle% } \def\mediumrangle{% \rlap{$\rangle$}\kern 0.1pt% \rlap{$\rangle$}\kern 0.1pt% \rlap{$\rangle$}\kern 0.1pt% \rlap{$\rangle$}\kern 0.1pt% \rlap{$\rangle$}\kern 0.1pt% \rlap{$\rangle$}\kern 0.1pt% \rangle% } \def\boldlangle{% \rlap{$\langle$}\kern 0.1pt\rlap{$\langle$}\kern 0.1pt% \rlap{$\langle$}\kern 0.1pt\rlap{$\langle$}\kern 0.1pt% \rlap{$\langle$}\kern 0.1pt\rlap{$\langle$}\kern 0.1pt% \rlap{$\langle$}\kern 0.1pt\rlap{$\langle$}\kern 0.1pt% \rlap{$\langle$}\kern 0.1pt\rlap{$\langle$}\kern 0.1pt% \rlap{$\langle$}\kern 0.1pt\rlap{$\langle$}\kern 0.1pt% \langle% } \def\boldrangle{% \rlap{$\rangle$}\kern 0.1pt\rlap{$\rangle$}\kern 0.1pt% \rlap{$\rangle$}\kern 0.1pt\rlap{$\rangle$}\kern 0.1pt% \rlap{$\rangle$}\kern 0.1pt\rlap{$\rangle$}\kern 0.1pt% \rlap{$\rangle$}\kern 0.1pt\rlap{$\rangle$}\kern 0.1pt% \rlap{$\rangle$}\kern 0.1pt\rlap{$\rangle$}\kern 0.1pt% \rlap{$\rangle$}\kern 0.1pt\rlap{$\rangle$}\kern 0.1pt% \rangle% } \DeclareUnicodeCharacter{276C}{\ensuremath{\mediumlangle}}% ❬ \DeclareUnicodeCharacter{276D}{\ensuremath{\mediumrangle}}% ❭ \DeclareUnicodeCharacter{2770}{\ensuremath{\boldlangle}}% ❰ \DeclareUnicodeCharacter{2771}{\ensuremath{\boldrangle}}% ❱ \makeatother }>>>|)