#lang at-exp scheme (require (planet soegaard/infix)) #| Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... Find the sum of all the even-valued terms in the sequence which do not exceed four million. |# (require (planet "while.scm" ("soegaard" "control.plt" 2 0))) ; while (define-values (f g t) (values 1 2 0)) (define sum f) @${ while[ g< 4000000, when[ even?[g], sum:=sum+g]; t := f + g; f := g; g := t]; sum} #| The sum of the squares of the first ten natural numbers is, 1^2 + 2^2 + ... + 10^2 = 385 The square of the sum of the first ten natural numbers is, (1 + 2 + ... + 10)^2 = 552 = 3025 Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 - 385 = 2640. Find the difference between the sum of the squares of the first one hundred natural numbers and the square of the sum.|# (define n 0) (define ns 0) (define squares 0) @${ sum:=0; while[ n<100, n := n+1; ns := ns+n; squares := squares + n^2]; ns^2-squares } #| A Pythagorean triplet is a set of three natural numbers, a,b,c for which, a^2 + b^2 = c^2 For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2. There exists exactly one Pythagorean triplet for which a + b + c = 1000. Find the product abc. |# (let-values ([(a b c) (values 0 0 0)]) (let/cc return (for ([k (in-range 1 100)]) (for ([m (in-range 2 1000)]) (for ([n (in-range 1 m)]) @${ a := k* 2*m*n; b := k* (m^2 - n^2); c := k* (m^2 + n^2); when[ a+b+c = 1000, display[{{k,m,n}, {a,b,c}}]; newline[]; return[a*b*c] ]}))))) #| Primality testing |# (define (factor2 n) ; return r and s, s.t n = 2^r * s where s odd ; invariant: n = 2^r * s (let loop ([r 0] [s n]) (let-values ([(q r) (quotient/remainder s 2)]) (if (zero? r) (loop (+ r 1) q) (values r s))))) (require srfi/27) ; random-integer (define (miller-rabin n) ; Input: n odd (define (mod x) (modulo x n)) (define (expt x m) (cond [(zero? m) 1] [(even? m) @${mod[sqr[x^(m/2)] ]}] [(odd? m) @${mod[x*x^(m-1)]}])) (define (check? a) (let-values ([(r s) (factor2 (sub1 n))]) ; is a^s congruent to 1 or -1 modulo n ? (and @${member[a^s,{1,mod[-1]}]} #t))) (andmap check? (build-list 50 (λ (_) (+ 2 (random-integer (- n 3))))))) (define (prime? n) (cond [(< n 2) #f] [(= n 2) #t] [(even? n) #f] [else (miller-rabin n)])) (prime? @${2^89-1})